Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
3c6102a3
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3c6102a3
编写于
11月 22, 2018
作者:
J
JiabinYang
浏览文件
操作
浏览文件
下载
差异文件
test=develop
上级
57a18e32
dd6fd4c7
变更
57
隐藏空白更改
内联
并排
Showing
57 changed file
with
1939 addition
and
575 deletion
+1939
-575
AUTHORS.md
AUTHORS.md
+1
-0
CMakeLists.txt
CMakeLists.txt
+18
-3
cmake/external/gtest.cmake
cmake/external/gtest.cmake
+4
-0
cmake/external/snappy.cmake
cmake/external/snappy.cmake
+10
-2
cmake/external/snappystream.cmake
cmake/external/snappystream.cmake
+35
-26
cmake/generic.cmake
cmake/generic.cmake
+3
-0
cmake/operators.cmake
cmake/operators.cmake
+1
-3
cmake/simd.cmake
cmake/simd.cmake
+38
-35
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/CMakeLists.txt
paddle/fluid/CMakeLists.txt
+1
-5
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+1
-14
paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h
...luid/framework/details/fast_threaded_ssa_graph_executor.h
+1
-1
paddle/fluid/framework/eigen.h
paddle/fluid/framework/eigen.h
+0
-5
paddle/fluid/framework/op_registry.h
paddle/fluid/framework/op_registry.h
+0
-5
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+0
-2
paddle/fluid/framework/operator.h
paddle/fluid/framework/operator.h
+0
-2
paddle/fluid/inference/api/api_impl.h
paddle/fluid/inference/api/api_impl.h
+0
-6
paddle/fluid/memory/allocation/cpu_allocator.h
paddle/fluid/memory/allocation/cpu_allocator.h
+6
-0
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+12
-9
paddle/fluid/operators/conv_fusion_op.cu.cc
paddle/fluid/operators/conv_fusion_op.cu.cc
+4
-0
paddle/fluid/operators/group_norm_op.cc
paddle/fluid/operators/group_norm_op.cc
+162
-0
paddle/fluid/operators/group_norm_op.cu
paddle/fluid/operators/group_norm_op.cu
+292
-0
paddle/fluid/operators/group_norm_op.h
paddle/fluid/operators/group_norm_op.h
+197
-0
paddle/fluid/operators/math/CMakeLists.txt
paddle/fluid/operators/math/CMakeLists.txt
+15
-20
paddle/fluid/operators/math/detail/activation_functions.h
paddle/fluid/operators/math/detail/activation_functions.h
+1
-0
paddle/fluid/operators/math/matrix_bit_code.h
paddle/fluid/operators/math/matrix_bit_code.h
+1
-2
paddle/fluid/operators/reader/create_py_reader_op.cc
paddle/fluid/operators/reader/create_py_reader_op.cc
+1
-1
paddle/fluid/operators/roi_align_op.cc
paddle/fluid/operators/roi_align_op.cc
+3
-3
paddle/fluid/operators/roi_pool_op.cc
paddle/fluid/operators/roi_pool_op.cc
+3
-3
paddle/fluid/operators/space_to_depth_op.cc
paddle/fluid/operators/space_to_depth_op.cc
+1
-1
paddle/fluid/platform/CMakeLists.txt
paddle/fluid/platform/CMakeLists.txt
+8
-4
paddle/fluid/platform/cpu_helper.cc
paddle/fluid/platform/cpu_helper.cc
+7
-0
paddle/fluid/platform/device_tracer.h
paddle/fluid/platform/device_tracer.h
+1
-11
paddle/fluid/platform/dynload/cudnn.h
paddle/fluid/platform/dynload/cudnn.h
+0
-2
paddle/fluid/platform/enforce.h
paddle/fluid/platform/enforce.h
+15
-55
paddle/fluid/platform/init.cc
paddle/fluid/platform/init.cc
+0
-7
paddle/fluid/platform/init.h
paddle/fluid/platform/init.h
+0
-3
paddle/fluid/platform/port.h
paddle/fluid/platform/port.h
+31
-4
paddle/fluid/platform/profiler.cc
paddle/fluid/platform/profiler.cc
+1
-1
paddle/fluid/platform/profiler.h
paddle/fluid/platform/profiler.h
+0
-10
paddle/fluid/platform/stream_callback_manager.h
paddle/fluid/platform/stream_callback_manager.h
+6
-7
paddle/fluid/pybind/CMakeLists.txt
