Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
5aa59796
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5aa59796
编写于
11月 29, 2016
作者:
W
wangyang59
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
minor changes on demo/gan following lzhao4ever comments
上级
531e8354
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
8 addition
and
10 deletion
+8
-10
demo/gan/README.md
demo/gan/README.md
+2
-1
demo/gan/data/get_mnist_data.sh
demo/gan/data/get_mnist_data.sh
+1
-1
demo/gan/gan_conf.py
demo/gan/gan_conf.py
+1
-1
demo/gan/gan_trainer.py
demo/gan/gan_trainer.py
+4
-7
未找到文件。
demo/gan/README.md
浏览文件 @
5aa59796
...
...
@@ -9,4 +9,5 @@ Then you can run the command below. The flag -d specifies the training data (cif
$python gan_trainer.py -d cifar --useGpu 1
The generated images will be stored in ./cifar_samples/
\ No newline at end of file
The generated images will be stored in ./cifar_samples/
The corresponding models will be stored in ./cifar_params/
\ No newline at end of file
demo/gan/data/get_mnist_data.sh
浏览文件 @
5aa59796
#!/usr/bin/env sh
# This script
s
downloads the mnist data and unzips it.
# This script downloads the mnist data and unzips it.
set
-e
DIR
=
"
$(
cd
"
$(
dirname
"
$0
"
)
"
;
pwd
-P
)
"
rm
-rf
"
$DIR
/mnist_data"
...
...
demo/gan/gan_conf.py
浏览文件 @
5aa59796
...
...
@@ -38,7 +38,7 @@ sample_dim = 2
settings
(
batch_size
=
128
,
learning_rate
=
1e-4
,
learning_method
=
AdamOptimizer
(
beta1
=
0.
7
)
learning_method
=
AdamOptimizer
(
beta1
=
0.
5
)
)
def
discriminator
(
sample
):
...
...
demo/gan/gan_trainer.py
浏览文件 @
5aa59796
...
...
@@ -87,11 +87,8 @@ def load_mnist_data(imageFile):
else
:
n
=
10000
data
=
numpy
.
zeros
((
n
,
28
*
28
),
dtype
=
"float32"
)
for
i
in
range
(
n
):
pixels
=
numpy
.
fromfile
(
f
,
'ubyte'
,
count
=
28
*
28
)
data
[
i
,
:]
=
pixels
/
255.0
*
2.0
-
1.0
data
=
numpy
.
fromfile
(
f
,
'ubyte'
,
count
=
n
*
28
*
28
).
reshape
((
n
,
28
*
28
))
data
=
data
/
255.0
*
2.0
-
1.0
f
.
close
()
return
data
...
...
@@ -235,7 +232,7 @@ def main():
else
:
data_np
=
load_uniform_data
()
# this create a gradient machine for discriminator
# this create
s
a gradient machine for discriminator
dis_training_machine
=
api
.
GradientMachine
.
createFromConfigProto
(
dis_conf
.
model_config
)
# this create a gradient machine for generator
...
...
@@ -243,7 +240,7 @@ def main():
gen_conf
.
model_config
)
# generator_machine is used to generate data only, which is used for
# training discrinator
# training discri
mi
nator
logger
.
info
(
str
(
generator_conf
.
model_config
))
generator_machine
=
api
.
GradientMachine
.
createFromConfigProto
(
generator_conf
.
model_config
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录