提交 3efac174 编写于 作者: T tangwei12

Merge branch 'develop' of github.com:PaddlePaddle/Paddle into sum_op_dim_fix

...@@ -12,7 +12,11 @@ ...@@ -12,7 +12,11 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#pragma once
#include <stack> #include <stack>
#include <vector>
#include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/node.h" #include "paddle/fluid/framework/ir/node.h"
......
...@@ -8,7 +8,7 @@ cc_library(analysis SRCS pass_manager.cc dot.cc node.cc data_flow_graph.cc graph ...@@ -8,7 +8,7 @@ cc_library(analysis SRCS pass_manager.cc dot.cc node.cc data_flow_graph.cc graph
helper.cc helper.cc
model_store_pass.cc model_store_pass.cc
DEPS framework_proto proto_desc) DEPS framework_proto proto_desc)
cc_test(test_node SRCS node_tester.cc DEPS analysis) cc_test(test_node SRCS node_tester.cc DEPS analysis gflags glog gtest)
cc_test(test_dot SRCS dot_tester.cc DEPS analysis) cc_test(test_dot SRCS dot_tester.cc DEPS analysis)
cc_binary(inference_analyzer SRCS analyzer_main.cc DEPS analysis) cc_binary(inference_analyzer SRCS analyzer_main.cc DEPS analysis)
......
...@@ -20,17 +20,6 @@ namespace paddle { ...@@ -20,17 +20,6 @@ namespace paddle {
namespace inference { namespace inference {
namespace analysis { namespace analysis {
template <>
std::string &NodeAttr::As<std::string>() {
if (data_.empty()) {
type_index_ = std::type_index(typeid(std::string));
}
PADDLE_ENFORCE_EQ(type_index_, std::type_index(typeid(std::string)));
return data_;
}
std::string &NodeAttr::String() { return As<std::string>(); }
std::vector<Dot::Attr> Value::dot_attrs() const { std::vector<Dot::Attr> Value::dot_attrs() const {
return std::vector<Dot::Attr>({Dot::Attr("style", "filled,rounded"), return std::vector<Dot::Attr>({Dot::Attr("style", "filled,rounded"),
Dot::Attr("shape", "box"), Dot::Attr("shape", "box"),
......
...@@ -29,6 +29,7 @@ limitations under the License. */ ...@@ -29,6 +29,7 @@ limitations under the License. */
#include "paddle/fluid/inference/analysis/device.h" #include "paddle/fluid/inference/analysis/device.h"
#include "paddle/fluid/inference/analysis/dot.h" #include "paddle/fluid/inference/analysis/dot.h"
#include "paddle/fluid/inference/analysis/helper.h" #include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/platform/variant.h"
namespace paddle { namespace paddle {
namespace inference { namespace inference {
...@@ -38,39 +39,35 @@ class NodeMap; ...@@ -38,39 +39,35 @@ class NodeMap;
// A helper class to maintain the status from Pass. // A helper class to maintain the status from Pass.
struct NodeAttr { struct NodeAttr {
using any_t =
boost::variant<bool, float, int32_t, int64_t, void *, std::string>;
// NOTE T should be a primary type or a struct combined by several primary // NOTE T should be a primary type or a struct combined by several primary
// types. // types.
// NOTE the STL containers should not use here. // NOTE the STL containers should not use here.
