Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
47606f9a
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
47606f9a
编写于
10月 15, 2020
作者:
K
Kaipeng Deng
提交者:
GitHub
10月 15, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add infer_cfg export in slim export_model (#1554)
上级
2e33bc59
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
198 addition
and
224 deletion
+198
-224
ppdet/utils/export_utils.py
ppdet/utils/export_utils.py
+194
-0
slim/prune/export_model.py
slim/prune/export_model.py
+2
-41
slim/quantization/export_model.py
slim/quantization/export_model.py
+1
-16
tools/export_model.py
tools/export_model.py
+1
-167
未找到文件。
ppdet/utils/export_utils.py
0 → 100644
浏览文件 @
47606f9a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
yaml
import
numpy
as
np
from
collections
import
OrderedDict
import
logging
logger
=
logging
.
getLogger
(
__name__
)
import
paddle.fluid
as
fluid
__all__
=
[
'dump_infer_config'
,
'save_infer_model'
]
# Global dictionary
TRT_MIN_SUBGRAPH
=
{
'YOLO'
:
3
,
'SSD'
:
3
,
'RCNN'
:
40
,
'RetinaNet'
:
40
,
'EfficientDet'
:
40
,
'Face'
:
3
,
'TTFNet'
:
3
,
'FCOS'
:
3
,
'SOLOv2'
:
3
,
}
RESIZE_SCALE_SET
=
{
'RCNN'
,
'RetinaNet'
,
'FCOS'
,
'SOLOv2'
,
}
def
parse_reader
(
reader_cfg
,
metric
,
arch
):
preprocess_list
=
[]
image_shape
=
reader_cfg
[
'inputs_def'
].
get
(
'image_shape'
,
[
3
,
None
,
None
])
has_shape_def
=
not
None
in
image_shape
dataset
=
reader_cfg
[
'dataset'
]
anno_file
=
dataset
.
get_anno
()
with_background
=
dataset
.
with_background
use_default_label
=
dataset
.
use_default_label
if
metric
==
'COCO'
:
from
ppdet.utils.coco_eval
import
get_category_info
elif
metric
==
"VOC"
:
from
ppdet.utils.voc_eval
import
get_category_info
elif
metric
==
"WIDERFACE"
:
from
ppdet.utils.widerface_eval_utils
import
get_category_info
else
:
raise
ValueError
(
"metric only supports COCO, VOC, WIDERFACE, but received {}"
.
format
(
metric
))
clsid2catid
,
catid2name
=
get_category_info
(
anno_file
,
with_background
,
use_default_label
)
label_list
=
[
str
(
cat
)
for
cat
in
catid2name
.
values
()]
sample_transforms
=
reader_cfg
[
'sample_transforms'
]
for
st
in
sample_transforms
[
1
:]:
method
=
st
.
__class__
.
__name__
p
=
{
'type'
:
method
.
replace
(
'Image'
,
''
)}
params
=
st
.
__dict__
params
.
pop
(
'_id'
)
if
p
[
'type'
]
==
'Resize'
and
has_shape_def
:
params
[
'target_size'
]
=
min
(
image_shape
[
1
:])
if
arch
in
RESIZE_SCALE_SET
else
image_shape
[
1
]
params
[
'max_size'
]
=
max
(
image_shape
[
1
:])
if
arch
in
RESIZE_SCALE_SET
else
0
params
[
'image_shape'
]
=
image_shape
[
1
:]
if
'target_dim'
in
params
:
params
.
pop
(
'target_dim'
)
if
p
[
'type'
]
==
'ResizeAndPad'
:
assert
has_shape_def
,
"missing input shape"
p
[
'type'
]
=
'Resize'
p
[
'target_size'
]
=
params
[
'target_dim'
]
p
[
'max_size'
]
=
params
[
'target_dim'
]
p
[
'interp'
]
=
params
[
'interp'
]
p
[
'image_shape'
]
=
image_shape
[
1
:]
preprocess_list
.
append
(
p
)
continue
p
.
update
(
params
)
preprocess_list
.
append
(
p
)
batch_transforms
=
reader_cfg
.
get
(
'batch_transforms'
,
None
)
if
batch_transforms
:
methods
=
[
bt
.
__class__
.
__name__
for
bt
in
batch_transforms
]
for
bt
in
batch_transforms
:
method
=
bt
.
