Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
5b7633a5
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5b7633a5
编写于
8月 14, 2017
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into public_to_protected
上级
0c96c997
f80fea8d
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
49 addition
and
35 deletion
+49
-35
paddle/framework/backward.cc
paddle/framework/backward.cc
+27
-17
python/paddle/trainer_config_helpers/evaluators.py
python/paddle/trainer_config_helpers/evaluators.py
+22
-18
未找到文件。
paddle/framework/backward.cc
浏览文件 @
5b7633a5
...
...
@@ -30,6 +30,7 @@ static void ForEachVarName(const Map& names, T callback) {
}
}
// return whether all the names + suffixes in the set
static
bool
AllInSet
(
const
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
string
>>&
names
,
const
std
::
string
&
suffix
,
const
std
::
unordered_set
<
std
::
string
>&
set
)
{
...
...
@@ -48,7 +49,7 @@ static std::shared_ptr<OperatorBase> NOP() {
return
net_op
;
}
// Get backward operator from a forward operator,
recursively
implementation.
// Get backward operator from a forward operator,
a recursive
implementation.
//
// no_grad_names the gradient variable names without gradient calculating.
//
...
...
@@ -56,28 +57,31 @@ static std::shared_ptr<OperatorBase> NOP() {
// BackwardRecursive. use `uid = uniq_id++;` to get the unique index, and
// pass `uniq_id` through recursive calling.
//
// returns The backward operator.
For simple situation, it is
a simple
// operator
. For complex situation, it is
a NetOp.
// returns The backward operator.
In a simple situation, it may be
a simple
// operator
, in a complex situation, it maybe
a NetOp.
//
// See Backward.h for details
static
std
::
shared_ptr
<
OperatorBase
>
BackwardRecursive
(
const
OperatorBase
&
forwardOp
,
std
::
unordered_set
<
std
::
string
>&
no_grad_names
,
size_t
&
uniq_id
);
std
::
shared_ptr
<
OperatorBase
>
BackwardRecursive
(
const
OperatorBase
&
forwardOp
,
std
::
unordered_set
<
std
::
string
>&
no_grad_names
,
size_t
&
uniq_id
)
{
// If all input gradients of forwarding operator do not need to calculate,
// just return an NOP. Not return null ptr because NOP does not take
// too much time for calculation, but it is useful for simplifying logic.
if
(
AllInSet
(
forwardOp
.
Inputs
(),
kGradVarSuffix
,
no_grad_names
))
{
// too much time for calculation, but it is useful for simplifying logic.
if
(
AllInSet
(
forwardOp
.
Inputs
()
/*names*/
,
kGradVarSuffix
/*suffix*/
,
no_grad_names
/*set*/
))
{
return
NOP
();
}
// All output gradients of forwarding operator do not need to calculate.
// Then all input gradients cannot be computed at all, and we put them into
// `no_grad_names` set. Return an NOP.
if
(
AllInSet
(
forwardOp
.
Outputs
(),
kGradVarSuffix
,
no_grad_names
))
{
ForEachVarName
(
forwardOp
.
Inputs
(),
if
(
AllInSet
(
forwardOp
.
Output
()
/*names*/
,
kGradVarSuffix
/*suffix*/
,
no_grad_names
/*set*/
))
{
ForEachVarName
(
forwardOp
.
inputs_
,
[
&
no_grad_names
](
const
std
::
string
&
name
)
->
bool
{
no_grad_names
.
insert
(
GradVarName
(
name
));
return
false
;
...
...
@@ -93,11 +97,11 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
auto
&
forwardNet
=
static_cast
<
const
operators
::
NetOp
&>
(
forwardOp
);
// Map from output gradient variable name to operator's indices in
// backward net. That operator generates that variable.
// backward net
's ops_
. That operator generates that variable.
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
size_t
>>
dup_output_ops
;
size_t
local_op_id
=
0
;
// reversely travel forwardNet
// reversely travel forwardNet
and collect all duplicate outputs.
for
(
auto
it
=
forwardNet
.
ops_
.
rbegin
();
it
!=
forwardNet
.
ops_
.
rend
();
++
it
,
++
local_op_id
)
{
auto
fwd
=
*
it
;
...
...
@@ -112,35 +116,41 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
// Get unique ID for this method.
auto
uid
=
uniq_id
++
;
// TODO(dzh): more comment
// multiple operators which have the same output (y for example) may
// overwrite the same y variable when backward, special operations are token
// to handle this case. For each duplicate output, rename it to an alias
// (original name with a offset), append an `add` op for its operator,
// and finally sum all the alias variable to the final output variable y.
using
Pos
=
std
::
pair
<
size_t
,
std
::
shared_ptr
<
OperatorBase
>>
;
std
::
list
<
Pos
>
insert_position
;
for
(
auto
&
dup_output_op
:
dup_output_ops
)
{
const
std
::
string
&
name
=
dup_output_op
.
first
;
auto
&
dup_op
=
dup_output_op
.
second
;
// no duplicate output
if
(
dup_op
.
size
()
==
1
)
continue
;
std
::
vector
<
std
::
string
>
dup_outputs
;
// process the duplicate outputs
std
::
vector
<
std
::
string
>
dup_outputs
;
for
(
size_t
i
=
0
;
i
<
dup_op
.
size
();
++
i
)
{
// rename each duplicate output to an alias
auto
op_offset
=
dup_op
[
i
];
dup_outputs
.
