Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
54bd17fe
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
54bd17fe
编写于
3月 26, 2018
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Complete Flowers
上级
50e7e25d
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
144 addition
and
4 deletion
+144
-4
paddle/fluid/framework/details/op_handle_base.cc
paddle/fluid/framework/details/op_handle_base.cc
+7
-1
paddle/fluid/framework/details/ssa_graph_builder.cc
paddle/fluid/framework/details/ssa_graph_builder.cc
+1
-1
python/paddle/fluid/tests/unittests/.gitignore
python/paddle/fluid/tests/unittests/.gitignore
+1
-0
python/paddle/fluid/tests/unittests/test_parallel_executor.py
...on/paddle/fluid/tests/unittests/test_parallel_executor.py
+135
-2
未找到文件。
paddle/fluid/framework/details/op_handle_base.cc
浏览文件 @
54bd17fe
...
@@ -31,7 +31,13 @@ std::string OpHandleBase::DebugString() const {
...
@@ -31,7 +31,13 @@ std::string OpHandleBase::DebugString() const {
return
ss
.
str
();
return
ss
.
str
();
}
}
OpHandleBase
::~
OpHandleBase
()
{}
OpHandleBase
::~
OpHandleBase
()
{
#ifdef PADDLE_WITH_CUDA
for
(
auto
&
ev
:
events_
)
{
cudaEventDestroy
(
ev
.
second
);
}
#endif
}
void
OpHandleBase
::
Run
(
bool
use_event
)
{
void
OpHandleBase
::
Run
(
bool
use_event
)
{
#ifdef PADDLE_WITH_CUDA
#ifdef PADDLE_WITH_CUDA
...
...
paddle/fluid/framework/details/ssa_graph_builder.cc
浏览文件 @
54bd17fe
...
@@ -21,7 +21,7 @@ void SSAGraphBuilder::PolishGraphToSupportDataHazards(SSAGraph *graph) {
...
@@ -21,7 +21,7 @@ void SSAGraphBuilder::PolishGraphToSupportDataHazards(SSAGraph *graph) {
for
(
auto
&
var_map
:
graph
->
vars_
)
{
for
(
auto
&
var_map
:
graph
->
vars_
)
{
for
(
auto
&
name_pair
:
var_map
)
{
for
(
auto
&
name_pair
:
var_map
)
{
if
(
name_pair
.
second
.
size
()
<=
1
)
{
if
(
name_pair
.
second
.
size
()
<=
1
)
{
return
;
continue
;
}
}
auto
it_new
=
name_pair
.
second
.
rbegin
();
auto
it_new
=
name_pair
.
second
.
rbegin
();
auto
it_old
=
name_pair
.
second
.
rbegin
();
auto
it_old
=
name_pair
.
second
.
rbegin
();
...
...
python/paddle/fluid/tests/unittests/.gitignore
浏览文件 @
54bd17fe
...
@@ -2,3 +2,4 @@ mnist.recordio
...
@@ -2,3 +2,4 @@ mnist.recordio
mnist_0.recordio
mnist_0.recordio
mnist_1.recordio
mnist_1.recordio
mnist_2.recordio
mnist_2.recordio
flowers.recordio
python/paddle/fluid/tests/unittests/test_parallel_executor.py
浏览文件 @
54bd17fe
...
@@ -16,6 +16,7 @@ import unittest
...
@@ -16,6 +16,7 @@ import unittest
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
paddle.v2
as
paddle
import
paddle.v2
as
paddle
import
paddle.v2.dataset.mnist
as
mnist
import
paddle.v2.dataset.mnist
as
mnist
import
paddle.v2.dataset.flowers
as
flowers
import
numpy
import
numpy
...
@@ -64,6 +65,119 @@ def fc_with_batchnorm():
...
@@ -64,6 +65,119 @@ def fc_with_batchnorm():
return
loss
return
loss
def
squeeze_excitation
(
input
,
num_channels
,
reduction_ratio
):
# pool = fluid.layers.pool2d(
# input=input, pool_size=0, pool_type='avg', global_pooling=True)
conv
=
input
shape
=
conv
.
shape
reshape
=
fluid
.
layers
.
reshape
(
x
=
conv
,
shape
=
[
-
1
,
shape
[
1
],
shape
[
2
]
*
shape
[
3
]])
pool
=
fluid
.
layers
.
reduce_mean
(
input
=
reshape
,
dim
=
2
)
squeeze
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
num_channels
/
reduction_ratio
,
act
=
'relu'
)
excitation
=
fluid
.
layers
.
fc
(
input
=
squeeze
,
size
=
num_channels
,
act
=
'sigmoid'
)
scale
=
fluid
.
layers
.
elementwise_mul
(
x
=
input
,
y
=
excitation
,
axis
=
0
)
return
scale
def
conv_bn_layer
(
input
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
/
2
,
groups
=
groups
,
act
=
None
,
bias_attr
=
False
)
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
,
momentum
=
0.1
)
def
shortcut
(
input
,
ch_out
,
stride
):
ch_in
=
input
.
