Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
58be0418
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
58be0418
编写于
4月 16, 2022
作者:
P
pk_hk
提交者:
GitHub
4月 16, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[pico] add openvino infer (#5713)
上级
2e8a9361
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
300 addition
and
15 deletion
+300
-15
deploy/third_engine/demo_openvino/python/README.md
deploy/third_engine/demo_openvino/python/README.md
+32
-14
deploy/third_engine/demo_openvino/python/openvino_benchmark.py
...y/third_engine/demo_openvino/python/openvino_benchmark.py
+1
-1
deploy/third_engine/demo_openvino/python/openvino_infer.py
deploy/third_engine/demo_openvino/python/openvino_infer.py
+267
-0
docs/images/res.jpg
docs/images/res.jpg
+0
-0
未找到文件。
deploy/third_engine/demo_openvino/python/README.md
浏览文件 @
58be0418
# PicoDet OpenVINO Benchmark Demo
本文件夹提供利用
[
Intel's OpenVINO Toolkit
](
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
)
进行PicoDet测速的Benchmark Demo
本文件夹提供利用
[
Intel's OpenVINO Toolkit
](
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
)
进行PicoDet测速的Benchmark Demo
与带后处理的模型Inference Demo。
## 安装 OpenVINO Toolkit
...
...
@@ -13,9 +13,9 @@ pip install openvino==2022.1.0
详细安装步骤,可参考
[
OpenVINO官网
](
https://docs.openvinotoolkit.org/latest/get_started_guides.html
)
## 测试
##
Benchmark
测试
-
准备测试模型:根据
[
PicoDet
](
https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet
)
中【导出及转换模型】步骤,采用不包含后处理的方式导出模型(
`-o export.benchmark=True`
),并生成待测试模型简化后的onnx模型(可在下文链接中
可
直接下载)。同时在本目录下新建
```out_onnxsim```
文件夹,将导出的onnx模型放在该目录下。
-
准备测试模型:根据
[
PicoDet
](
https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet
)
中【导出及转换模型】步骤,采用不包含后处理的方式导出模型(
`-o export.benchmark=True`
),并生成待测试模型简化后的onnx模型(可在下文链接中直接下载)。同时在本目录下新建
```out_onnxsim```
文件夹,将导出的onnx模型放在该目录下。
-
准备测试所用图片:本demo默认利用PaddleDetection/demo/
[
000000014439.jpg
](
https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/demo/000000014439.jpg
)
...
...
@@ -30,7 +30,7 @@ python openvino_benchmark.py --img_path ..\..\..\..\demo\000000014439.jpg --onnx
```
-
注意:
```--in_shape```
为对应模型输入size,默认为320
### Inference images
### Inference images
(w/o 后处理)
```
shell
# Linux
...
...
@@ -38,20 +38,38 @@ python openvino_benchmark.py --benchmark 0 --img_path ../../../../demo/000000014
# Windows
python openvino_benchmark.py
--benchmark
0
--img_path
..
\.
.
\.
.
\.
.
\d
emo
\0
00000014439.jpg
--onnx_path
out_onnxsim
\p
icodet_s_320_coco_lcnet.onnx
--in_shape
320
```
## Inference images(w/ 后处理, w/o NMS)
-
准备测试模型:根据
[
PicoDet
](
https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet
)
中【导出及转换模型】步骤,采用
**包含后处理**
但
**不包含NMS**
的方式导出模型(
`-o export.benchmark=False export.nms=False`
),并生成待测试模型简化后的onnx模型(可在下文链接中直接下载)。同时在本目录下新建
```out_onnxsim_infer```
文件夹,将导出的onnx模型放在该目录下。
-
准备测试所用图片:默认利用../../demo_onnxruntime/imgs/
[
bus.jpg
](
https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/deploy/third_engine/demo_onnxruntime/imgs/bus.jpg
)
```
shell
# Linux
python openvino_infer.py
--img_path
../../demo_onnxruntime/imgs/bus.jpg
--onnx_path
out_onnxsim_infer/picodet_s_320_postproccesed_woNMS.onnx
--in_shape
320
# Windows
python openvino_infer.py
--img_path
..
