Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
4f96dc2f
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4f96dc2f
编写于
6月 28, 2021
作者:
G
Guanghua Yu
提交者:
GitHub
6月 28, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add solov2 enhance model (#3517)
* add solov2 enhance model
上级
5f9b0bc3
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
165 addition
and
43 deletion
+165
-43
configs/solov2/README.md
configs/solov2/README.md
+14
-0
configs/solov2/_base_/solov2_light_reader.yml
configs/solov2/_base_/solov2_light_reader.yml
+47
-0
configs/solov2/solov2_r50_enhance_coco.yml
configs/solov2/solov2_r50_enhance_coco.yml
+50
-0
ppdet/modeling/heads/solov2_head.py
ppdet/modeling/heads/solov2_head.py
+12
-2
ppdet/modeling/layers.py
ppdet/modeling/layers.py
+41
-0
ppdet/modeling/necks/yolo_fpn.py
ppdet/modeling/necks/yolo_fpn.py
+1
-41
未找到文件。
configs/solov2/README.md
浏览文件 @
4f96dc2f
...
...
@@ -27,6 +27,20 @@ SOLOv2 (Segmenting Objects by Locations) is a fast instance segmentation framewo
-
SOLOv2 is trained on COCO train2017 dataset and evaluated on val2017 results of
`mAP(IoU=0.5:0.95)`
.
## Enhanced model
| Backbone | Input size | Lr schd | V100 FP32(FPS) | Mask AP
<sup>
val
</sup>
| Download | Configs |
| :---------------------: | :-------------------: | :-----: | :------------: | :-----: | :---------: | :------------------------: |
| Light-R50-VD-DCN-FPN | 512 | 3x | 38.6 | 39.0 |
[
model
](
https://paddledet.bj.bcebos.com/models/solov2_r50_enhance_coco.pdparams
)
|
[
config
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/solov2/solov2_r50_enhance_coco.yml
)
|
**Optimizing method of enhanced model:**
-
Better backbone network: ResNet50vd-DCN
-
A better pre-training model for knowledge distillation
-
[
Exponential Moving Average
](
https://www.investopedia.com/terms/e/ema.asp
)
-
Synchronized Batch Normalization
-
Multi-scale training
-
More data augmentation methods
-
DropBlock
## Citations
```
@article{wang2020solov2,
...
...
configs/solov2/_base_/solov2_light_reader.yml
0 → 100644
浏览文件 @
4f96dc2f
worker_num
:
2
TrainReader
:
sample_transforms
:
-
Decode
:
{}
-
Poly2Mask
:
{}
-
RandomDistort
:
{}
-
RandomCrop
:
{}
-
RandomResize
:
{
interp
:
1
,
target_size
:
[[
352
,
852
],
[
384
,
852
],
[
416
,
852
],
[
448
,
852
],
[
480
,
852
],
[
512
,
852
]],
keep_ratio
:
True
}
-
RandomFlip
:
{}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
-
Gt2Solov2Target
:
{
num_grids
:
[
40
,
36
,
24
,
16
,
12
],
scale_ranges
:
[[
1
,
96
],
[
48
,
192
],
[
96
,
384
],
[
192
,
768
],
[
384
,
2048
]],
coord_sigma
:
0.2
}
batch_size
:
2
shuffle
:
true
drop_last
:
true
EvalReader
:
sample_transforms
:
-
Decode
:
{}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Resize
:
{
interp
:
1
,
target_size
:
[
512
,
852
],
keep_ratio
:
True
}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
batch_size
:
1
shuffle
:
false
drop_last
:
false
TestReader
:
sample_transforms
:
-
Decode
:
{}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Resize
:
{
interp
:
1
,
target_size
:
[
512
,
852
],
keep_ratio
:
True
}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
batch_size
:
1
shuffle
:
false
drop_last
:
false
configs/solov2/solov2_r50_enhance_coco.yml
0 → 100644
浏览文件 @
4f96dc2f
_BASE_
:
[
'
../datasets/coco_instance.yml'
,
'
../runtime.yml'
,
'
_base_/solov2_r50_fpn.yml'
,
'
_base_/optimizer_1x.yml'
,
'
_base_/solov2_light_reader.yml'
,
]
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_v2_pretrained.pdparams
weights
:
output/solov2_r50_fpn_3x_coco/model_final
epoch
:
36
use_ema
:
true
ema_decay
:
0.9998
ResNet
:
depth
:
50
variant
:
d
freeze_at
:
0
freeze_norm
:
false
norm_type
:
sync_bn
return_idx
:
[
0
,
1
,
2
,
3
]
dcn_v2_stages
:
[
1
,
2
,
3
]
lr_mult_list
:
[
0.05
,
0.05
,
0.1
,
0.15
]
num_stages
:
4
SOLOv2Head
:
seg_feat_channels
:
256
stacked_convs
:
3
num_grids
:
[
40
,
36
,
24
,
16
,
12
]
kernel_out_channels
:
128
solov2_loss
:
SOLOv2Loss
mask_nms
:
MaskMatrixNMS
dcn_v2_stages
:
[
2
]
drop_block
:
True
SOLOv2MaskHead
:
mid_channels
:
128
out_channels
:
128
start_level
:
0
end_level
:
3
use_dcn_in_tower
:
True
LearningRate
:
base_lr
:
0.01
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
[
24
,
33
]
-
!LinearWarmup
start_factor
:
0.
