Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
4a55fb5f
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4a55fb5f
编写于
11月 13, 2018
作者:
R
ruri
提交者:
qingqing01
11月 13, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add density_prior_box_op (#14226)
Density prior box operator for image detection model.
上级
9a6e2392
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
613 addition
and
0 deletion
+613
-0
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/operators/detection/CMakeLists.txt
paddle/fluid/operators/detection/CMakeLists.txt
+1
-0
paddle/fluid/operators/detection/density_prior_box_op.cc
paddle/fluid/operators/detection/density_prior_box_op.cc
+175
-0
paddle/fluid/operators/detection/density_prior_box_op.h
paddle/fluid/operators/detection/density_prior_box_op.h
+146
-0
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+130
-0
python/paddle/fluid/tests/test_detection.py
python/paddle/fluid/tests/test_detection.py
+18
-0
python/paddle/fluid/tests/unittests/test_density_prior_box_op.py
...paddle/fluid/tests/unittests/test_density_prior_box_op.py
+142
-0
未找到文件。
paddle/fluid/API.spec
浏览文件 @
4a55fb5f
...
...
@@ -274,6 +274,7 @@ paddle.fluid.layers.hard_shrink ArgSpec(args=['x', 'threshold'], varargs=None, k
paddle.fluid.layers.cumsum ArgSpec(args=['x', 'axis', 'exclusive', 'reverse'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.thresholded_relu ArgSpec(args=['x', 'threshold'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.prior_box ArgSpec(args=['input', 'image', 'min_sizes', 'max_sizes', 'aspect_ratios', 'variance', 'flip', 'clip', 'steps', 'offset', 'name', 'min_max_aspect_ratios_order'], varargs=None, keywords=None, defaults=(None, [1.0], [0.1, 0.1, 0.2, 0.2], False, False, [0.0, 0.0], 0.5, None, False))
paddle.fluid.layers.density_prior_box ArgSpec(args=['input', 'image', 'densities', 'fixed_sizes', 'fixed_ratios', 'variance', 'clip', 'steps', 'offset', 'name'], varargs=None, keywords=None, defaults=(None, None, None, [0.1, 0.1, 0.2, 0.2], False, [0.0, 0.0], 0.5, None))
paddle.fluid.layers.multi_box_head ArgSpec(args=['inputs', 'image', 'base_size', 'num_classes', 'aspect_ratios', 'min_ratio', 'max_ratio', 'min_sizes', 'max_sizes', 'steps', 'step_w', 'step_h', 'offset', 'variance', 'flip', 'clip', 'kernel_size', 'pad', 'stride', 'name', 'min_max_aspect_ratios_order'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None, 0.5, [0.1, 0.1, 0.2, 0.2], True, False, 1, 0, 1, None, False))
paddle.fluid.layers.bipartite_match ArgSpec(args=['dist_matrix', 'match_type', 'dist_threshold', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.target_assign ArgSpec(args=['input', 'matched_indices', 'negative_indices', 'mismatch_value', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
...
...
paddle/fluid/operators/detection/CMakeLists.txt
浏览文件 @
4a55fb5f
...
...
@@ -22,6 +22,7 @@ iou_similarity_op.cu)
detection_library
(
mine_hard_examples_op SRCS mine_hard_examples_op.cc
)
detection_library
(
multiclass_nms_op SRCS multiclass_nms_op.cc poly_util.cc gpc.cc
)
detection_library
(
prior_box_op SRCS prior_box_op.cc prior_box_op.cu
)
detection_library
(
density_prior_box_op SRCS density_prior_box_op.cc
)
detection_library
(
anchor_generator_op SRCS anchor_generator_op.cc
anchor_generator_op.cu
)
detection_library
(
target_assign_op SRCS target_assign_op.cc
...
...
paddle/fluid/operators/detection/density_prior_box_op.cc
0 → 100644
浏览文件 @
4a55fb5f
/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/detection/density_prior_box_op.h"
namespace
paddle
{
namespace
operators
{
class
DensityPriorBoxOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Input"
),
"Input(Input) of DensityPriorBoxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Image"
),
"Input(Image) of DensityPriorBoxOp should not be null."