\.
.
\d
emo_onnxruntime
\i
mgs
\b
us.jpg
--onnx_path
out_onnxsim_infer
\p
icodet_s_320_postproccesed_woNMS.onnx
--in_shape
320
```
-
结果:
<div
align=
"center"
>
<img
src=
"../../../../docs/images/res.jpg"
height=
"500px"
>
</div>
## 结果
测试
结果如下:
-
测速
结果如下:
| 模型 | 输入尺寸 | ONNX | 预测时延
<sup><small>
[
CPU
](
#latency
)
|
| :-------- | :--------: | :---------------------: | :----------------: |
| PicoDet-XS | 320
*
320 |
[
model
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_320_coco_lcnet.onnx
)
| 3.9ms |
| PicoDet-XS | 416
*
416 |
[
model
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_416_coco_lcnet.onnx
)
| 6.1ms |
| PicoDet-S | 320
*
320 |
[
model
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_320_coco_lcnet.onnx
)
| 4.8ms |
| PicoDet-S | 416
*
416 |
[
model
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_416_coco_lcnet.onnx
)
| 6.6ms |
| PicoDet-M | 320
*
320 |
[
model
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_320_coco_lcnet.onnx
)
| 8.2ms |
| PicoDet-M | 416
*
416 |
[
model
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_416_coco_lcnet.onnx
)
| 12.7ms |
| PicoDet-L | 320
*
320 |
[
model
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_320_coco_lcnet.onnx
)
| 11.5ms |
| PicoDet-L | 416
*
416 |
[
model
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_416_coco_lcnet.onnx
)
| 20.7ms |
| PicoDet-L | 640
*
640 |
[
model
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_640_coco
.onnx
)
| 62.5ms |
| PicoDet-XS | 320
*
320 |
[
( w/ 后处理;w/o NMS)
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_320_lcnet_postproccesed_woNMS.onnx
)
|
[
( w/o 后处理)
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_320_coco_lcnet.onnx
)
| 3.9ms |
| PicoDet-XS | 416
*
416 |
[
( w/ 后处理;w/o NMS)
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_416_lcnet_postproccesed_woNMS.onnx
)
|
[
( w/o 后处理)
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_416_coco_lcnet.onnx
)
| 6.1ms |
| PicoDet-S | 320
*
320 |
[
( w/ 后处理;w/o NMS)
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_320_lcnet_postproccesed_woNMS.onnx
)
|
[
( w/o 后处理)
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_320_coco_lcnet.onnx
)
| 4.8ms |
| PicoDet-S | 416
*
416 |
[
( w/ 后处理;w/o NMS)
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_416_lcnet_postproccesed_woNMS.onnx
)
|
[
( w/o 后处理)
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_416_coco_lcnet.onnx
)
| 6.6ms |
| PicoDet-M | 320
*
320 |
[
( w/ 后处理;w/o NMS)
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_320_lcnet_postproccesed_woNMS.onnx
)
|
[
( w/o 后处理)
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_320_coco_lcnet.onnx
)
| 8.2ms |
| PicoDet-M | 416
*
416 |
[
( w/ 后处理;w/o NMS)
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_416_lcnet_postproccesed_woNMS.onnx
)
|
[
( w/o 后处理)
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_416_coco_lcnet.onnx
)
| 12.7ms |
| PicoDet-L | 320
*
320 |
[
( w/ 后处理;w/o NMS)
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_320_lcnet_postproccesed_woNMS.onnx
)
|
[
( w/o 后处理)
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_320_coco_lcnet.onnx
)
| 11.5ms |
| PicoDet-L | 416
*
416 |
[
( w/ 后处理;w/o NMS)
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_416_lcnet_postproccesed_woNMS.onnx
)
|
[
( w/o 后处理)
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_416_coco_lcnet.onnx
)
| 20.7ms |
| PicoDet-L | 640
*
640 |
[
( w/ 后处理;w/o NMS)
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_640_lcnet_postproccesed_woNMS.onnx
)
|
[
( w/o 后处理)
](
https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_640_coco_lcnet
.onnx
)
| 62.5ms |
-
<a
name=
"latency"
>
测试环境:
</a>
英特尔酷睿i7 10750H CPU。
deploy/third_engine/demo_openvino/python/openvino_benchmark.py
浏览文件 @
58be0418
...