paddle/fluid/pybind/CMakeLists.txt
+2
-6
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+5
-20
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+2
-3
python/paddle/fluid/contrib/inferencer.py
python/paddle/fluid/contrib/inferencer.py
+1
-3
python/paddle/fluid/contrib/trainer.py
python/paddle/fluid/contrib/trainer.py
+1
-2
python/paddle/fluid/contrib/utils/__init__.py
python/paddle/fluid/contrib/utils/__init__.py
+20
-0
python/paddle/fluid/contrib/utils/hdfs_utils.py
python/paddle/fluid/contrib/utils/hdfs_utils.py
+505
-0
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+58
-60
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+257
-190
python/paddle/fluid/layers/ops.py
python/paddle/fluid/layers/ops.py
+21
-20
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+8
-0
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+5
-5
python/paddle/fluid/tests/unittests/test_group_norm_op.py
python/paddle/fluid/tests/unittests/test_group_norm_op.py
+143
-0
tools/manylinux1/Dockerfile.x64
tools/manylinux1/Dockerfile.x64
+6
-2
tools/manylinux1/build_scripts/build.sh
tools/manylinux1/build_scripts/build.sh
+10
-9
tools/manylinux1/build_scripts/build_utils.sh
tools/manylinux1/build_scripts/build_utils.sh
+14
-3
未找到文件。
AUTHORS.md
浏览文件 @
3c6102a3
...
...
@@ -25,6 +25,7 @@
| kexinzhao | Ke-Xin Zhao |
| kuke | Yi-Bing Liu |
| lcy-seso | Ying Cao |
| cjld | Dun Liang |
| lipeng-unisound | Peng Li |
| liuyuan | Yuan Liu |
| livc | Zhao Li |
...
...
CMakeLists.txt
浏览文件 @
3c6102a3
...
...
@@ -130,6 +130,21 @@ if (APPLE OR WIN32)
"Disable MKL for building on mac and windows"
FORCE
)
endif
()
if
(
WIN32
)
set
(
WITH_AVX OFF CACHE STRING
"Disable AVX when compiling for Windows"
FORCE
)
set
(
WITH_DSO OFF CACHE STRING
"Disable DSO when compiling for Windows"
FORCE
)
set
(
WITH_MKL OFF CACHE STRING
"Disable MKL when compiling for Windows"
FORCE
)
set
(
WITH_DISTRIBUTE OFF CACHE STRING
"Disable DISTRIBUTE when compiling for Windows"
FORCE
)
set
(
WITH_C_API OFF CACHE STRING
"Disable C_API when compiling for Windows"
FORCE
)
set
(
WITH_FLUID_ONLY ON CACHE STRING
"Enable FLUID_ONLY when compiling for Windows"
FORCE
)
endif
()
set
(
THIRD_PARTY_PATH
"
${
CMAKE_BINARY_DIR
}
/third_party"
CACHE STRING
"A path setting third party libraries download & build directories."
)
...
...
@@ -190,11 +205,11 @@ include(external/pybind11) # download pybind11
include
(
external/cares
)
include
(
external/cub
)
include
(
external/xxhash
)
# download xxhash
if
(
NOT WIN32
)
# there is no official support of snappystream, warpctc, nccl, cupti in windows
include
(
external/snappy
)
# download snappy
include
(
external/snappystream
)
# download snappystream
if
(
NOT WIN32
)
# there is no official support of warpctc, nccl, cupti in windows
include
(
external/warpctc
)
# download, build, install warpctc
include
(
cupti
)
endif
(
NOT WIN32
)
...
...
cmake/external/gtest.cmake
浏览文件 @
3c6102a3
...
...
@@ -50,7 +50,11 @@ IF(WITH_TESTING)
CMAKE_ARGS -DCMAKE_CXX_COMPILER=
${
CMAKE_CXX_COMPILER
}
-DCMAKE_C_COMPILER=
${
CMAKE_C_COMPILER
}
-DCMAKE_CXX_FLAGS=
${
CMAKE_CXX_FLAGS
}
-DCMAKE_CXX_FLAGS_RELEASE=
${
CMAKE_CXX_FLAGS_RELEASE
}
-DCMAKE_CXX_FLAGS_DEBUG=
${
CMAKE_CXX_FLAGS_DEBUG
}
-DCMAKE_C_FLAGS=
${
CMAKE_C_FLAGS
}
-DCMAKE_C_FLAGS_DEBUG=
${
CMAKE_C_FLAGS_DEBUG
}
-DCMAKE_C_FLAGS_RELEASE=
${
CMAKE_C_FLAGS_RELEASE
}
-DCMAKE_INSTALL_PREFIX=
${
GTEST_INSTALL_DIR
}
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DBUILD_GMOCK=ON
...
