未验证 提交 554ac428 编写于 作者: Z zhiboniu 提交者: GitHub

modify infer deploy guide file to add keypoint support;test=document_fix (#4254)

上级 19bc3294
......@@ -34,13 +34,13 @@ cat /etc/nv_tegra_release
**说明**:其中`C++`预测代码在`/root/projects/PaddleDetection/deploy/cpp` 目录,该目录不依赖任何`PaddleDetection`下其他目录。
### Step2: 下载PaddlePaddle C++ 预测库 fluid_inference
### Step2: 下载PaddlePaddle C++ 预测库 paddle_inference
解压下载的[nv_jetson_cuda10_cudnn7.6_trt6(jetpack4.3)](https://paddle-inference-lib.bj.bcebos.com/2.0.1-nv-jetson-jetpack4.3-all/paddle_inference.tgz)
下载并解压后`/root/projects/fluid_inference`目录包含内容为:
下载并解压后`/root/projects/paddle_inference`目录包含内容为:
```
fluid_inference
paddle_inference
├── paddle # paddle核心库和头文件
|
├── third_party # 第三方依赖库和头文件
......@@ -74,7 +74,7 @@ TENSORRT_INC_DIR=/usr/include/aarch64-linux-gnu
TENSORRT_LIB_DIR=/usr/lib/aarch64-linux-gnu
# Paddle 预测库路径
PADDLE_DIR=/path/to/fluid_inference/
PADDLE_DIR=/path/to/paddle_inference/
# Paddle 预测库名称
PADDLE_LIB_NAME=paddle_inference
......@@ -89,6 +89,9 @@ CUDA_LIB=/usr/local/cuda-10.0/lib64
# CUDNN 的 lib 路径
CUDNN_LIB=/usr/lib/aarch64-linux-gnu
# 是否开启关键点模型预测功能
WITH_KEYPOINT=ON
# OPENCV_DIR 的路径
# linux平台请下载:https://bj.bcebos.com/paddleseg/deploy/opencv3.4.6gcc4.8ffmpeg.tar.gz2,并解压到deps文件夹下
# TX2平台请下载:https://paddlemodels.bj.bcebos.com/TX2_JetPack4.3_opencv_3.4.10_gcc7.5.0.zip,并解压到deps文件夹下
......@@ -107,7 +110,8 @@ cmake .. \
-DCUDA_LIB=${CUDA_LIB} \
-DCUDNN_LIB=${CUDNN_LIB} \
-DOPENCV_DIR=${OPENCV_DIR} \
-DPADDLE_LIB_NAME={PADDLE_LIB_NAME}
-DPADDLE_LIB_NAME={PADDLE_LIB_NAME} \
-DWITH_KEYPOINT=${WITH_KEYPOINT}
make
```
......@@ -129,7 +133,7 @@ TENSORRT_INC_DIR=/usr/include/aarch64-linux-gnu
TENSORRT_LIB_DIR=/usr/lib/aarch64-linux-gnu
# Paddle 预测库路径
PADDLE_DIR=/home/nvidia/PaddleDetection_infer/fluid_inference/
PADDLE_DIR=/home/nvidia/PaddleDetection_infer/paddle_inference/
# Paddle 预测库名称
PADDLE_LIB_NAME=paddle_inference
......@@ -143,6 +147,9 @@ CUDA_LIB=/usr/local/cuda-10.0/lib64
# CUDNN 的 lib 路径
CUDNN_LIB=/usr/lib/aarch64-linux-gnu/
# 是否开启关键点模型预测功能
WITH_KEYPOINT=ON
```
修改脚本设置好主要参数后,执行`build`脚本:
......@@ -154,7 +161,8 @@ CUDNN_LIB=/usr/lib/aarch64-linux-gnu/
编译成功后,预测入口程序为`build/main`其主要命令参数说明如下:
| 参数 | 说明 |
| ---- | ---- |
| --model_dir | 导出的预测模型所在路径 |
| --model_dir | 导出的检测预测模型所在路径 |
| --model_dir_keypoint | Option | 导出的关键点预测模型所在路径 |
| --image_file | 要预测的图片文件路径 |
| --image_dir | 要预测的图片文件夹路径 |
| --video_file | 要预测的视频文件路径 |
......@@ -162,11 +170,13 @@ CUDNN_LIB=/usr/lib/aarch64-linux-gnu/
| --device | 运行时的设备,可选择`CPU/GPU/XPU`,默认为`CPU`|
| --gpu_id | 指定进行推理的GPU device id(默认值为0)|