...
@@ -339,7 +339,7 @@ if __name__ == '__main__':
parser
.
add_argument
(
'--img_path'
,
type
=
str
,
default
=
'demo/000000014439.jpg'
,
default
=
'
../../../../
demo/000000014439.jpg'
,
help
=
"image path"
)
parser
.
add_argument
(
'--onnx_path'
,
...
...
deploy/third_engine/demo_openvino/python/openvino_infer.py
0 → 100644
浏览文件 @
58be0418
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
cv2
import
numpy
as
np
import
argparse
from
scipy.special
import
softmax
from
openvino.runtime
import
Core
def
image_preprocess
(
img_path
,
re_shape
):
img
=
cv2
.
imread
(
img_path
)
img
=
cv2
.
resize
(
img
,
(
re_shape
,
re_shape
),
interpolation
=
cv2
.
INTER_LANCZOS4
)
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2RGB
)
img
=
np
.
transpose
(
img
,
[
2
,
0
,
1
])
/
255
img
=
np
.
expand_dims
(
img
,
0
)
img_mean
=
np
.
array
([
0.485
,
0.456
,
0.406
]).
reshape
((
3
,
1
,
1
))
img_std
=
np
.
array
([
0.229
,
0.224
,
0.225
]).
reshape
((
3
,
1
,
1
))
img
-=
img_mean
img
/=
img_std
return
img
.
astype
(
np
.
float32
)
def
get_color_map_list
(
num_classes
):
color_map
=
num_classes
*
[
0
,
0
,
0
]
for
i
in
range
(
0
,
num_classes
):
j
=
0
lab
=
i
while
lab
:
color_map
[
i
*
3
]
|=
(((
lab
>>
0
)
&
1
)
<<
(
7
-
j
))
color_map
[
i
*
3
+
1
]
|=
(((
lab
>>
1
)
&
1
)
<<
(
7
-
j
))
color_map
[
i
*
3
+
2
]
|=
(((
lab
>>
2
)
&
1
)
<<
(
7
-
j
))
j
+=
1
lab
>>=
3
color_map
=
[
color_map
[
i
:
i
+
3
]
for
i
in
range
(
0
,
len
(
color_map
),
3
)]
return
color_map
def
draw_box
(
srcimg
,
results
,
class_label
):
label_list
=
list
(
map
(
lambda
x
:
x
.
strip
(),
open
(
class_label
,
'r'
).
readlines
()))
for
i
in
range
(
len
(
results
)):
color_list
=
get_color_map_list
(
len
(
label_list
))
clsid2color
=
{}
classid
,
conf
=
int
(
results
[
i
,
0
]),
results
[
i
,
1
]
xmin
,
ymin
,
xmax
,
ymax
=
int
(
results
[
i
,
2
]),
int
(
results
[
i
,
3
]),
int
(
results
[
i
,
4
]),
int
(
results
[
i
,
5
])
if
classid
not
in
clsid2color
:
clsid2color
[
classid
]
=
color_list
[
classid
]
color
=
tuple
(
clsid2color
[
classid
])
cv2
.
rectangle
(
srcimg
,
(
xmin
,
ymin
),
(
xmax
,
ymax
),
color
,
thickness
=
2
)
print
(
label_list
[
classid
]
+
': '
+
str
(
round
(
conf
,
3
)))
cv2
.
putText
(
srcimg
,
label_list
[
classid
]
+
':'
+
str
(
round
(
conf
,
3
)),
(
xmin
,
ymin
-
10
),
cv2
.