// Some usages // Some usages
// Attr attr; // Attr attr;
// attr.Bool() = true; // attr.Bool() = true;
bool &Bool() { return As<bool>(); } bool &Bool() { return As<bool>(); }
float &Float() { return As<float>(); } float &Float() { return As<float>(); }
int32_t &Int32() { return As<int32_t>(); } int32_t &Int32() { return As<int32_t>(); }
int64_t &Int64() { return As<int64_t>(); } int64_t &Int64() { return As<int64_t>(); }
void *&Pointer() { return As<void *>(); } void *&Pointer() { return As<void *>(); }
std::string &String(); std::string &String() { return As<std::string>(); }
private: private:
template <typename T> template <typename T>
T &As() { T &As() {
// init storage in the first usage. if (type_index_ == typeid(NodeAttr)) {
if (data_.empty()) { type_index_ = typeid(T);
VLOG(4) << "resize data to " << sizeof(T); any_data_ = T();
type_index_ = std::type_index(typeid(T)); } else {
data_.resize(sizeof(T)); PADDLE_ENFORCE(type_index_ == typeid(T), "fetch error type");
} }
PADDLE_ENFORCE(framework::IsType<T>(type_index_), return boost::get<T>(any_data_);
"type not matched, origin is %s, want %s",
DataTypeNamer::Global().repr(type_index_),
DataTypeNamer::Global().repr<T>());
PADDLE_ENFORCE_EQ(data_.size(), sizeof(T), "Node attr type recast error");
return *reinterpret_cast<T *>(&data_[0]);
} }
private: private:
std::string data_; any_t any_data_;
std::type_index type_index_{typeid(NodeAttr)}; std::type_index type_index_{typeid(NodeAttr)};
}; };
......
...@@ -20,6 +20,24 @@ namespace paddle { ...@@ -20,6 +20,24 @@ namespace paddle {
namespace inference { namespace inference {
namespace analysis { namespace analysis {
TEST(NodeAttr, bool) {
NodeAttr x;
x.Bool() = true;
ASSERT_EQ(x.Bool(), true);
}
TEST(NodeAttr, int32) {
NodeAttr x;
x.Int32() = 32;
ASSERT_EQ(x.Int32(), 32);
}
TEST(NodeAttr, string) {
NodeAttr x;
x.String() = "Hello";
ASSERT_EQ(x.String(), "Hello");
}
TEST(Node, Attr) { TEST(Node, Attr) {
// Node is an abstract class, use Value instead for they share the same Attr // Node is an abstract class, use Value instead for they share the same Attr
// logic. // logic.
...@@ -27,6 +45,9 @@ TEST(Node, Attr) { ...@@ -27,6 +45,9 @@ TEST(Node, Attr) {
auto* node = nodes.Create(Node::Type::kValue); auto* node = nodes.Create(Node::Type::kValue);
node->attr("v0").Int32() = 2008; node->attr("v0").Int32() = 2008;
ASSERT_EQ(node->attr("v0").Int32(), 2008); ASSERT_EQ(node->attr("v0").Int32(), 2008);
node->attr("str").String() = "hello world";
ASSERT_EQ(node->attr("str").String(), "hello world");
} }
} // namespace analysis } // namespace analysis
......
...@@ -57,6 +57,8 @@ class RecvOp : public framework::OperatorBase { ...@@ -57,6 +57,8 @@ class RecvOp : public framework::OperatorBase {
class RecvOpMaker : public framework::OpProtoAndCheckerMaker { class RecvOpMaker : public framework::OpProtoAndCheckerMaker {
public: public:
void Make() { void Make() {
AddInput("X", "(Any) Dummy inputs, used for control dependency")
.AsDuplicable();
AddOutput("Out", "(Tensor) Variables to get from server.").AsDuplicable(); AddOutput("Out", "(Tensor) Variables to get from server.").AsDuplicable();
AddComment(R"DOC( AddComment(R"DOC(
Recv operator Recv operator
......