| --run_mode | 使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16/trt_int8)|
| --batch_size |预测时的batch size,在指定`image_dir`时有效 |
| --batch_size | 检测模型预测时的batch size,在指定`image_dir`时有效 |
| --batch_size_keypoint | 关键点模型预测时的batch size,默认为8 |
| --run_benchmark | 是否重复预测来进行benchmark测速 |
| --output_dir | 输出图片所在的文件夹, 默认为output |
| --use_mkldnn | CPU预测中是否开启MKLDNN加速 |
| --cpu_threads | 设置cpu线程数,默认为1 |
| --use_dark | 关键点模型输出预测是否使用DarkPose后处理,默认为true |
**注意**:
- 优先级顺序:`camera_id` > `video_file` > `image_dir` > `image_file`
......@@ -189,6 +199,12 @@ CUDNN_LIB=/usr/lib/aarch64-linux-gnu/
```
视频文件目前支持`.mp4`格式的预测,`可视化预测结果`会保存在当前目录下`output.mp4`文件中。
`样例三`
```shell
#使用关键点模型与检测模型联合预测,使用 `GPU`预测
#检测模型检测到的人送入关键点模型进行关键点预测
./main --model_dir=/root/projects/models/yolov3_darknet --model_dir_keypoint=/root/projects/models/hrnet_w32_256x192 --image_file=/root/projects/images/test.jpeg --device=GPU
```
## 性能测试
benchmark请查看[BENCHMARK_INFER](../../BENCHMARK_INFER.md)
......@@ -17,14 +17,14 @@
**说明**:其中`C++`预测代码在`/root/projects/PaddleDetection/deploy/cpp` 目录,该目录不依赖任何`PaddleDetection`下其他目录。
### Step2: 下载PaddlePaddle C++ 预测库 fluid_inference
### Step2: 下载PaddlePaddle C++ 预测库 paddle_inference
PaddlePaddle C++ 预测库针对不同的`CPU``CUDA`版本提供了不同的预编译版本,请根据实际情况下载: [C++预测库下载列表](https://paddleinference.paddlepaddle.org.cn/user_guides/download_lib.html)
下载并解压后`/root/projects/fluid_inference`目录包含内容为:
下载并解压后`/root/projects/paddle_inference`目录包含内容为:
```
fluid_inference
paddle_inference
├── paddle # paddle核心库和头文件
|
├── third_party # 第三方依赖库和头文件
......@@ -56,7 +56,7 @@ TENSORRT_LIB_DIR=/path/to/TensorRT/include
TENSORRT_LIB_DIR=/path/to/TensorRT/lib
# Paddle 预测库路径
PADDLE_DIR=/path/to/fluid_inference
PADDLE_DIR=/path/to/paddle_inference
# Paddle 预测库名称
PADDLE_LIB_NAME=paddle_inference
......@@ -67,6 +67,9 @@ CUDA_LIB=/path/to/cuda/lib
# CUDNN 的 lib 路径
CUDNN_LIB=/path/to/cudnn/lib
# 是否开启关键点模型预测功能
WITH_KEYPOINT=ON
# 请检查以上各个路径是否正确
# 以下无需改动
......@@ -80,7 +83,8 @@ cmake .. \
-DCUDA_LIB=${CUDA_LIB} \
-DCUDNN_LIB=${CUDNN_LIB} \
-DOPENCV_DIR=${OPENCV_DIR} \
-DPADDLE_LIB_NAME={PADDLE_LIB_NAME}
-DPADDLE_LIB_NAME=${PADDLE_LIB_NAME} \
-DWITH_KEYPOINT=${WITH_KEYPOINT}
make
```
......@@ -96,7 +100,8 @@ make
编译成功后,预测入口程序为`build/main`其主要命令参数说明如下:
| 参数 | 说明 |
| ---- | ---- |
| --model_dir | 导出的预测模型所在路径 |
| --model_dir | 导出的检测预测模型所在路径 |
| --model_dir_keypoint | Option | 导出的关键点预测模型所在路径 |
| --image_file | 要预测的图片文件路径 |
| --image_dir | 要预测的图片文件夹路径 |
| --video_file | 要预测的视频文件路径 |
......@@ -104,11 +109,13 @@ make
| --device | 运行时的设备,可选择`CPU/GPU/XPU`,默认为`CPU`|
| --gpu_id | 指定进行推理的GPU device id(默认值为0)|