...
cmake/external/snappy.cmake
浏览文件 @
3c6102a3
...
...
@@ -24,7 +24,11 @@ set(SNAPPY_SOURCES_DIR ${THIRD_PARTY_PATH}/snappy)
set
(
SNAPPY_INSTALL_DIR
${
THIRD_PARTY_PATH
}
/install/snappy
)
set
(
SNAPPY_INCLUDE_DIR
"
${
SNAPPY_INSTALL_DIR
}
/include"
CACHE PATH
"snappy include directory."
FORCE
)
set
(
SNAPPY_LIBRARIES
"
${
SNAPPY_INSTALL_DIR
}
/lib/libsnappy.a"
)
if
(
WIN32
)
set
(
SNAPPY_LIBRARIES
"
${
SNAPPY_INSTALL_DIR
}
/lib/snappy.lib"
)
else
(
WIN32
)
set
(
SNAPPY_LIBRARIES
"
${
SNAPPY_INSTALL_DIR
}
/lib/libsnappy.a"
)
endif
(
WIN32
)
ExternalProject_Add
(
extern_snappy
...
...
@@ -34,8 +38,12 @@ ExternalProject_Add(
UPDATE_COMMAND
""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=
${
CMAKE_CXX_COMPILER
}
-DCMAKE_C_COMPILER=
${
CMAKE_C_COMPILER
}
-DCMAKE_CXX_FLAGS=
${
CMAKE_CXX_FLAGS
}
-DCMAKE_C_FLAGS=
${
CMAKE_C_FLAGS
}
-DCMAKE_C_FLAGS_DEBUG=
${
CMAKE_C_FLAGS_DEBUG
}
-DCMAKE_C_FLAGS_RELEASE=
${
CMAKE_C_FLAGS_RELEASE
}
-DCMAKE_CXX_FLAGS=
${
CMAKE_CXX_FLAGS
}
-DCMAKE_CXX_FLAGS_RELEASE=
${
CMAKE_CXX_FLAGS_RELEASE
}
-DCMAKE_CXX_FLAGS_DEBUG=
${
CMAKE_CXX_FLAGS_DEBUG
}
-DCMAKE_INSTALL_PREFIX=
${
SNAPPY_INSTALL_DIR
}
-DCMAKE_INSTALL_LIBDIR=
${
SNAPPY_INSTALL_DIR
}
/lib
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
...
...
cmake/external/snappystream.cmake
浏览文件 @
3c6102a3
...
...
@@ -18,36 +18,45 @@ ENDIF()
include
(
ExternalProject
)
# NOTE: snappy is needed when linking with recordio
set
(
SNAPPYSTREAM_SOURCES_DIR
${
THIRD_PARTY_PATH
}
/snappy_stream
)
set
(
SNAPPYSTREAM_INSTALL_DIR
${
THIRD_PARTY_PATH
}
/install/snappy_stream
)
set
(
SNAPPYSTREAM_INCLUDE_DIR
"
${
SNAPPYSTREAM_INSTALL_DIR
}
/include"
CACHE PATH
"snappy stream include directory."