...@@ -37,22 +37,19 @@ class SendBarrierOp : public framework::OperatorBase { ...@@ -37,22 +37,19 @@ class SendBarrierOp : public framework::OperatorBase {
void RunImpl(const framework::Scope& scope, void RunImpl(const framework::Scope& scope,
const platform::Place& place) const override { const platform::Place& place) const override {
std::vector<std::string> eps = Attr<std::vector<std::string>>("endpoints"); std::vector<std::string> eps = Attr<std::vector<std::string>>("endpoints");
bool sync_mode = Attr<bool>("sync_mode");
distributed::RPCClient* rpc_client = distributed::RPCClient* rpc_client =
distributed::RPCClient::GetInstance<RPCCLIENT_T>(); distributed::RPCClient::GetInstance<RPCCLIENT_T>();
VLOG(3) << "SendBarrierOp sync_mode:" << sync_mode; VLOG(3) << "SendBarrierOp sync";
// need to wait before sending send_barrier message // need to wait before sending send_barrier message
PADDLE_ENFORCE(rpc_client->Wait(), "internal error in RPCClient"); PADDLE_ENFORCE(rpc_client->Wait(), "internal error in RPCClient");
if (sync_mode) { for (auto& ep : eps) {
for (auto& ep : eps) { VLOG(3) << "send barrier, ep: " << ep;
VLOG(3) << "send barrier, ep: " << ep; rpc_client->AsyncSendBatchBarrier(ep);
rpc_client->AsyncSendBatchBarrier(ep);
}
PADDLE_ENFORCE(rpc_client->Wait(), "internal error in RPCClient");
} }
PADDLE_ENFORCE(rpc_client->Wait(), "internal error in RPCClient");
} }
}; };
...@@ -70,7 +67,6 @@ the Parameter Server would knew all variables have been sent. ...@@ -70,7 +67,6 @@ the Parameter Server would knew all variables have been sent.
"(string vector, default 127.0.0.1:6164)" "(string vector, default 127.0.0.1:6164)"
"Server endpoints to send variables to.") "Server endpoints to send variables to.")
.SetDefault({"127.0.0.1:6164"}); .SetDefault({"127.0.0.1:6164"});
AddAttr<bool>("sync_mode", "work in sync_mode or not").SetDefault(true);
} }
}; };
......
...@@ -66,6 +66,8 @@ class SendOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -66,6 +66,8 @@ class SendOpMaker : public framework::OpProtoAndCheckerMaker {
void Make() { void Make() {
AddInput("X", "(Tensor, SelectedRows) Input variables to be sent") AddInput("X", "(Tensor, SelectedRows) Input variables to be sent")
.AsDuplicable(); .AsDuplicable();
AddOutput("Out", "(Any) Dummy outputs, used for control dependency")
.AsDuplicable();
AddComment(R"DOC( AddComment(R"DOC(
Send operator Send operator
......
...@@ -36,7 +36,7 @@ __forceinline__ __device__ T CudaShuffleDownSync(unsigned mask, T val, ...@@ -36,7 +36,7 @@ __forceinline__ __device__ T CudaShuffleDownSync(unsigned mask, T val,
#if CUDA_VERSION < 9000 #if CUDA_VERSION < 9000
return __shfl_down(val, delta, width); return __shfl_down(val, delta, width);
#else #else
return __shfl_down_sync(mask, val, delta, width); return __shfl_down_sync(mask, val, static_cast<unsigned>(delta), width);
#endif #endif
} }
...@@ -46,9 +46,16 @@ template <> ...@@ -46,9 +46,16 @@ template <>
__forceinline__ __device__ float16 CudaShuffleDownSync(unsigned mask, __forceinline__ __device__ float16 CudaShuffleDownSync(unsigned mask,
float16 val, int delta, float16 val, int delta,
int width) { int width) {
half tmp = static_cast<half>(val); return float16(
__shfl_down(tmp, static_cast<unsigned>(delta), width); __shfl_down(static_cast<half>(val), static_cast<unsigned>(delta), width));
return float16(tmp); }
#else
template <>
__forceinline__ __device__ float16 CudaShuffleDownSync(unsigned mask,
float16 val, int delta,
int width) {
return float16(__shfl_down_sync(mask, static_cast<half>(val),
static_cast<unsigned>(delta), width));
} }
#endif #endif
......
...@@ -13,6 +13,7 @@ ...@@ -13,6 +13,7 @@
// limitations under the License. // limitations under the License.
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <algorithm>
#include <iostream> #include <iostream>
#include <random> #include <random>
...@@ -123,7 +124,7 @@ void TestUnalign(size_t num, const int shift_bit) { ...@@ -123,7 +124,7 @@ void TestUnalign(size_t num, const int shift_bit) {
cudaMemcpy(out, d_in2, array_size, cudaMemcpyDeviceToHost); cudaMemcpy(out, d_in2, array_size, cudaMemcpyDeviceToHost);
cudaDeviceSynchronize(); cudaDeviceSynchronize();
for (size_t i = 0; i < num / 2; ++i) { for (size_t i = 0; i < num / 2; ++i) {
// NOTE(dzhwinter): the float16 add has small underflow/overflow // NOTE(dzhwinter): the float16 add has small truncate error.