);
auto
image_dims
=
ctx
->
GetInputDim
(
"Image"
);
auto
input_dims
=
ctx
->
GetInputDim
(
"Input"
);
PADDLE_ENFORCE
(
image_dims
.
size
()
==
4
,
"The layout of image is NCHW."
);
PADDLE_ENFORCE
(
input_dims
.
size
()
==
4
,
"The layout of input is NCHW."
);
PADDLE_ENFORCE_LT
(
input_dims
[
2
],
image_dims
[
2
],
"The height of input must smaller than image."
);
PADDLE_ENFORCE_LT
(
input_dims
[
3
],
image_dims
[
3
],
"The width of input must smaller than image."
);
auto
variances
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
float
>>
(
"variances"
);
auto
fixed_sizes
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
float
>>
(
"fixed_sizes"
);
auto
fixed_ratios
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
float
>>
(
"fixed_ratios"
);
auto
densities
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"densities"
);
PADDLE_ENFORCE_EQ
(
fixed_sizes
.
size
(),
densities
.
size
(),
"The number of fixed_sizes and densities must be equal."
);
size_t
num_priors
=
0
;
if
((
fixed_sizes
.
size
()
>
0
)
&&
(
densities
.
size
()
>
0
))
{
for
(
size_t
i
=
0
;
i
<
densities
.
size
();
++
i
)
{
if
(
fixed_ratios
.
size
()
>
0
)
{
num_priors
+=
(
fixed_ratios
.
size
())
*
(
pow
(
densities
[
i
],
2
));
}
}
}
std
::
vector
<
int64_t
>
dim_vec
(
4
);
dim_vec
[
0
]
=
input_dims
[
2
];
dim_vec
[
1
]
=
input_dims
[
3
];
dim_vec
[
2
]
=
num_priors
;
dim_vec
[
3
]
=
4
;
ctx
->
SetOutputDim
(
"Boxes"
,
framework
::
make_ddim
(
dim_vec
));
ctx
->
SetOutputDim
(
"Variances"
,
framework
::
make_ddim
(
dim_vec
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"Input"
)
->
type
()),
platform
::
CPUPlace
());
}
};
class
DensityPriorBoxOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"Input"
,
"(Tensor, default Tensor<float>), "
"the input feature data of DensityPriorBoxOp, the layout is NCHW."
);
AddInput
(
"Image"
,
"(Tensor, default Tensor<float>), "
"the input image data of DensityPriorBoxOp, the layout is NCHW."
);
AddOutput
(
"Boxes"
,
"(Tensor, default Tensor<float>), the output prior boxes of "
"DensityPriorBoxOp. The layout is [H, W, num_priors, 4]. "
"H is the height of input, W is the width of input, num_priors "
"is the box count of each position."
);
AddOutput
(
"Variances"
,
"(Tensor, default Tensor<float>), the expanded variances of "
"DensityPriorBoxOp. The layout is [H, W, num_priors, 4]. "
"H is the height of input, W is the width of input, num_priors "
"is the box count of each position."
);
AddAttr
<
std
::
vector
<
float
>>
(
"variances"
,
"(vector<float>) List of variances to be "
"encoded in density prior boxes."
)
.
AddCustomChecker
([](
const
std
::
vector
<
float
>&
variances
)
{
PADDLE_ENFORCE_EQ
(
variances
.
size
(),
4
,
"Must and only provide 4 variance."
);
for
(
size_t
i
=
0
;
i
<
variances
.
size
();
++
i
)
{
PADDLE_ENFORCE_GT
(
variances
[
i
],
0.0
,
"variance[%d] must be greater than 0."
,
i
);
}
});
AddAttr
<
bool
>
(
"clip"
,
"(bool) Whether to clip out-of-boundary boxes."
)
.
SetDefault
(
true
);
AddAttr
<
float
>
(
"step_w"
,
"Density prior boxes step across width, 0.0 for auto calculation."
)
.
SetDefault
(
0.0
)
.
AddCustomChecker
([](
const
float
&
step_w
)
{
PADDLE_ENFORCE_GE
(
step_w
,
0.0
,
"step_w should be larger than 0."
);
});
AddAttr
<
float
>
(
"step_h"
,
"Density prior boxes step across height, 0.0 for auto calculation."
)
.
SetDefault
(
0.0
)
.