shape
[
1
]
if
ch_in
!=
ch_out
:
if
stride
==
1
:
filter_size
=
1
else
:
filter_size
=
3
return
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
)
else
:
return
input
def
bottleneck_block
(
input
,
num_filters
,
stride
,
cardinality
,
reduction_ratio
):
# The number of first 1x1 convolutional channels for each bottleneck build block
# was halved to reduce the compution cost.
conv0
=
conv_bn_layer
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
)
conv1
=
conv_bn_layer
(
input
=
conv0
,
num_filters
=
num_filters
*
2
,
filter_size
=
3
,
stride
=
stride
,
groups
=
cardinality
,
act
=
'relu'
)
conv2
=
conv_bn_layer
(
input
=
conv1
,
num_filters
=
num_filters
*
2
,
filter_size
=
1
,
act
=
None
)
scale
=
squeeze_excitation
(
input
=
conv2
,
num_channels
=
num_filters
*
2
,
reduction_ratio
=
reduction_ratio
)
short
=
shortcut
(
input
,
num_filters
*
2
,
stride
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
scale
,
act
=
'relu'
)
def
SE_ResNeXt152
():
reader
=
fluid
.
layers
.
open_recordio_file
(
filename
=
'./flowers.recordio'
,
shapes
=
[[
-
1
,
3
,
224
,
224
],
[
-
1
,
1
]],
lod_levels
=
[
0
,
0
],
dtypes
=
[
'float32'
,
'int64'
])
img
,
label
=
fluid
.
layers
.
read_file
(
reader
)
conv
=
conv_bn_layer
(
input
=
img
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
)
conv
=
conv_bn_layer
(
input
=
conv
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
)
conv
=
conv_bn_layer
(
input
=
conv
,
num_filters
=
128
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
cardinality
=
64
reduction_ratio
=
16
depth
=
[
3
,
8
,
36
,
3
]
num_filters
=
[
128
,
256
,
512
,
1024
]
for
block
in
range
(
len
(
depth
)):
for
i
in
range
(
depth
[
block
]):
conv
=
bottleneck_block
(
input
=
conv
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
cardinality
=
cardinality
,
reduction_ratio
=
reduction_ratio
)
shape
=
conv
.
shape
reshape
=
fluid
.
layers
.
reshape
(
x
=
conv
,
shape
=
[
-
1
,
shape
[
1
],
shape
[
2
]
*
shape
[
3
]])
pool
=
fluid
.
layers
.
reduce_mean
(
input
=
reshape
,
dim
=
2
)
dropout
=
fluid
.
layers
.
dropout
(
x
=
pool
,
dropout_prob
=
0.2
)
# Classifier layer:
prediction
=
fluid
.
layers
.
fc
(
input
=
dropout
,
size
=
1000
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
class
ParallelExecutor
(
unittest
.
TestCase
):
class
ParallelExecutor
(
unittest
.
TestCase
):
@
classmethod
@
classmethod
def
setUpClass
(
cls
):
def
setUpClass
(
cls
):
...
@@ -81,24 +195,40 @@ class ParallelExecutor(unittest.TestCase):
...
@@ -81,24 +195,40 @@ class ParallelExecutor(unittest.TestCase):
fluid
.
recordio_writer
.
convert_reader_to_recordio_file
(
fluid
.
recordio_writer
.
convert_reader_to_recordio_file
(
'./mnist.recordio'
,
reader
,
feeder
)
'./mnist.recordio'
,
reader
,
feeder
)
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
reader
=
paddle
.
batch
(
flowers
.
train
(),
batch_size
=
4
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
3
,
224
,
224
]),
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
),
],
place
=
fluid
.
CPUPlace
())
fluid
.
recordio_writer
.
convert_reader_to_recordio_file
(
"./flowers.recordio"
,
reader
,
feeder
)
def
test_simple_fc
(
self
):
def
test_simple_fc
(
self
):
self
.
check_network_convergence
(
simple_fc_net
)
self
.
check_network_convergence
(
simple_fc_net
)
def
test_batchnorm_fc
(
self
):
def
test_batchnorm_fc
(
self
):
self
.
check_network_convergence
(
fc_with_batchnorm
)
self
.
check_network_convergence
(
fc_with_batchnorm
)
def
check_network_convergence
(
self
,
method
):
def
check_network_convergence
(
self
,
method
,
memory_opt
=
True
,
iter
=
10
):
main
=
fluid
.
Program
()
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
with
fluid
.
program_guard
(
main
,
startup
):
loss
=
method
()
loss
=
method
()
adam
=
fluid
.
optimizer
.
Adam
()
adam
=
fluid
.
optimizer
.
Adam
()
adam
.
minimize
(
loss
)
adam
.
minimize
(
loss
)
if
memory_opt
:
fluid
.
memory_optimize
(
main
)
exe
=
fluid
.
ParallelExecutor
(
loss_name
=
loss
.
name
,
use_cuda
=
True
)
exe
=
fluid
.
ParallelExecutor
(
loss_name
=
loss
.
name
,
use_cuda
=
True
)
first_loss
,
=
exe
.
run
([
loss
.
name
])
first_loss
,
=
exe
.
run
([
loss
.
name
])
first_loss
=
numpy
.
array
(
first_loss
)
first_loss
=
numpy
.
array
(
first_loss
)
for
i
in
xrange
(
10
):
for
i
in
xrange
(
iter
):
exe
.
run
([])
exe
.
run
([])
last_loss
,
=
exe
.
run
([
loss
.
name
])
last_loss
,
=
exe
.
run
([
loss
.
name
])
...
@@ -106,3 +236,6 @@ class ParallelExecutor(unittest.TestCase):
...
@@ -106,3 +236,6 @@ class ParallelExecutor(unittest.TestCase):
print
first_loss
,
last_loss
print
first_loss
,
last_loss
self
.
assertGreater
(
first_loss
[
0
],
last_loss
[
0
])
self
.
assertGreater
(
first_loss
[
0
],
last_loss
[
0
])
def
test_resnet
(
self
):
self
.
check_network_convergence
(
SE_ResNeXt152
,
iter
=
20
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录