// so we use EXPECT_NEAR to check the result. // so we use EXPECT_NEAR to check the result.
EXPECT_NEAR(static_cast<float>(out[i]), EXPECT_NEAR(static_cast<float>(out[i]),
static_cast<float>(AddFunctor<float16>()(r_in1[i], r_in2[i])), static_cast<float>(AddFunctor<float16>()(r_in1[i], r_in2[i])),
...@@ -151,3 +152,83 @@ TEST(CudaAtomic, float16Unalign) { ...@@ -151,3 +152,83 @@ TEST(CudaAtomic, float16Unalign) {
TestUnalign(static_cast<size_t>(1024), /*shift_bit*/ 3); TestUnalign(static_cast<size_t>(1024), /*shift_bit*/ 3);
TestUnalign(static_cast<size_t>(1024 * 1024), /*shift_bit*/ 3); TestUnalign(static_cast<size_t>(1024 * 1024), /*shift_bit*/ 3);
} }
// https://devblogs.nvidia.com/faster-parallel-reductions-kepler/
template <typename T>
static __forceinline__ __device__ T WarpReduceSum(T val) {
unsigned mask = 0u;
CREATE_SHFL_MASK(mask, true);
for (int offset = warpSize / 2; offset > 0; offset /= 2) {
val += paddle::platform::CudaShuffleDownSync(mask, val, offset);
}
return val;
}
template <typename T>
__forceinline__ __device__ T BlockReduce(T val) {
static __shared__ T shared[32]; // Shared mem for 32 partial sums
int lane = threadIdx.x % warpSize;
int wid = threadIdx.x / warpSize;
val = WarpReduceSum(val); // Each warp performs partial reduction
if (lane == 0) shared[wid] = val; // Write reduced value to shared memory
__syncthreads(); // Wait for all partial reductions
// read from shared memory only if that warp existed
val =
(threadIdx.x < blockDim.x / warpSize) ? shared[lane] : static_cast<T>(0);
if (wid == 0) val = WarpReduceSum(val); // Final reduce within first warp
return val;
}
template <typename T>
__global__ void DeviceReduceSum(T* in, T* out, size_t N) {
T sum(0);
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
i += blockDim.x * gridDim.x) {
sum += in[i];
}
sum = BlockReduce<T>(sum);
__syncthreads();
if (threadIdx.x == 0) out[blockIdx.x] = sum;
}
template <typename T>
void TestReduce(size_t num, float atol = 0.01) {
T* in1;
T *d_in1, *d_in2;
size_t size = sizeof(T) * num;
cudaMalloc(reinterpret_cast<void**>(&d_in1), size);
cudaMalloc(reinterpret_cast<void**>(&d_in2), sizeof(T));
in1 = reinterpret_cast<T*>(malloc(size));
std::minstd_rand engine;
std::uniform_real_distribution<double> dist(0.0, 1.0);
for (size_t i = 0; i < num; ++i) {
in1[i] = static_cast<T>(dist(engine));
}
auto out = std::accumulate(in1, in1 + num, static_cast<T>(0));
cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice);
cudaDeviceSynchronize();
DeviceReduceSum<T><<<1, PADDLE_CUDA_NUM_THREADS>>>(d_in1, d_in2, num);
cudaMemcpy(in1, d_in2, sizeof(T), cudaMemcpyDeviceToHost);
cudaDeviceSynchronize();
// NOTE(dzhwinter): the float16 add has small underflow/overflow
// so we use EXPECT_NEAR to check the result.
EXPECT_NEAR(static_cast<float>(in1[0]), static_cast<float>(out), atol);
free(in1);
cudaFree(d_in1);
cudaFree(d_in2);
}
TEST(CudaShuffleSync, float16) {
TestReduce<float>(10);
TestReduce<float>(1000);
// float16 will overflow or accumulate truncate errors in big size.