AddCustomChecker
([](
const
float
&
step_h
)
{
PADDLE_ENFORCE_GE
(
step_h
,
0.0
,
"step_h should be larger than 0."
);
});
AddAttr
<
float
>
(
"offset"
,
"(float) "
"Density prior boxes center offset."
)
.
SetDefault
(
0.5
);
AddAttr
<
std
::
vector
<
float
>>
(
"fixed_sizes"
,
"(vector<float>) List of fixed sizes "
"of generated density prior boxes."
)
.
SetDefault
(
std
::
vector
<
float
>
{})
.
AddCustomChecker
([](
const
std
::
vector
<
float
>&
fixed_sizes
)
{
for
(
size_t
i
=
0
;
i
<
fixed_sizes
.
size
();
++
i
)
{
PADDLE_ENFORCE_GT
(
fixed_sizes
[
i
],
0.0
,
"fixed_sizes[%d] should be larger than 0."
,
i
);
}
});
AddAttr
<
std
::
vector
<
float
>>
(
"fixed_ratios"
,
"(vector<float>) List of fixed ratios "
"of generated density prior boxes."
)
.
SetDefault
(
std
::
vector
<
float
>
{})
.
AddCustomChecker
([](
const
std
::
vector
<
float
>&
fixed_ratios
)
{
for
(
size_t
i
=
0
;
i
<
fixed_ratios
.
size
();
++
i
)
{
PADDLE_ENFORCE_GT
(
fixed_ratios
[
i
],
0.0
,
"fixed_ratios[%d] should be larger than 0."
,
i
);
}
});
AddAttr
<
std
::
vector
<
int
>>
(
"densities"
,
"(vector<float>) List of densities "
"of generated density prior boxes."
)
.
SetDefault
(
std
::
vector
<
int
>
{})
.
AddCustomChecker
([](
const
std
::
vector
<
int
>&
densities
)
{
for
(
size_t
i
=
0
;
i
<
densities
.
size
();
++
i
)
{
PADDLE_ENFORCE_GT
(
densities
[
i
],
0
,
"densities[%d] should be larger than 0."
,
i
);
}
});
AddComment
(
R"DOC(
Density Prior box operator
Each position of the input produce N density prior boxes, N is determined by
the count of fixed_ratios, densities, the calculation of N is as follows:
for density in densities:
N += size(fixed_ratios)*density^2
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
density_prior_box
,
ops
::
DensityPriorBoxOp
,
ops
::
DensityPriorBoxOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
);
REGISTER_OP_CPU_KERNEL
(
density_prior_box
,
ops
::
DensityPriorBoxOpKernel
<
float
>
,
ops
::
DensityPriorBoxOpKernel
<
double
>
);
paddle/fluid/operators/detection/density_prior_box_op.h
0 → 100644
浏览文件 @
4a55fb5f
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/operators/detection/prior_box_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
DensityPriorBoxOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
paddle
::
framework
::
Tensor
>
(
"Input"
);
auto
*
image
=
ctx
.
Input
<
paddle
::
framework
::
Tensor
>
(
"Image"
);
auto
*
boxes
=
ctx
.
Output
<
paddle
::
framework
::
Tensor
>
(
"Boxes"
);
auto
*
vars
=
ctx
.
Output
<
paddle
::
framework
::
Tensor
>
(
"Variances"
);
auto
variances
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"variances"
);
auto
clip
=
ctx
.
Attr
<
bool
>
(
"clip"
);
auto
fixed_sizes
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"fixed_sizes"
);
auto
fixed_ratios
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"fixed_ratios"
);
auto
densities
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"densities"
);
T
step_w
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"step_w"
));
T
step_h
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"step_h"
));
T
offset
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"offset"
));
auto
img_width
=
image
->
dims
()[
3
];
auto
img_height
=
image
->
dims
()[
2
];
auto
feature_width
=
input
->
dims
()[
3
];
auto
feature_height
=
input
->
dims
()[
2
];
T
step_width
,
step_height
;
if
(
step_w
==
0
||
step_h
==
0
)
{
step_width
=
static_cast
<
T
>
(
img_width
)
/
feature_width
;
step_height
=
static_cast
<
T
>
(
img_height
)
/
feature_height
;
}
else
{
step_width
=
step_w
;
step_height
=
step_h
;
}
int
num_priors
=
0
;
if
(
fixed_sizes
.