__class__
.
__name__
if
method
==
'PadBatch'
:
preprocess_list
.
append
({
'type'
:
'PadStride'
})
params
=
bt
.
__dict__
preprocess_list
[
-
1
].
update
({
'stride'
:
params
[
'pad_to_stride'
]})
break
return
with_background
,
preprocess_list
,
label_list
def
dump_infer_config
(
FLAGS
,
config
):
arch_state
=
0
cfg_name
=
os
.
path
.
basename
(
FLAGS
.
config
).
split
(
'.'
)[
0
]
save_dir
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
cfg_name
)
if
not
os
.
path
.
exists
(
save_dir
):
os
.
makedirs
(
save_dir
)
from
ppdet.core.config.yaml_helpers
import
setup_orderdict
setup_orderdict
()
infer_cfg
=
OrderedDict
({
'use_python_inference'
:
False
,
'mode'
:
'fluid'
,
'draw_threshold'
:
0.5
,
'metric'
:
config
[
'metric'
]
})
infer_arch
=
config
[
'architecture'
]
for
arch
,
min_subgraph_size
in
TRT_MIN_SUBGRAPH
.
items
():
if
arch
in
infer_arch
:
infer_cfg
[
'arch'
]
=
arch
infer_cfg
[
'min_subgraph_size'
]
=
min_subgraph_size
arch_state
=
1
break
if
not
arch_state
:
logger
.
error
(
'Architecture: {} is not supported for exporting model now'
.
format
(
infer_arch
))
os
.
_exit
(
0
)
if
'Mask'
in
config
[
'architecture'
]:
infer_cfg
[
'mask_resolution'
]
=
config
[
'MaskHead'
][
'resolution'
]
infer_cfg
[
'with_background'
],
infer_cfg
[
'Preprocess'
],
infer_cfg
[
'label_list'
]
=
parse_reader
(
config
[
'TestReader'
],
config
[
'metric'
],
infer_cfg
[
'arch'
])
yaml
.
dump
(
infer_cfg
,
open
(
os
.
path
.
join
(
save_dir
,
'infer_cfg.yml'
),
'w'
))
logger
.
info
(
"Export inference config file to {}"
.
format
(
os
.
path
.
join
(
save_dir
,
'infer_cfg.yml'
)))
def
prune_feed_vars
(
feeded_var_names
,
target_vars
,
prog
):
"""
Filter out feed variables which are not in program,
pruned feed variables are only used in post processing
on model output, which are not used in program, such
as im_id to identify image order, im_shape to clip bbox
in image.
"""
exist_var_names
=
[]
prog
=
prog
.
clone
()
prog
=
prog
.
_prune
(
targets
=
target_vars
)
global_block
=
prog
.
global_block
()
for
name
in
feeded_var_names
:
try
:
v
=
global_block
.
var
(
name
)
exist_var_names
.
append
(
str
(
v
.
name
))
except
Exception
:
logger
.
info
(
'save_inference_model pruned unused feed '
'variables {}'
.
format
(
name
))
pass
return
exist_var_names
def
save_infer_model
(
FLAGS
,
exe
,
feed_vars
,
test_fetches
,
infer_prog
):
cfg_name
=
os
.
path
.
basename
(
FLAGS
.
config
).
split
(
'.'
)[
0
]
save_dir
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
cfg_name
)
feed_var_names
=
[
var
.
name
for
var
in
feed_vars
.
values
()]
fetch_list
=
sorted
(
test_fetches
.
items
(),
key
=
lambda
i
:
i
[
0
])
target_vars
=
[
var
[
1
]
for
var
in
fetch_list
]
feed_var_names
=
prune_feed_vars
(
feed_var_names
,
target_vars
,
infer_prog
)
logger
.
info
(
"Export inference model to {}, input: {}, output: "
"{}..."
.
format
(
save_dir
,
feed_var_names
,
[
str
(
var
.
name
)
for
var
in
target_vars
]))
fluid
.
io
.
save_inference_model
(
save_dir
,
feeded_var_names
=
feed_var_names
,
target_vars
=
target_vars
,
executor
=
exe
,
main_program
=
infer_prog
,
params_filename
=
"__params__"
)
slim/prune/export_model.py
浏览文件 @
47606f9a
...