TestReduce<float16>(10);
TestReduce<float16>(100, /*atol error*/ 1.0);
}
...@@ -54,7 +54,7 @@ function cpu_config() { ...@@ -54,7 +54,7 @@ function cpu_config() {
if [ $platform == "Linux" ]; then if [ $platform == "Linux" ]; then
ht=`lscpu |grep "per core"|awk -F':' '{print $2}'|xargs` ht=`lscpu |grep "per core"|awk -F':' '{print $2}'|xargs`
elif [ $platform == "Darwin" ]; then elif [ $platform == "Darwin" ]; then
if [`sysctl -n hw.physicalcpu` -eq `sysctl -n hw.logicalcpu`]; then if [ `sysctl -n hw.physicalcpu` -eq `sysctl -n hw.logicalcpu` ]; then
# HT is OFF # HT is OFF
ht=1 ht=1
fi fi
......
...@@ -24,7 +24,6 @@ import paddle.dataset.common ...@@ -24,7 +24,6 @@ import paddle.dataset.common
import subprocess import subprocess
import numpy import numpy
import platform import platform
import six
import tempfile import tempfile
from six.moves import range from six.moves import range
__all__ = ['train', 'test', 'convert'] __all__ = ['train', 'test', 'convert']
......
...@@ -24,7 +24,7 @@ from .layer_function_generator import templatedoc ...@@ -24,7 +24,7 @@ from .layer_function_generator import templatedoc
from .. import core from .. import core
from ..executor import global_scope from ..executor import global_scope
from ..framework import convert_np_dtype_to_dtype_, default_main_program, \ from ..framework import convert_np_dtype_to_dtype_, default_main_program, \
default_startup_program, program_guard, Program default_startup_program, program_guard, Program, Variable
from ..layer_helper import LayerHelper from ..layer_helper import LayerHelper
from ..unique_name import generate as unique_name from ..unique_name import generate as unique_name
...@@ -209,7 +209,7 @@ class ListenAndServ(object): ...@@ -209,7 +209,7 @@ class ListenAndServ(object):
}) })
def Send(endpoints, send_vars, sync=True): def Send(endpoints, send_vars, dummy_output=None, sync=True):
""" """
Send variables to the server side, and get vars from server Send variables to the server side, and get vars from server
side when server have finished running server side program. side when server have finished running server side program.
...@@ -223,6 +223,13 @@ def Send(endpoints, send_vars, sync=True): ...@@ -223,6 +223,13 @@ def Send(endpoints, send_vars, sync=True):
""" """
assert (type(send_vars) == list) assert (type(send_vars) == list)
if dummy_output is None:
dummy_output = []
elif isinstance(dummy_output, Variable):
dummy_output = [dummy_output]
assert (type(dummy_output) == list)
epmap = endpoints.split(",") epmap = endpoints.split(",")
endpoints = list(set(epmap)) endpoints = list(set(epmap))
...@@ -232,6 +239,7 @@ def Send(endpoints, send_vars, sync=True): ...@@ -232,6 +239,7 @@ def Send(endpoints, send_vars, sync=True):
helper.append_op( helper.append_op(
type="send", type="send",
inputs={"X": send_vars}, inputs={"X": send_vars},
outputs={"Out": dummy_output},
attrs={ attrs={
"endpoints": endpoints, "endpoints": endpoints,
"epmap": epmap, "epmap": epmap,
...@@ -241,7 +249,7 @@ def Send(endpoints, send_vars, sync=True): ...@@ -241,7 +249,7 @@ def Send(endpoints, send_vars, sync=True):
helper.append_op(type="send_barrier", attrs={"endpoints": endpoints}) helper.append_op(type="send_barrier", attrs={"endpoints": endpoints})
def Recv(endpoints, get_vars, sync=True): def Recv(endpoints, get_vars, dummy_input=None, sync=True):
""" """
Receive variables from server side Receive variables from server side
...@@ -256,13 +264,20 @@ def Recv(endpoints, get_vars, sync=True): ...@@ -256,13 +264,20 @@ def Recv(endpoints, get_vars, sync=True):
""" """
assert (type(get_vars) == list) assert (type(get_vars) == list)
if dummy_input is None:
dummy_input = []
elif isinstance(dummy_input, Variable):
dummy_input = [dummy_input]
assert (type(dummy_input) == list)
epmap = endpoints.split(",") epmap = endpoints.split(",")
endpoints = list(set(epmap)) endpoints = list(set(epmap))
helper = LayerHelper("Recv", **locals()) helper = LayerHelper("Recv", **locals())
helper.append_op( helper.append_op(
type="recv", type="recv",
inputs={"X": get_vars}, inputs={"X": dummy_input},
outputs={"Out": get_vars}, outputs={"Out": get_vars},
attrs={"endpoints": endpoints, attrs={"endpoints": endpoints,
"epmap": epmap}) "epmap": epmap})
......