size
()
>
0
&&
densities
.
size
()
>
0
)
{
for
(
size_t
i
=
0
;
i
<
densities
.
size
();
++
i
)
{
if
(
fixed_ratios
.
size
()
>
0
)
{
num_priors
+=
(
fixed_ratios
.
size
())
*
(
pow
(
densities
[
i
],
2
));
}
}
}
boxes
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
vars
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
e_boxes
=
framework
::
EigenTensor
<
T
,
4
>::
From
(
*
boxes
).
setConstant
(
0.0
);
int
step_average
=
static_cast
<
int
>
((
step_width
+
step_height
)
*
0.5
);
for
(
int
h
=
0
;
h
<
feature_height
;
++
h
)
{
for
(
int
w
=
0
;
w
<
feature_width
;
++
w
)
{
T
center_x
=
(
w
+
offset
)
*
step_width
;
T
center_y
=
(
h
+
offset
)
*
step_height
;
int
idx
=
0
;
// Generate density prior boxes with fixed sizes.
for
(
size_t
s
=
0
;
s
<
fixed_sizes
.
size
();
++
s
)
{
auto
fixed_size
=
fixed_sizes
[
s
];
int
density
=
densities
[
s
];
// Generate density prior boxes with fixed ratios.
if
(
fixed_ratios
.
size
()
>
0
)
{
for
(
size_t
r
=
0
;
r
<
fixed_ratios
.
size
();
++
r
)
{
float
ar
=
fixed_ratios
[
r
];
int
shift
=
step_average
/
density
;
float
box_width_ratio
=
fixed_size
*
sqrt
(
ar
);
float
box_height_ratio
=
fixed_size
/
sqrt
(
ar
);
for
(
int
di
=
0
;
di
<
density
;
++
di
)
{
for
(
int
dj
=
0
;
dj
<
density
;
++
dj
)
{
float
center_x_temp
=
center_x
-
step_average
/
2.
+
shift
/
2.
+
dj
*
shift
;
float
center_y_temp
=
center_y
-
step_average
/
2.
+
shift
/
2.
+
di
*
shift
;
e_boxes
(
h
,
w
,
idx
,
0
)
=
(
center_x_temp
-
box_width_ratio
/
2.
)
/
img_width
>=
0
?
(
center_x_temp
-
box_width_ratio
/
2.
)
/
img_width
:
0
;
e_boxes
(
h
,
w
,
idx
,
1
)
=
(
center_y_temp
-
box_height_ratio
/
2.
)
/
img_height
>=
0
?
(
center_y_temp
-
box_height_ratio
/
2.
)
/
img_height
:
0
;
e_boxes
(
h
,
w
,
idx
,
2
)
=
(
center_x_temp
+
box_width_ratio
/
2.
)
/
img_width
<=
1
?
(
center_x_temp
+
box_width_ratio
/
2.
)
/
img_width
:
1
;
e_boxes
(
h
,
w
,
idx
,
3
)
=
(
center_y_temp
+
box_height_ratio
/
2.
)
/
img_height
<=
1
?
(
center_y_temp
+
box_height_ratio
/
2.
)
/
img_height
:
1
;
idx
++
;
}
}
}
}
}
}
}
if
(
clip
)
{
platform
::
Transform
<
platform
::
CPUDeviceContext
>
trans
;
ClipFunctor
<
T
>
clip_func
;
trans
(
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>(),
boxes
->
data
<
T
>
(),
boxes
->
data
<
T
>
()
+
boxes
->
numel
(),
boxes
->
data
<
T
>
(),
clip_func
);
}
framework
::
Tensor
var_t
;
var_t
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
1
,
static_cast
<
int
>
(
variances
.
size
())}),
ctx
.