FONT_HERSHEY_SIMPLEX
,
0.8
,
(
0
,
255
,
0
),
thickness
=
2
)
return
srcimg
def
hard_nms
(
box_scores
,
iou_threshold
,
top_k
=-
1
,
candidate_size
=
200
):
"""
Args:
box_scores (N, 5): boxes in corner-form and probabilities.
iou_threshold: intersection over union threshold.
top_k: keep top_k results. If k <= 0, keep all the results.
candidate_size: only consider the candidates with the highest scores.
Returns:
picked: a list of indexes of the kept boxes
"""
scores
=
box_scores
[:,
-
1
]
boxes
=
box_scores
[:,
:
-
1
]
picked
=
[]
indexes
=
np
.
argsort
(
scores
)
indexes
=
indexes
[
-
candidate_size
:]
while
len
(
indexes
)
>
0
:
current
=
indexes
[
-
1
]
picked
.
append
(
current
)
if
0
<
top_k
==
len
(
picked
)
or
len
(
indexes
)
==
1
:
break
current_box
=
boxes
[
current
,
:]
indexes
=
indexes
[:
-
1
]
rest_boxes
=
boxes
[
indexes
,
:]
iou
=
iou_of
(
rest_boxes
,
np
.
expand_dims
(
current_box
,
axis
=
0
),
)
indexes
=
indexes
[
iou
<=
iou_threshold
]
return
box_scores
[
picked
,
:]
def
iou_of
(
boxes0
,
boxes1
,
eps
=
1e-5
):
"""Return intersection-over-union (Jaccard index) of boxes.
Args:
boxes0 (N, 4): ground truth boxes.
boxes1 (N or 1, 4): predicted boxes.
eps: a small number to avoid 0 as denominator.
Returns:
iou (N): IoU values.
"""
overlap_left_top
=
np
.
maximum
(
boxes0
[...,
:
2
],
boxes1
[...,
:
2
])
overlap_right_bottom
=
np
.
minimum
(
boxes0
[...,
2
:],
boxes1
[...,
2
:])
overlap_area
=
area_of
(
overlap_left_top
,
overlap_right_bottom
)
area0
=
area_of
(
boxes0
[...,
:
2
],
boxes0
[...,
2
:])
area1
=
area_of
(
boxes1
[...,
:
2
],
boxes1
[...,
2
:])
return
overlap_area
/
(
area0
+
area1
-
overlap_area
+
eps
)
def
area_of
(
left_top
,
right_bottom
):
"""Compute the areas of rectangles given two corners.
Args:
left_top (N, 2): left top corner.
right_bottom (N, 2): right bottom corner.
Returns:
area (N): return the area.
"""
hw
=
np
.
clip
(
right_bottom
-
left_top
,
0.0
,
None
)
return
hw
[...,
0
]
*
hw
[...,
1
]
class
PicoDetNMS
(
object
):
"""
Args:
input_shape (int): network input image size
scale_factor (float): scale factor of ori image
"""
def
__init__
(
self
,
input_shape
,
scale_x
,
scale_y
,
strides
=
[
8
,
16
,
32
,
64
],
score_threshold
=
0.4
,
nms_threshold
=
0.5
,
nms_top_k
=
1000
,
keep_top_k
=
100
):
self
.
input_shape
=
input_shape
self
.
scale_x
=
scale_x
self
.
scale_y
=
scale_y
self
.
strides
=
strides
self
.
score_threshold
=
score_threshold
self
.
nms_threshold
=
nms_threshold
self
.
nms_top_k
=
nms_top_k
self
.
keep_top_k
=
keep_top_k
def
__call__
(
self
,
decode_boxes
,
select_scores
):
batch_size
=
1
out_boxes_list
=
[]
for
batch_id
in
range
(
batch_size
):
# nms
bboxes
=
np
.
concatenate
(
decode_boxes
,
axis
=
0
)
confidences
=
np
.
concatenate
(
select_scores
,
axis
=
0
)
picked_box_probs
=
[]
picked_labels
=
[]
for
class_index
in
range
(
0
,
confidences
.
shape
[
1
]):
probs
=
confidences
[:,
class_index
]
mask
=
probs
>
self
.