...@@ -16,7 +16,6 @@ from __future__ import print_function ...@@ -16,7 +16,6 @@ from __future__ import print_function
import numpy as np import numpy as np
import argparse import argparse
import six
import time import time
import math import math
......
...@@ -34,6 +34,7 @@ import math ...@@ -34,6 +34,7 @@ import math
import random import random
import numpy as np import numpy as np
import collections import collections
import six
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
from .. import core, framework from .. import core, framework
...@@ -210,6 +211,9 @@ class DistributeTranspiler(object): ...@@ -210,6 +211,9 @@ class DistributeTranspiler(object):
ps_dispatcher = self.config.split_method(self.pserver_endpoints) ps_dispatcher = self.config.split_method(self.pserver_endpoints)
self.has_distributed_lookup_table = self._has_distributed_lookup_table() self.has_distributed_lookup_table = self._has_distributed_lookup_table()
self.param_name_to_grad_name = dict()
for param_var, grad_var in self.params_grads:
self.param_name_to_grad_name[param_var.name] = grad_var.name
# step 1: split and create vars, then put splited vars in dicts for later use. # step 1: split and create vars, then put splited vars in dicts for later use.
self._init_splited_vars() self._init_splited_vars()
...@@ -229,34 +233,39 @@ class DistributeTranspiler(object): ...@@ -229,34 +233,39 @@ class DistributeTranspiler(object):
random.seed(self.origin_program.random_seed) random.seed(self.origin_program.random_seed)
random.shuffle(grad_var_mapping_items) random.shuffle(grad_var_mapping_items)
for orig_varname, splited_vars in grad_var_mapping_items: grad_name_to_send_dummy_out = dict()
for grad_varname, splited_vars in grad_var_mapping_items:
eplist = ps_dispatcher.dispatch(splited_vars) eplist = ps_dispatcher.dispatch(splited_vars)
if not self.config.slice_var_up: if not self.config.slice_var_up:
assert (len(splited_vars) == 1) assert (len(splited_vars) == 1)
splited_grad_varname = grad_varname
if len(splited_vars) == 1: if len(splited_vars) == 1:
orig_varname = splited_vars[0].name splited_grad_varname = splited_vars[0].name
index = find_op_by_output_arg(program.global_block(), index = find_op_by_output_arg(program.global_block(),
orig_varname) splited_grad_varname)
elif len(splited_vars) > 1: elif len(splited_vars) > 1:
orig_var = program.global_block().vars[orig_varname] orig_var = program.global_block().vars[splited_grad_varname]
index = find_op_by_output_arg(program.global_block(), index = find_op_by_output_arg(program.global_block(),
orig_varname) splited_grad_varname)
self._insert_split_op(program, orig_var, index, splited_vars) self._insert_split_op(program, orig_var, index, splited_vars)
index += 1 index += 1
else: else:
AssertionError("Can not insert the send op by original " AssertionError("Can not insert the send op by original "
"variable name :", orig_varname) "variable name :", splited_grad_varname)
dummy_output = program.global_block().create_var()
grad_name_to_send_dummy_out[grad_varname] = dummy_output
program.global_block()._insert_op( program.global_block()._insert_op(
index=index + 1, index=index + 1,
type="send", type="send",
inputs={"X": splited_vars}, inputs={"X": splited_vars},
outputs={}, outputs={"Out": dummy_output},
attrs={ attrs={
"epmap": eplist, "epmap": eplist,
RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
"sync_mode": not self.sync_mode,
}) })
for _, var in enumerate(splited_vars): for _, var in enumerate(splited_vars):
send_vars.append(var) send_vars.append(var)
...@@ -268,7 +277,6 @@ class DistributeTranspiler(object): ...@@ -268,7 +277,6 @@ class DistributeTranspiler(object):
outputs={}, outputs={},
attrs={ attrs={
"endpoints": pserver_endpoints, "endpoints": pserver_endpoints,
"sync_mode": self.sync_mode,
RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
}) })
...@@ -284,19 +292,21 @@ class DistributeTranspiler(object): ...@@ -284,19 +292,21 @@ class DistributeTranspiler(object):
self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i]) self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