push_back
(
name
+
"@RENAME@"
+
std
::
to_string
(
uid
)
+
"@"
+
std
::
to_string
(
i
));
net
->
ops_
[
op_offset
]
->
Rename
(
name
,
dup_outputs
.
back
());
}
// collect all the offset to append `add` op for each alias
insert_position
.
push_back
(
{
dup_op
.
back
(),
OpRegistry
::
CreateOp
(
"add"
,
{{
"X"
,
{
dup_outputs
}}},
{{
"Out"
,
{
name
}}},
{{
"input_format"
,
std
::
vector
<
int
>
{
0
,
static_cast
<
int
>
(
dup_outputs
.
size
())}}})});
{
dup_op
.
back
(),
OpRegistry
::
CreateOp
(
"add"
,
{{
"X"
,
{
dup_outputs
}}},
{{
"Out"
,
{
name
}}},
{})});
}
// make sure the inserted `add` ops follow the BFS order.
insert_position
.
sort
(
[](
const
Pos
&
l
,
const
Pos
&
r
)
{
return
l
.
first
>
r
.
first
;
});
for
(
auto
&
pos
:
insert_position
)
{
net
->
InsertOp
(
pos
.
first
+
1
,
pos
.
second
);
}
}
else
{
std
::
shared_ptr
<
OperatorBase
>
grad_op
=
OpRegistry
::
CreateGradOp
(
forwardOp
);
...
...
@@ -176,7 +186,7 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
net
->
SetType
(
"@GENERATED_BACKWARD@"
);
net
->
CompleteAddOp
();
return
net
;
}
}
// namespace framework
// See header for comments
std
::
shared_ptr
<
OperatorBase
>
Backward
(
...
...
python/paddle/trainer_config_helpers/evaluators.py
浏览文件 @
5b7633a5
...
...
@@ -298,8 +298,8 @@ def pnpair_evaluator(
input
,
label
,
info
,
name
=
None
,
weight
=
None
,
):
weight
=
None
,
name
=
None
,
):
"""
Positive-negative pair rate Evaluator which adapts to rank task like
learning to rank. This evaluator must contain at least three layers.
...
...
@@ -308,27 +308,31 @@ def pnpair_evaluator(
.. code-block:: python
eval = pnpair_evaluator(input,
info, label
)
eval = pnpair_evaluator(input,
label, info
)
:param name: Evaluator name.
:type name: None|basestring
:param input: Input Layer name. The output prediction of network.
:type input: LayerOutput
:param label: Label layer name.
:type label: LayerOutput
:param info:
Label
layer name. (TODO, explaination)
:param info:
Info
layer name. (TODO, explaination)
:type info: LayerOutput
:param weight: Weight Layer name. It should be a matrix with size
[sample_num, 1]. (TODO, explaination)
:type weight: LayerOutput
:param name: Evaluator name.
:type name: None|basestring
"""
if
not
isinstance
(
input
,
list
):
input
=
[
input
]
if
label
:
input
.
append
(
label
)
if
info
:
input
.
append
(
info
)
evaluator_base
(
name
=
name
,
type
=
"pnpair"
,
input
=
input
,
label
=
label
,
info
=
info
,
weight
=
weight
)
type
=
"pnpair"
,
weight
=
weight
,
name
=
name
,
)
@
evaluator
(
EvaluatorAttribute
.
FOR_CLASSIFICATION
)
...
...
@@ -429,12 +433,12 @@ def chunk_evaluator(
.. code-block:: text
Scheme Description
Scheme Description
plain Use the same label for the whole chunk.
IOB Two labels for chunk type X, B-X for chunk begining and I-X for chunk inside.
IOB Two labels for chunk type X, B-X for chunk begining and I-X for chunk inside.
IOE Two labels for chunk type X, E-X for chunk ending and I-X for chunk inside.
IOBES Four labels for chunk type X, B-X for chunk begining, I-X for chunk inside, E-X for chunk end and S-X for single word chunk.
IOBES Four labels for chunk type X, B-X for chunk begining, I-X for chunk inside, E-X for chunk end and S-X for single word chunk.
To make it clear, let's illustrate by an NER example.
Assuming that there are three named entity types including ORG, PER and LOC which are called 'chunk type' here,
if 'IOB' scheme were used, the label set will be extended to a set including B-ORG, I-ORG, B-PER, I-PER, B-LOC, I-LOC and O,
...
...
@@ -451,7 +455,7 @@ def chunk_evaluator(
tagType = label % numTagType
chunkType = label / numTagType
otherChunkType = numChunkTypes
The following table shows the mapping rule between tagType and tag type in each scheme.
.. code-block:: text
...
...
@@ -475,7 +479,7 @@ def chunk_evaluator(
O 6
In this example, chunkType has three values: 0 for ORG, 1 for PER, 2 for LOC, because the scheme is
"IOB" so tagType has two values: 0 for B and 1 for I.
"IOB" so tagType has two values: 0 for B and 1 for I.
Here we will use I-LOC to explain the above mapping rules in detail.
For I-LOC, the label id is 5, so we can get tagType=1 and chunkType=2, which means I-LOC is a part of NER chunk LOC
and the tag is I.
...
...
@@ -486,7 +490,7 @@ def chunk_evaluator(
eval = chunk_evaluator(input, label, chunk_scheme, num_chunk_types)
:param input: The input layers.
:type input: LayerOutput
:param label: An input layer containing the ground truth label.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录