...
@@ -27,6 +27,7 @@ from paddle import fluid
from
ppdet.core.workspace
import
load_config
,
merge_config
,
create
from
ppdet.utils.cli
import
ArgsParser
import
ppdet.utils.checkpoint
as
checkpoint
from
ppdet.utils.export_utils
import
save_infer_model
,
dump_infer_config
from
ppdet.utils.check
import
check_config
,
check_version
from
paddleslim.prune
import
Pruner
from
paddleslim.analysis
import
flops
...
...
@@ -37,47 +38,6 @@ logging.basicConfig(level=logging.INFO, format=FORMAT)
logger
=
logging
.
getLogger
(
__name__
)
def
prune_feed_vars
(
feeded_var_names
,
target_vars
,
prog
):
"""
Filter out feed variables which are not in program,
pruned feed variables are only used in post processing
on model output, which are not used in program, such
as im_id to identify image order, im_shape to clip bbox
in image.
"""
exist_var_names
=
[]
prog
=
prog
.
clone
()
prog
=
prog
.
_prune
(
targets
=
target_vars
)
global_block
=
prog
.
global_block
()
for
name
in
feeded_var_names
:
try
:
v
=
global_block
.
var
(
name
)
exist_var_names
.
append
(
str
(
v
.
name
))
except
Exception
:
logger
.
info
(
'save_inference_model pruned unused feed '
'variables {}'
.
format
(
name
))
pass
return
exist_var_names
def
save_infer_model
(
FLAGS
,
exe
,
feed_vars
,
test_fetches
,
infer_prog
):
cfg_name
=
os
.
path
.
basename
(
FLAGS
.
config
).
split
(
'.'
)[
0
]
save_dir
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
cfg_name
)
feed_var_names
=
[
var
.
name
for
var
in
feed_vars
.
values
()]
target_vars
=
list
(
test_fetches
.
values
())
feed_var_names
=
prune_feed_vars
(
feed_var_names
,
target_vars
,
infer_prog
)
logger
.
info
(
"Export inference model to {}, input: {}, output: "
"{}..."
.
format
(
save_dir
,
feed_var_names
,
[
str
(
var
.
name
)
for
var
in
target_vars
]))
fluid
.
io
.
save_inference_model
(
save_dir
,
feeded_var_names
=
feed_var_names
,
target_vars
=
target_vars
,
executor
=
exe
,
main_program
=
infer_prog
,
params_filename
=
"__params__"
)
def
main
():
cfg
=
load_config
(
FLAGS
.
config
)
merge_config
(
FLAGS
.
opt
)
...
...
@@ -132,6 +92,7 @@ def main():
exe
.
run
(
startup_prog
)
checkpoint
.
load_checkpoint
(
exe
,
infer_prog
,
cfg
.
weights
)
dump_infer_config
(
FLAGS
,
cfg
)
save_infer_model
(
FLAGS
,
exe
,
feed_vars
,
test_fetches
,
infer_prog
)
...
...
slim/quantization/export_model.py
浏览文件 @
47606f9a
...
...
@@ -27,6 +27,7 @@ from paddle import fluid
from
ppdet.core.workspace
import
load_config
,
merge_config
,
create
from
ppdet.utils.cli
import
ArgsParser
import
ppdet.utils.checkpoint
as
checkpoint
from
ppdet.utils.export_utils
import
save_infer_model
,
dump_infer_config
from
ppdet.utils.check
import
check_config
,
check_version
from
tools.export_model
import
prune_feed_vars
...
...
@@ -37,22 +38,6 @@ logger = logging.getLogger(__name__)
from
paddleslim.quant
import
quant_aware
,
convert
def
save_infer_model
(
save_dir
,
exe
,
feed_vars
,
test_fetches
,
infer_prog
):
feed_var_names
=
[
var
.
name
for
var
in
feed_vars
.
values
()]
target_vars
=
list
(
test_fetches
.
values
())
feed_var_names
=
prune_feed_vars
(
feed_var_names
,
target_vars
,
infer_prog
)
logger
.
info
(
"Export inference model to {}, input: {}, output: "
"{}..."