GetPlace
());
auto
var_et
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
var_t
);
for
(
size_t
i
=
0
;
i
<
variances
.
size
();
++
i
)
{
var_et
(
0
,
i
)
=
variances
[
i
];
}
int
box_num
=
feature_height
*
feature_width
*
num_priors
;
auto
var_dim
=
vars
->
dims
();
vars
->
Resize
({
box_num
,
static_cast
<
int
>
(
variances
.
size
())});
auto
e_vars
=
framework
::
EigenMatrix
<
T
,
Eigen
::
RowMajor
>::
From
(
*
vars
);
e_vars
=
var_et
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
box_num
,
1
));
vars
->
Resize
(
var_dim
);
}
};
// namespace operators
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/layers/detection.py
浏览文件 @
4a55fb5f
...
...
@@ -31,6 +31,7 @@ from functools import reduce
__all__
=
[
'prior_box'
,
'density_prior_box'
,
'multi_box_head'
,
'bipartite_match'
,
'target_assign'
,
...
...
@@ -1023,6 +1024,135 @@ def prior_box(input,
return
box
,
var
def
density_prior_box
(
input
,
image
,
densities
=
None
,
fixed_sizes
=
None
,
fixed_ratios
=
None
,
variance
=
[
0.1
,
0.1
,
0.2
,
0.2
],
clip
=
False
,
steps
=
[
0.0
,
0.0
],
offset
=
0.5
,
name
=
None
):
"""
**Density Prior Box Operator**
Generate density prior boxes for SSD(Single Shot MultiBox Detector)
algorithm. Each position of the input produce N prior boxes, N is
determined by the count of densities, fixed_sizes and fixed_ratios.
Boxes center at grid points around each input position is generated by
this operator, and the grid points is determined by densities and
the count of density prior box is determined by fixed_sizes and fixed_ratios.
Obviously, the number of fixed_sizes is equal to the number of densities.
For densities_i in densities:
N_density_prior_box =sum(N_fixed_ratios * densities_i^2),
Args:
input(Variable): The Input Variables, the format is NCHW.
image(Variable): The input image data of PriorBoxOp,
the layout is NCHW.
densities(list|tuple|None): the densities of generated density prior
boxes, this attribute should be a list or tuple of integers.
Default: None.
fixed_sizes(list|tuple|None): the fixed sizes of generated density
prior boxes, this attribute should a list or tuple of same
length with :attr:`densities`. Default: None.
fixed_ratios(list|tuple|None): the fixed ratios of generated density
prior boxes, if this attribute is not set and :attr:`densities`
and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used
to generate density prior boxes.
variance(list|tuple): the variances to be encoded in density prior boxes.
Default:[0.1, 0.1, 0.2, 0.2].
clip(bool): Whether to clip out-of-boundary boxes. Default: False.
step(list|turple): Prior boxes step across width and height, If
step[0] == 0.0/step[1] == 0.0, the density prior boxes step across
height/weight of the input will be automatically calculated.
Default: [0., 0.]
offset(float): Prior boxes center offset. Default: 0.5
name(str): Name of the density prior box op. Default: None.
Returns:
tuple: A tuple with two Variable (boxes, variances)
boxes: the output density prior boxes of PriorBox.
The layout is [H, W, num_priors, 4].
H is the height of input, W is the width of input,
num_priors is the total
box count of each position of input.
variances: the expanded variances of PriorBox.
The layout is [H, W, num_priors, 4].
H is the height of input, W is the width of input
num_priors is the total
box count of each position of input
Examples:
.. code-block:: python
box, var = fluid.layers.density_prior_box(
input=conv1,
image=images,
min_sizes=[100.],
max_sizes=[200.],
aspect_ratios=[1.0, 1.0 / 2.0, 2.0],
densities=[3, 4],
fixed_sizes=[50., 60.],
fixed_ratios=[1.0, 3.0, 1.0 / 3.0],
flip=True,
clip=True)
"""
helper
=
LayerHelper
(
"density_prior_box"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
def
_is_list_or_tuple_
(
data
):
return
(
isinstance
(
data
,
list
)
or
isinstance
(
data
,
tuple
))
if
not
_is_list_or_tuple_
(
densities
):
raise
TypeError
(
'densities should be a list or a tuple or None.'
)
if
not
_is_list_or_tuple_
(
fixed_sizes
):
raise
TypeError
(
'fixed_sizes should be a list or a tuple or None.'
)
if
not
_is_list_or_tuple_
(
fixed_ratios
):
raise
TypeError
(
'fixed_ratios should be a list or a tuple or None.'