steps
:
1000
ppdet/modeling/heads/solov2_head.py
浏览文件 @
4f96dc2f
...
...
@@ -22,7 +22,7 @@ import paddle.nn as nn
import
paddle.nn.functional
as
F
from
paddle.nn.initializer
import
Normal
,
Constant
from
ppdet.modeling.layers
import
ConvNormLayer
,
MaskMatrixNMS
from
ppdet.modeling.layers
import
ConvNormLayer
,
MaskMatrixNMS
,
DropBlock
from
ppdet.core.workspace
import
register
from
six.moves
import
zip
...
...
@@ -182,7 +182,8 @@ class SOLOv2Head(nn.Layer):
score_threshold
=
0.1
,
mask_threshold
=
0.5
,
mask_nms
=
None
,
norm_type
=
'gn'
):
norm_type
=
'gn'
,
drop_block
=
False
):
super
(
SOLOv2Head
,
self
).
__init__
()
self
.
num_classes
=
num_classes
self
.
in_channels
=
in_channels
...
...
@@ -198,6 +199,7 @@ class SOLOv2Head(nn.Layer):
self
.
score_threshold
=
score_threshold
self
.
mask_threshold
=
mask_threshold
self
.
norm_type
=
norm_type
self
.
drop_block
=
drop_block
self
.
kernel_pred_convs
=
[]
self
.
cate_pred_convs
=
[]
...
...
@@ -250,6 +252,10 @@ class SOLOv2Head(nn.Layer):
bias_attr
=
ParamAttr
(
initializer
=
Constant
(
value
=
float
(
-
np
.
log
((
1
-
0.01
)
/
0.01
))))))
if
self
.
drop_block
:
self
.
drop_block_fun
=
DropBlock
(
block_size
=
3
,
keep_prob
=
0.9
,
name
=
'solo_cate.dropblock'
)
def
_points_nms
(
self
,
heat
,
kernel_size
=
2
):
hmax
=
F
.
max_pool2d
(
heat
,
kernel_size
=
kernel_size
,
stride
=
1
,
padding
=
1
)
keep
=
paddle
.
cast
((
hmax
[:,
:,
:
-
1
,
:
-
1
]
==
heat
),
'float32'
)
...
...
@@ -318,10 +324,14 @@ class SOLOv2Head(nn.Layer):
for
kernel_layer
in
self
.
kernel_pred_convs
:
kernel_feat
=
F
.
relu
(
kernel_layer
(
kernel_feat
))
if
self
.
drop_block
:
kernel_feat
=
self
.
drop_block_fun
(
kernel_feat
)
kernel_pred
=
self
.
solo_kernel
(
kernel_feat
)
# cate branch
for
cate_layer
in
self
.
cate_pred_convs
:
cate_feat
=
F
.
relu
(
cate_layer
(
cate_feat
))
if
self
.
drop_block
:
cate_feat
=
self
.
drop_block_fun
(
cate_feat
)
cate_pred
=
self
.
solo_cate
(
cate_feat
)
if
not
self
.
training
:
...