.
format
(
save_dir
,
feed_var_names
,
[
str
(
var
.
name
)
for
var
in
target_vars
]))
fluid
.
io
.
save_inference_model
(
save_dir
,
feeded_var_names
=
feed_var_names
,
target_vars
=
target_vars
,
executor
=
exe
,
main_program
=
infer_prog
,
params_filename
=
"__params__"
)
def
main
():
cfg
=
load_config
(
FLAGS
.
config
)
merge_config
(
FLAGS
.
opt
)
...
...
tools/export_model.py
浏览文件 @
47606f9a
...
...
@@ -28,179 +28,13 @@ from paddle import fluid
from
ppdet.core.workspace
import
load_config
,
merge_config
,
create
from
ppdet.utils.cli
import
ArgsParser
import
ppdet.utils.checkpoint
as
checkpoint
from
ppdet.utils.export_utils
import
save_infer_model
,
dump_infer_config
from
ppdet.utils.check
import
check_config
,
check_version
,
check_py_func
import
yaml
import
logging
from
collections
import
OrderedDict
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
)
logger
=
logging
.
getLogger
(
__name__
)
# Global dictionary
TRT_MIN_SUBGRAPH
=
{
'YOLO'
:
3
,
'SSD'
:
3
,
'RCNN'
:
40
,
'RetinaNet'
:
40
,
'EfficientDet'
:
40
,
'Face'
:
3
,
'TTFNet'
:
3
,
'FCOS'
:
3
,
'SOLOv2'
:
3
,
}
RESIZE_SCALE_SET
=
{
'RCNN'
,
'RetinaNet'
,
'FCOS'
,
'SOLOv2'
,
}
def
parse_reader
(
reader_cfg
,
metric
,
arch
):
preprocess_list
=
[]
image_shape
=
reader_cfg
[
'inputs_def'
].
get
(
'image_shape'
,
[
3
,
None
,
None
])
has_shape_def
=
not
None
in
image_shape
dataset
=
reader_cfg
[
'dataset'
]
anno_file
=
dataset
.
get_anno
()
with_background
=
dataset
.
with_background
use_default_label
=
dataset
.
use_default_label
if
metric
==
'COCO'
:
from
ppdet.utils.coco_eval
import
get_category_info
elif
metric
==
"VOC"
:
from
ppdet.utils.voc_eval
import
get_category_info
elif
metric
==
"WIDERFACE"
:
from
ppdet.utils.widerface_eval_utils
import
get_category_info
else
:
raise
ValueError
(
"metric only supports COCO, VOC, WIDERFACE, but received {}"
.
format
(
metric
))
clsid2catid
,
catid2name
=
get_category_info
(
anno_file
,
with_background
,
use_default_label
)
label_list
=
[
str
(
cat
)
for
cat
in
catid2name
.
values
()]
sample_transforms
=
reader_cfg
[
'sample_transforms'
]
for
st
in
sample_transforms
[
1
:]:
method
=
st
.
__class__
.
__name__
p
=
{
'type'
:
method
.
replace
(
'Image'
,
''
)}
params
=
st
.
__dict__
params
.
pop
(
'_id'
)
if
p
[
'type'
]
==
'Resize'
and
has_shape_def
:
params
[
'target_size'
]
=
min
(
image_shape
[
1
:])
if
arch
in
RESIZE_SCALE_SET
else
image_shape
[
1
]
params
[
'max_size'
]
=
max
(
image_shape
[
1
:])
if
arch
in
RESIZE_SCALE_SET
else
0
params
[
'image_shape'
]
=
image_shape
[
1
:]
if
'target_dim'
in
params
:
params
.
pop
(
'target_dim'
)
if
p
[
'type'
]
==
'ResizeAndPad'
:
assert
has_shape_def
,
"missing input shape"
p
[
'type'
]
=
'Resize'
p
[
'target_size'
]
=
params
[
'target_dim'
]
p
[
'max_size'
]
=
params
[
'target_dim'
]
p
[
'interp'
]
=
params
[
'interp'
]
p
[
'image_shape'
]
=
image_shape
[
1
:]
preprocess_list
.
append
(
p
)
continue
p
.
update
(
params
)
preprocess_list
.
append
(
p
)
batch_transforms
=
reader_cfg
.
get
(
'batch_transforms'
,
None
)
if
batch_transforms
:
methods
=
[
bt
.
__class__
.
__name__
for
bt
in
batch_transforms
]
for
bt
in
batch_transforms
:
method
=
bt
.