)
if
len
(
densities
)
!=
len
(
fixed_sizes
):
raise
ValueError
(
'densities and fixed_sizes length should be euqal.'
)
if
not
(
_is_list_or_tuple_
(
steps
)
and
len
(
steps
)
==
2
):
raise
ValueError
(
'steps should be a list or tuple '
,
'with length 2, (step_width, step_height).'
)
densities
=
list
(
map
(
int
,
densities
))
fixed_sizes
=
list
(
map
(
float
,
fixed_sizes
))
fixed_ratios
=
list
(
map
(
float
,
fixed_ratios
))
steps
=
list
(
map
(
float
,
steps
))
attrs
=
{
'variances'
:
variance
,
'clip'
:
clip
,
'step_w'
:
steps
[
0
],
'step_h'
:
steps
[
1
],
'offset'
:
offset
,
}
if
densities
is
not
None
and
len
(
densities
)
>
0
:
attrs
[
'densities'
]
=
densities
if
fixed_sizes
is
not
None
and
len
(
fixed_sizes
)
>
0
:
attrs
[
'fixed_sizes'
]
=
fixed_sizes
if
fixed_ratios
is
not
None
and
len
(
fixed_ratios
)
>
0
:
attrs
[
'fixed_ratios'
]
=
fixed_ratios
box
=
helper
.
create_variable_for_type_inference
(
dtype
)
var
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
"density_prior_box"
,
inputs
=
{
"Input"
:
input
,
"Image"
:
image
},
outputs
=
{
"Boxes"
:
box
,
"Variances"
:
var
},
attrs
=
attrs
,
)
box
.
stop_gradient
=
True
var
.
stop_gradient
=
True
return
box
,
var
def
multi_box_head
(
inputs
,
image
,
base_size
,
...
...
python/paddle/fluid/tests/test_detection.py
浏览文件 @
4a55fb5f
...
...
@@ -128,6 +128,24 @@ class TestPriorBox(unittest.TestCase):
assert
box
.
shape
[
3
]
==
4
class
TestDensityPriorBox
(
unittest
.
TestCase
):
def
test_density_prior_box
(
self
):
data_shape
=
[
3
,
224
,
224
]
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
conv1
=
fluid
.
layers
.
conv2d
(
images
,
3
,
3
,
2
)
box
,
var
=
layers
.
density_prior_box
(
input
=
conv1
,
image
=
images
,
densities
=
[
3
,
4
],
fixed_sizes
=
[
50.
,
60.
],
fixed_ratios
=
[
1.0
],
clip
=
True
)
assert
len
(
box
.
shape
)
==
4
assert
box
.
shape
==
var
.
shape
assert
box
.
shape
[
3
]
==
4
class
TestAnchorGenerator
(
unittest
.
TestCase
):
def
test_anchor_generator
(
self
):
data_shape
=
[
3
,
224
,
224
]
...
...
python/paddle/fluid/tests/unittests/test_density_prior_box_op.py
0 → 100644
浏览文件 @
4a55fb5f
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
import
math
from
op_test
import
OpTest
class
TestDensityPriorBoxOp
(
OpTest
):
def
set_data
(
self
):
self
.
init_test_params
()
self
.
init_test_input
()
self
.
init_test_output
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
'Image'
:
self
.
image
}
self
.
attrs
=
{
'variances'
:
self
.
variances
,
'clip'
:
self
.
clip
,
'step_w'
:
self
.
step_w
,
'step_h'
:
self
.
step_h
,
'offset'
:
self
.
offset
,
'densities'
:
self
.
densities
,
'fixed_sizes'
:
self
.
fixed_sizes
,
'fixed_ratios'
:
self
.
fixed_ratios
}
self
.
outputs
=
{
'Boxes'
:
self
.
out_boxes
,
'Variances'
:
self
.
out_var
}
def
test_check_output
(
self
):
self
.
check_output
()
def
setUp
(
self
):
self
.
op_type
=
"density_prior_box"
self
.
set_data
()
def
set_density
(
self
):
self
.
densities
=
[]
self
.
fixed_sizes
=
[]
self
.
fixed_ratios
=
[]
def
init_test_params
(
self
):
self
.
layer_w
=
32
self
.
layer_h
=
32
self
.