...
ppdet/modeling/layers.py
浏览文件 @
4f96dc2f
...
...
@@ -250,6 +250,47 @@ class LiteConv(nn.Layer):
return
out
class
DropBlock
(
nn
.
Layer
):
def
__init__
(
self
,
block_size
,
keep_prob
,
name
,
data_format
=
'NCHW'
):
"""
DropBlock layer, see https://arxiv.org/abs/1810.12890
Args:
block_size (int): block size
keep_prob (int): keep probability
name (str): layer name
data_format (str): data format, NCHW or NHWC
"""
super
(
DropBlock
,
self
).
__init__
()
self
.
block_size
=
block_size
self
.
keep_prob
=
keep_prob
self
.
name
=
name
self
.
data_format
=
data_format
def
forward
(
self
,
x
):
if
not
self
.
training
or
self
.
keep_prob
==
1
:
return
x
else
:
gamma
=
(
1.
-
self
.
keep_prob
)
/
(
self
.
block_size
**
2
)
if
self
.
data_format
==
'NCHW'
:
shape
=
x
.
shape
[
2
:]
else
:
shape
=
x
.
shape
[
1
:
3
]
for
s
in
shape
:
gamma
*=
s
/
(
s
-
self
.
block_size
+
1
)
matrix
=
paddle
.
cast
(
paddle
.
rand
(
x
.
shape
,
x
.
dtype
)
<
gamma
,
x
.
dtype
)
mask_inv
=
F
.
max_pool2d
(
matrix
,
self
.
block_size
,
stride
=
1
,
padding
=
self
.
block_size
//
2
,
data_format
=
self
.
data_format
)
mask
=
1.
-
mask_inv
y
=
x
*
mask
*
(
mask
.
numel
()
/
mask
.
sum
())
return
y
@
register
@
serializable
class
AnchorGeneratorSSD
(
object
):
...
...
ppdet/modeling/necks/yolo_fpn.py
浏览文件 @
4f96dc2f
...
...
@@ -17,6 +17,7 @@ import paddle.nn as nn
import
paddle.nn.functional
as
F
from
paddle
import
ParamAttr
from
ppdet.core.workspace
import
register
,
serializable
from
ppdet.modeling.layers
import
DropBlock
from
..backbones.darknet
import
ConvBNLayer
from
..shape_spec
import
ShapeSpec
...
...
@@ -173,47 +174,6 @@ class SPP(nn.Layer):
return
y
class
DropBlock
(
nn
.
Layer
):
def
__init__
(
self
,
block_size
,
keep_prob
,
name
,
data_format
=
'NCHW'
):
"""
DropBlock layer, see https://arxiv.org/abs/1810.12890
Args:
block_size (int): block size
keep_prob (int): keep probability
name (str): layer name
data_format (str): data format, NCHW or NHWC
"""
super
(
DropBlock
,
self
).
__init__
()
self
.
block_size
=
block_size
self
.
keep_prob
=
keep_prob
self
.
name
=
name
self
.
data_format
=
data_format
def
forward
(
self
,
x
):
if
not
self
.
training
or
self
.
keep_prob
==
1
:
return
x
else
:
gamma
=
(
1.
-
self
.
keep_prob
)
/
(
self
.
block_size
**
2
)
if
self
.
data_format
==
'NCHW'
:
shape
=
x
.
shape
[
2
:]
else
:
shape
=
x
.
shape
[
1
:
3
]
for
s
in
shape
:
gamma
*=
s
/
(
s
-
self
.
block_size
+
1
)
matrix
=
paddle
.
cast
(
paddle
.
rand
(
x
.
shape
,
x
.
dtype
)
<
gamma
,
x
.
dtype
)
mask_inv
=
F
.
max_pool2d
(
matrix
,
self
.
block_size
,
stride
=
1
,
padding
=
self
.
block_size
//
2
,
data_format
=
self
.
data_format
)
mask
=
1.
-
mask_inv
y
=
x
*
mask
*
(
mask
.
numel
()
/
mask
.
sum
())
return
y
class
CoordConv
(
nn
.
Layer
):
def
__init__
(
self
,
ch_in
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录