__class__
.
__name__
if
method
==
'PadBatch'
:
preprocess_list
.
append
({
'type'
:
'PadStride'
})
params
=
bt
.
__dict__
preprocess_list
[
-
1
].
update
({
'stride'
:
params
[
'pad_to_stride'
]})
break
return
with_background
,
preprocess_list
,
label_list
def
dump_infer_config
(
FLAGS
,
config
):
arch_state
=
0
cfg_name
=
os
.
path
.
basename
(
FLAGS
.
config
).
split
(
'.'
)[
0
]
save_dir
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
cfg_name
)
if
not
os
.
path
.
exists
(
save_dir
):
os
.
makedirs
(
save_dir
)
from
ppdet.core.config.yaml_helpers
import
setup_orderdict
setup_orderdict
()
infer_cfg
=
OrderedDict
({
'use_python_inference'
:
False
,
'mode'
:
'fluid'
,
'draw_threshold'
:
0.5
,
'metric'
:
config
[
'metric'
]
})
infer_arch
=
config
[
'architecture'
]
for
arch
,
min_subgraph_size
in
TRT_MIN_SUBGRAPH
.
items
():
if
arch
in
infer_arch
:
infer_cfg
[
'arch'
]
=
arch
infer_cfg
[
'min_subgraph_size'
]
=
min_subgraph_size
arch_state
=
1
break
if
not
arch_state
:
logger
.
error
(
'Architecture: {} is not supported for exporting model now'
.
format
(
infer_arch
))
os
.
_exit
(
0
)
if
'Mask'
in
config
[
'architecture'
]:
infer_cfg
[
'mask_resolution'
]
=
config
[
'MaskHead'
][
'resolution'
]
infer_cfg
[
'with_background'
],
infer_cfg
[
'Preprocess'
],
infer_cfg
[
'label_list'
]
=
parse_reader
(
config
[
'TestReader'
],
config
[
'metric'
],
infer_cfg
[
'arch'
])
yaml
.
dump
(
infer_cfg
,
open
(
os
.
path
.
join
(
save_dir
,
'infer_cfg.yml'
),
'w'
))
logger
.
info
(
"Export inference config file to {}"
.
format
(
os
.
path
.
join
(
save_dir
,
'infer_cfg.yml'
)))
def
prune_feed_vars
(
feeded_var_names
,
target_vars
,
prog
):
"""
Filter out feed variables which are not in program,
pruned feed variables are only used in post processing
on model output, which are not used in program, such
as im_id to identify image order, im_shape to clip bbox
in image.
"""
exist_var_names
=
[]
prog
=
prog
.
clone
()
prog
=
prog
.
_prune
(
targets
=
target_vars
)
global_block
=
prog
.
global_block
()
for
name
in
feeded_var_names
:
try
:
v
=
global_block
.
var
(
name
)
exist_var_names
.
append
(
str
(
v
.
name
))
except
Exception
:
logger
.
info
(
'save_inference_model pruned unused feed '
'variables {}'
.
format
(
name
))
pass
return
exist_var_names
def
save_infer_model
(
FLAGS
,
exe
,
feed_vars
,
test_fetches
,
infer_prog
):
cfg_name
=
os
.
path
.
basename
(
FLAGS
.
config
).
split
(
'.'
)[
0
]
save_dir
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
cfg_name
)
feed_var_names
=
[
var
.
name
for
var
in
feed_vars
.
values
()]
fetch_list
=
sorted
(
test_fetches
.
items
(),
key
=
lambda
i
:
i
[
0
])
target_vars
=
[
var
[
1
]
for
var
in
fetch_list
]
feed_var_names
=
prune_feed_vars
(
feed_var_names
,
target_vars
,
infer_prog
)
logger
.
info
(
"Export inference model to {}, input: {}, output: "
"{}..."
.
format
(
save_dir
,
feed_var_names
,
[
str
(
var
.
name
)
for
var
in
target_vars
]))
fluid
.
io
.
save_inference_model
(
save_dir
,
feeded_var_names
=
feed_var_names
,
target_vars
=
target_vars
,
executor
=
exe
,
main_program
=
infer_prog
,
params_filename
=
"__params__"
)
def
main
():
cfg
=
load_config
(
FLAGS
.
config
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录