| --run_mode | 使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16/trt_int8)|
| --batch_size | 预测时的batch size,在指定`image_dir`时有效 |
| --batch_size | 检测模型预测时的batch size,在指定`image_dir`时有效 |
| --batch_size_keypoint | 关键点模型预测时的batch size,默认为8 |
| --run_benchmark | 是否重复预测来进行benchmark测速 |
| --output_dir | 输出图片所在的文件夹, 默认为output |
| --use_mkldnn | CPU预测中是否开启MKLDNN加速 |
| --cpu_threads | 设置cpu线程数,默认为1 |
| --use_dark | 关键点模型输出预测是否使用DarkPose后处理,默认为true |
**注意**:
- 优先级顺序:`camera_id` > `video_file` > `image_dir` > `image_file`
......@@ -130,5 +137,13 @@ make
```
视频文件目前支持`.mp4`格式的预测,`可视化预测结果`会保存在当前目录下`output.mp4`文件中。
`样例三`
```shell
#使用关键点模型与检测模型联合预测,使用 `GPU`预测
#检测模型检测到的人送入关键点模型进行关键点预测
./build/main --model_dir=/root/projects/models/yolov3_darknet --model_dir_keypoint=/root/projects/models/hrnet_w32_256x192 --image_file=/root/projects/images/test.jpeg --device=GPU
```
## 性能测试
benchmark请查看[BENCHMARK_INFER](../../BENCHMARK_INFER.md)
......@@ -30,13 +30,13 @@ git clone https://github.com/PaddlePaddle/PaddleDetection.git
**说明**:其中`C++`预测代码在`PaddleDetection/deploy/cpp` 目录,该目录不依赖任何`PaddleDetection`下其他目录。
### Step2: 下载PaddlePaddle C++ 预测库 fluid_inference
### Step2: 下载PaddlePaddle C++ 预测库 paddle_inference
PaddlePaddle C++ 预测库针对不同的`CPU``CUDA`版本提供了不同的预编译版本,请根据实际情况下载: [C++预测库下载列表](https://paddleinference.paddlepaddle.org.cn/user_guides/download_lib.html#windows)
解压后`D:\projects\fluid_inference`目录包含内容为:
解压后`D:\projects\paddle_inference`目录包含内容为:
```
fluid_inference
paddle_inference
├── paddle # paddle核心库和头文件
|
├── third_party # 第三方依赖库和头文件
......@@ -72,16 +72,16 @@ cd D:\projects\PaddleDetection\deploy\cpp
| PADDLE_DIR | Paddle预测库的路径 |
| PADDLE_LIB_NAME | Paddle 预测库名称 |
**注意:** 1. 使用`CPU`版预测库,请把`WITH_GPU`的勾去掉 2. 如果使用的是`openblas`版本,请把`WITH_MKL`勾去掉
**注意:** 1. 使用`CPU`版预测库,请把`WITH_GPU`的勾去掉 2. 如果使用的是`openblas`版本,请把`WITH_MKL`勾去掉 3.如无需使用关键点模型可以把`WITH_KEYPOINT`勾去掉
执行如下命令项目文件:
```
cmake . -G "Visual Studio 16 2019" -A x64 -T host=x64 -DWITH_GPU=ON -DWITH_MKL=ON -DCMAKE_BUILD_TYPE=Release -DCUDA_LIB=path_to_cuda_lib -DCUDNN_LIB=path_to_cudnn_lib -DPADDLE_DIR=path_to_paddle_lib -DPADDLE_LIB_NAME=paddle_inference -DOPENCV_DIR=path_to_opencv
cmake . -G "Visual Studio 16 2019" -A x64 -T host=x64 -DWITH_GPU=ON -DWITH_MKL=ON -DCMAKE_BUILD_TYPE=Release -DCUDA_LIB=path_to_cuda_lib -DCUDNN_LIB=path_to_cudnn_lib -DPADDLE_DIR=path_to_paddle_lib -DPADDLE_LIB_NAME=paddle_inference -DOPENCV_DIR=path_to_opencv -DWITH_KEYPOINT=ON
```
例如:
```