# step4: Concat the parameters splits together after recv. # step4: Concat the parameters splits together after recv.
for varname, splited_var in six.iteritems(self.param_var_mapping): for param_varname, splited_var in six.iteritems(self.param_var_mapping):
eps = [] eps = []
for var in splited_var: for var in splited_var:
index = [v.name for v in recv_vars].index(var.name) index = [v.name for v in recv_vars].index(var.name)
eps.append(eplist[index]) eps.append(eplist[index])
grad_send_dummy_out = grad_name_to_send_dummy_out[
self.param_name_to_grad_name[param_varname]]
program.global_block().append_op( program.global_block().append_op(
type="recv", type="recv",
inputs={}, inputs={"X": [grad_send_dummy_out]},
outputs={"Out": splited_var}, outputs={"Out": splited_var},
attrs={ attrs={
"epmap": eps, "epmap": eps,
RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
"sync_mode": not self.sync_mode
}) })
if self.sync_mode: if self.sync_mode:
...@@ -309,10 +319,10 @@ class DistributeTranspiler(object): ...@@ -309,10 +319,10 @@ class DistributeTranspiler(object):
RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
}) })
for varname, splited_var in six.iteritems(self.param_var_mapping): for param_varname, splited_var in six.iteritems(self.param_var_mapping):
if len(splited_var) <= 1: if len(splited_var) <= 1:
continue continue
orig_param = program.global_block().vars[varname] orig_param = program.global_block().vars[param_varname]
program.global_block().append_op( program.global_block().append_op(
type="concat", type="concat",
inputs={"X": splited_var}, inputs={"X": splited_var},
...@@ -380,7 +390,7 @@ class DistributeTranspiler(object): ...@@ -380,7 +390,7 @@ class DistributeTranspiler(object):
op = startup_program.global_block().append_op( op = startup_program.global_block().append_op(
type="recv", type="recv",
inputs={}, inputs={"X": []},
outputs={"Out": splited_var}, outputs={"Out": splited_var},
attrs={ attrs={
"epmap": eps, "epmap": eps,
...@@ -786,19 +796,21 @@ class DistributeTranspiler(object): ...@@ -786,19 +796,21 @@ class DistributeTranspiler(object):
self.config.min_block_size) self.config.min_block_size)
assert (len(grad_blocks) == len(param_blocks)) assert (len(grad_blocks) == len(param_blocks))
# origin_varname -> [splited_var] # origin_param_name -> [splited_param_vars]
self.param_var_mapping = self._create_vars_from_blocklist( self.param_var_mapping = self._create_vars_from_blocklist(
self.origin_program, param_blocks) self.origin_program, param_blocks)
# origin_grad_name -> [splited_grad_vars]
self.grad_var_mapping = self._create_vars_from_blocklist( self.grad_var_mapping = self._create_vars_from_blocklist(
self.origin_program, self.origin_program,
grad_blocks, grad_blocks,
add_trainer_suffix=self.trainer_num > 1) add_trainer_suffix=self.trainer_num > 1)
# dict(grad_splited_var -> param_splited_var)
self.grad_param_mapping = collections.OrderedDict() self.grad_param_mapping = collections.OrderedDict()
for g, p in zip(grad_blocks, param_blocks): for g, p in zip(grad_blocks, param_blocks):
g_name, g_bid, _ = g.split(":") g_name, g_bid, _ = g.split(":")