score_threshold
probs
=
probs
[
mask
]
if
probs
.
shape
[
0
]
==
0
:
continue
subset_boxes
=
bboxes
[
mask
,
:]
box_probs
=
np
.
concatenate
(
[
subset_boxes
,
probs
.
reshape
(
-
1
,
1
)],
axis
=
1
)
box_probs
=
hard_nms
(
box_probs
,
iou_threshold
=
self
.
nms_threshold
,
top_k
=
self
.
keep_top_k
,
)
picked_box_probs
.
append
(
box_probs
)
picked_labels
.
extend
([
class_index
]
*
box_probs
.
shape
[
0
])
if
len
(
picked_box_probs
)
==
0
:
out_boxes_list
.
append
(
np
.
empty
((
0
,
4
)))
else
:
picked_box_probs
=
np
.
concatenate
(
picked_box_probs
)
# resize output boxes
picked_box_probs
[:,
0
]
*=
self
.
scale_x
picked_box_probs
[:,
2
]
*=
self
.
scale_x
picked_box_probs
[:,
1
]
*=
self
.
scale_y
picked_box_probs
[:,
3
]
*=
self
.
scale_y
# clas score box
out_boxes_list
.
append
(
np
.
concatenate
(
[
np
.
expand_dims
(
np
.
array
(
picked_labels
),
axis
=-
1
),
np
.
expand_dims
(
picked_box_probs
[:,
4
],
axis
=-
1
),
picked_box_probs
[:,
:
4
]
],
axis
=
1
))
out_boxes_list
=
np
.
concatenate
(
out_boxes_list
,
axis
=
0
)
return
out_boxes_list
def
detect
(
img_file
,
compiled_model
,
class_label
):
output
=
compiled_model
.
infer_new_request
({
0
:
test_image
})
result_ie
=
list
(
output
.
values
())
decode_boxes
=
[]
select_scores
=
[]
num_outs
=
int
(
len
(
result_ie
)
/
2
)
for
out_idx
in
range
(
num_outs
):
decode_boxes
.
append
(
result_ie
[
out_idx
])
select_scores
.
append
(
result_ie
[
out_idx
+
num_outs
])
image
=
cv2
.
imread
(
img_file
,
1
)
scale_x
=
image
.
shape
[
1
]
/
test_image
.
shape
[
3
]
scale_y
=
image
.
shape
[
0
]
/
test_image
.
shape
[
2
]
nms
=
PicoDetNMS
(
test_image
.
shape
[
2
:],
scale_x
,
scale_y
)
np_boxes
=
nms
(
decode_boxes
,
select_scores
)
res_image
=
draw_box
(
image
,
np_boxes
,
class_label
)
cv2
.
imwrite
(
'res.jpg'
,
res_image
)
cv2
.
imshow
(
"res"
,
res_image
)
cv2
.
waitKey
()
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--img_path'
,
type
=
str
,
default
=
'../../demo_onnxruntime/imgs/bus.jpg'
,
help
=
"image path"
)
parser
.
add_argument
(
'--onnx_path'
,
type
=
str
,
default
=
'out_onnxsim_infer/picodet_s_320_postproccesed_woNMS.onnx'
,
help
=
"onnx filepath"
)
parser
.
add_argument
(
'--in_shape'
,
type
=
int
,
default
=
320
,
help
=
"input_size"
)
parser
.
add_argument
(
'--class_label'
,
type
=
str
,
default
=
'coco_label.txt'
,
help
=
"class label file"
)
args
=
parser
.
parse_args
()
ie
=
Core
()
net
=
ie
.
read_model
(
args
.
onnx_path
)
test_image
=
image_preprocess
(
args
.
img_path
,
args
.
in_shape
)
compiled_model
=
ie
.
compile_model
(
net
,
'CPU'
)
detect
(
args
.
img_path
,
compiled_model
,
args
.
class_label
)
docs/images/res.jpg
0 → 100644
浏览文件 @
58be0418
481.1 KB
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录