cmake . -G "Visual Studio 16 2019" -A x64 -T host=x64 -DWITH_GPU=ON -DWITH_MKL=ON -DCMAKE_BUILD_TYPE=Release -DCUDA_LIB=D:\projects\packages\cuda10_0\lib\x64 -DCUDNN_LIB=D:\projects\packages\cuda10_0\lib\x64 -DPADDLE_DIR=D:\projects\packages\fluid_inference -DPADDLE_LIB_NAME=paddle_inference -DOPENCV_DIR=D:\projects\packages\opencv3_4_6
cmake . -G "Visual Studio 16 2019" -A x64 -T host=x64 -DWITH_GPU=ON -DWITH_MKL=ON -DCMAKE_BUILD_TYPE=Release -DCUDA_LIB=D:\projects\packages\cuda10_0\lib\x64 -DCUDNN_LIB=D:\projects\packages\cuda10_0\lib\x64 -DPADDLE_DIR=D:\projects\packages\paddle_inference -DPADDLE_LIB_NAME=paddle_inference -DOPENCV_DIR=D:\projects\packages\opencv3_4_6 -DWITH_KEYPOINT=ON
```
3. 编译
......@@ -99,7 +99,8 @@ cd D:\projects\PaddleDetection\deploy\cpp\out\build\x64-Release
| 参数 | 说明 |
| ---- | ---- |
| --model_dir | 导出的预测模型所在路径 |
| --model_dir | 导出的检测预测模型所在路径 |
| --model_dir_keypoint | Option | 导出的关键点预测模型所在路径 |
| --image_file | 要预测的图片文件路径 |
| --image_dir | 要预测的图片文件夹路径 |
| --video_file | 要预测的视频文件路径 |
......@@ -107,11 +108,13 @@ cd D:\projects\PaddleDetection\deploy\cpp\out\build\x64-Release
| --device | 运行时的设备,可选择`CPU/GPU/XPU`,默认为`CPU`|
| --gpu_id | 指定进行推理的GPU device id(默认值为0)|
| --run_mode | 使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16/trt_int8)|
| --batch_size | 预测时的batch size,在指定`image_dir`时有效 |
| --run_benchmark | 是否重复预测来进行benchmark测速 |
| --output_dir | 输出图片所在的文件夹, 默认为output |
| --batch_size | 检测模型预测时的batch size,在指定`image_dir`时有效 |
| --batch_size_keypoint | 关键点模型预测时的batch size,默认为8 |
| --run_benchmark | 是否重复预测来进行benchmark测速 |
| --output_dir | 输出图片所在的文件夹, 默认为output |
| --use_mkldnn | CPU预测中是否开启MKLDNN加速 |
| --cpu_threads | 设置cpu线程数,默认为1 |
| --use_dark | 关键点模型输出预测是否使用DarkPose后处理,默认为true |
**注意**:
(1)优先级顺序:`camera_id` > `video_file` > `image_dir` > `image_file`。
......@@ -137,5 +140,13 @@ cd D:\projects\PaddleDetection\deploy\cpp\out\build\x64-Release
视频文件目前支持`.mp4`格式的预测,`可视化预测结果`会保存在当前目录下`output.mp4`文件中。
`样例三`:
```shell
#使用关键点模型与检测模型联合预测,使用 `GPU`预测
#检测模型检测到的人送入关键点模型进行关键点预测
.\main --model_dir=D:\\models\\yolov3_darknet --model_dir_keypoint=D:\\models\\hrnet_w32_256x192 --image_file=D:\\images\\test.jpeg --device=GPU
```
## 性能测试
Benchmark请查看[BENCHMARK_INFER](../../BENCHMARK_INFER.md)
......@@ -25,6 +25,9 @@ CUDA_LIB=/path/to/cuda/lib
# CUDNN 的 lib 路径
CUDNN_LIB=/path/to/cudnn/lib
# 是否开启关键点模型预测功能
WITH_KEYPOINT=ON
MACHINE_TYPE=`uname -m`
echo "MACHINE_TYPE: "${MACHINE_TYPE}
......@@ -73,7 +76,8 @@ cmake .. \
-DCUDA_LIB=${CUDA_LIB} \
-DCUDNN_LIB=${CUDNN_LIB} \
-DOPENCV_DIR=${OPENCV_DIR} \
-DPADDLE_LIB_NAME=${PADDLE_LIB_NAME}
-DPADDLE_LIB_NAME=${PADDLE_LIB_NAME} \
-DWITH_KEYPOINT=${WITH_KEYPOINT}
make
echo "make finished!"
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册