p_name, p_bid, _ = p.split(":") p_name, p_bid, _ = p.split(":")
self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \ self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
self.param_var_mapping[p_name][int(p_bid)] self.param_var_mapping[p_name][int(p_bid)]
# create mapping of endpoint -> split var to create pserver side program # create mapping of endpoint -> split var to create pserver side program
self.param_grad_ep_mapping = collections.OrderedDict() self.param_grad_ep_mapping = collections.OrderedDict()
...@@ -919,7 +931,7 @@ class DistributeTranspiler(object): ...@@ -919,7 +931,7 @@ class DistributeTranspiler(object):
index=op_index + 2, index=op_index + 2,
type="send", type="send",
inputs={'X': self.trainer_side_table_grad_list}, inputs={'X': self.trainer_side_table_grad_list},
outputs={}, outputs={'Out': []},
attrs={ attrs={
"sync_mode": True, "sync_mode": True,
"epmap": pserver_endpoints, "epmap": pserver_endpoints,
......
...@@ -13,7 +13,7 @@ ENV PATH /opt/rh/devtoolset-2/root/usr/bin:$PATH ...@@ -13,7 +13,7 @@ ENV PATH /opt/rh/devtoolset-2/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH /opt/rh/devtoolset-2/root/usr/lib64:/opt/rh/devtoolset-2/root/usr/lib:/usr/local/lib64:/usr/local/lib:${LD_LIBRARY_PATH} ENV LD_LIBRARY_PATH /opt/rh/devtoolset-2/root/usr/lib64:/opt/rh/devtoolset-2/root/usr/lib:/usr/local/lib64:/usr/local/lib:${LD_LIBRARY_PATH}
ENV PKG_CONFIG_PATH=/usr/local/lib/pkgconfig ENV PKG_CONFIG_PATH=/usr/local/lib/pkgconfig
RUN yum install -y sqlite-devel zlib-devel openssl-devel pcre-devel vim tk-devel tkinter libtool xz freetype-devel libpng-devel graphviz RUN yum install -y sqlite-devel zlib-devel openssl-devel pcre-devel vim tk-devel tkinter libtool xz graphviz
COPY build_scripts /build_scripts COPY build_scripts /build_scripts
RUN bash build_scripts/build.sh && \ RUN bash build_scripts/build.sh && \
bash build_scripts/install_nccl2.sh && rm -r build_scripts bash build_scripts/install_nccl2.sh && rm -r build_scripts
......
...@@ -28,7 +28,7 @@ AUTOCONF_HASH=954bd69b391edc12d6a4a51a2dd1476543da5c6bbf05a95b59dc0dd6fd4c2969 ...@@ -28,7 +28,7 @@ AUTOCONF_HASH=954bd69b391edc12d6a4a51a2dd1476543da5c6bbf05a95b59dc0dd6fd4c2969
PYTHON_COMPILE_DEPS="zlib-devel bzip2-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel db4-devel libpcap-devel xz-devel" PYTHON_COMPILE_DEPS="zlib-devel bzip2-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel db4-devel libpcap-devel xz-devel"
# Libraries that are allowed as part of the manylinux1 profile # Libraries that are allowed as part of the manylinux1 profile
MANYLINUX1_DEPS="glibc-devel libstdc++-devel glib2-devel libX11-devel libXext-devel libXrender-devel mesa-libGL-devel libICE-devel libSM-devel ncurses-devel" MANYLINUX1_DEPS="glibc-devel libstdc++-devel glib2-devel libX11-devel libXext-devel libXrender-devel mesa-libGL-devel libICE-devel libSM-devel ncurses-devel freetype-devel libpng-devel"
# Get build utilities # Get build utilities
MY_DIR=$(dirname "${BASH_SOURCE[0]}") MY_DIR=$(dirname "${BASH_SOURCE[0]}")
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册