image_w
=
40
self
.
image_h
=
40
self
.
step_w
=
float
(
self
.
image_w
)
/
float
(
self
.
layer_w
)
self
.
step_h
=
float
(
self
.
image_h
)
/
float
(
self
.
layer_h
)
self
.
input_channels
=
2
self
.
image_channels
=
3
self
.
batch_size
=
10
self
.
variances
=
[
0.1
,
0.1
,
0.2
,
0.2
]
self
.
variances
=
np
.
array
(
self
.
variances
,
dtype
=
np
.
float
).
flatten
()
self
.
set_density
()
self
.
clip
=
True
self
.
num_priors
=
0
if
len
(
self
.
fixed_sizes
)
>
0
and
len
(
self
.
densities
)
>
0
:
for
density
in
self
.
densities
:
if
len
(
self
.
fixed_ratios
)
>
0
:
self
.
num_priors
+=
len
(
self
.
fixed_ratios
)
*
(
pow
(
density
,
2
))
self
.
offset
=
0.5
def
init_test_input
(
self
):
self
.
image
=
np
.
random
.
random
(
(
self
.
batch_size
,
self
.
image_channels
,
self
.
image_w
,
self
.
image_h
)).
astype
(
'float32'
)
self
.
input
=
np
.
random
.
random
(
(
self
.
batch_size
,
self
.
input_channels
,
self
.
layer_w
,
self
.
layer_h
)).
astype
(
'float32'
)
def
init_test_output
(
self
):
out_dim
=
(
self
.
layer_h
,
self
.
layer_w
,
self
.
num_priors
,
4
)
out_boxes
=
np
.
zeros
(
out_dim
).
astype
(
'float32'
)
out_var
=
np
.
zeros
(
out_dim
).
astype
(
'float32'
)
step_average
=
int
((
self
.
step_w
+
self
.
step_h
)
*
0.5
)
for
h
in
range
(
self
.
layer_h
):
for
w
in
range
(
self
.
layer_w
):
idx
=
0
c_x
=
(
w
+
self
.
offset
)
*
self
.
step_w
c_y
=
(
h
+
self
.
offset
)
*
self
.
step_h
# Generate density prior boxes with fixed size
for
density
,
fixed_size
in
zip
(
self
.
densities
,
self
.
fixed_sizes
):
if
(
len
(
self
.
fixed_ratios
)
>
0
):
for
ar
in
self
.
fixed_ratios
:
shift
=
int
(
step_average
/
density
)
box_width_ratio
=
fixed_size
*
math
.
sqrt
(
ar
)
box_height_ratio
=
fixed_size
/
math
.
sqrt
(
ar
)
for
di
in
range
(
density
):
for
dj
in
range
(
density
):
c_x_temp
=
c_x
-
step_average
/
2.0
+
shift
/
2.0
+
dj
*
shift
c_y_temp
=
c_y
-
step_average
/
2.0
+
shift
/
2.0
+
di
*
shift
out_boxes
[
h
,
w
,
idx
,
:]
=
[
max
((
c_x_temp
-
box_width_ratio
/
2.0
)
/
self
.
image_w
,
0
),
max
((
c_y_temp
-
box_height_ratio
/
2.0
)
/
self
.
image_h
,
0
),
min
((
c_x_temp
+
box_width_ratio
/
2.0
)
/
self
.
image_w
,
1
),
min
((
c_y_temp
+
box_height_ratio
/
2.0
)
/
self
.
image_h
,
1
)
]
idx
+=
1
if
self
.
clip
:
out_boxes
=
np
.
clip
(
out_boxes
,
0.0
,
1.0
)
out_var
=
np
.
tile
(
self
.
variances
,
(
self
.
layer_h
,
self
.
layer_w
,
self
.
num_priors
,
1
))
self
.
out_boxes
=
out_boxes
.
astype
(
'float32'
)
self
.
out_var
=
out_var
.
astype
(
'float32'
)
class
TestDensityPriorBox
(
TestDensityPriorBoxOp
):
def
set_density
(
self
):
self
.
densities
=
[
3
,
4
]
self
.
fixed_sizes
=
[
1.0
,
2.0
]
self
.
fixed_ratios
=
[
1.0
]
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录