FORCE
)
set
(
SNAPPYSTREAM_LIBRARIES
"
${
SNAPPYSTREAM_INSTALL_DIR
}
/lib/libsnappystream.a"
)
ExternalProject_Add
(
extern_snappystream
GIT_REPOSITORY
"https://github.com/hoxnox/snappystream.git"
GIT_TAG
"0.2.8"
PREFIX
${
SNAPPYSTREAM_SOURCES_DIR
}
UPDATE_COMMAND
""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=
${
CMAKE_CXX_COMPILER
}
-DCMAKE_C_COMPILER=
${
CMAKE_C_COMPILER
}
-DCMAKE_CXX_FLAGS=
${
CMAKE_CXX_FLAGS
}
-DCMAKE_C_FLAGS=
${
CMAKE_C_FLAGS
}
-DCMAKE_INSTALL_PREFIX=
${
SNAPPY_INSTALL_DIR
}
-DCMAKE_INSTALL_LIBDIR=
${
SNAPPY_INSTALL_DIR
}
/lib
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DCMAKE_BUILD_TYPE=
${
THIRD_PARTY_BUILD_TYPE
}
-DSNAPPY_ROOT=
${
SNAPPY_INSTALL_DIR
}
${
EXTERNAL_OPTIONAL_ARGS
}
CMAKE_CACHE_ARGS
-DCMAKE_INSTALL_PREFIX:PATH=
${
SNAPPYSTREAM_INSTALL_DIR
}
-DCMAKE_INSTALL_LIBDIR:PATH=
${
SNAPPYSTREAM_INSTALL_DIR
}
/lib
-DCMAKE_BUILD_TYPE:STRING=
${
THIRD_PARTY_BUILD_TYPE
}
DEPENDS snappy
)
if
(
WIN32
)
# Fix me, VS2015 come without VLA support
set
(
SNAPPYSTREAM_LIBRARIES
"
${
SNAPPYSTREAM_INSTALL_DIR
}
/lib/snappystream.lib"
)
MESSAGE
(
WARNING,
"In windows, snappystream has no compile support for windows,
please build it manually and put it at "
${
SNAPPYSTREAM_INSTALL_DIR
}
)
else
(
WIN32
)
set
(
SNAPPYSTREAM_LIBRARIES
"
${
SNAPPYSTREAM_INSTALL_DIR
}
/lib/libsnappystream.a"
)
ExternalProject_Add
(
extern_snappystream
GIT_REPOSITORY
"https://github.com/hoxnox/snappystream.git"
GIT_TAG
"0.2.8"
PREFIX
${
SNAPPYSTREAM_SOURCES_DIR
}
UPDATE_COMMAND
""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=
${
CMAKE_CXX_COMPILER
}
-DCMAKE_C_COMPILER=
${
CMAKE_C_COMPILER
}
-DCMAKE_C_FLAGS=
${
CMAKE_C_FLAGS
}
-DCMAKE_C_FLAGS_DEBUG=
${
CMAKE_C_FLAGS_DEBUG
}
-DCMAKE_C_FLAGS_RELEASE=
${
CMAKE_C_FLAGS_RELEASE
}
-DCMAKE_CXX_FLAGS=
${
CMAKE_CXX_FLAGS
}
-DCMAKE_CXX_FLAGS_RELEASE=
${
CMAKE_CXX_FLAGS_RELEASE
}
-DCMAKE_CXX_FLAGS_DEBUG=
${
CMAKE_CXX_FLAGS_DEBUG
}
-DCMAKE_INSTALL_PREFIX=
${
SNAPPY_INSTALL_DIR
}
-DCMAKE_INSTALL_LIBDIR=
${
SNAPPY_INSTALL_DIR
}
/lib
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DCMAKE_BUILD_TYPE=
${
THIRD_PARTY_BUILD_TYPE
}
-DSNAPPY_ROOT=
${
SNAPPY_INSTALL_DIR
}
${
EXTERNAL_OPTIONAL_ARGS
}
CMAKE_CACHE_ARGS
-DCMAKE_INSTALL_PREFIX:PATH=
${
SNAPPYSTREAM_INSTALL_DIR
}
-DCMAKE_INSTALL_LIBDIR:PATH=
${
SNAPPYSTREAM_INSTALL_DIR
}
/lib
-DCMAKE_BUILD_TYPE:STRING=
${
THIRD_PARTY_BUILD_TYPE
}
DEPENDS snappy
)
endif
(
WIN32
)
add_library
(
snappystream STATIC IMPORTED GLOBAL
)
set_property
(
TARGET snappystream PROPERTY IMPORTED_LOCATION
${
SNAPPYSTREAM_LIBRARIES
}
)
...
...
cmake/generic.cmake
浏览文件 @
3c6102a3
...
...
@@ -351,6 +351,9 @@ function(cc_test TARGET_NAME)
cmake_parse_arguments
(
cc_test
"
${
options
}
"
"
${
oneValueArgs
}
"
"
${
multiValueArgs
}
"
${
ARGN
}
)
add_executable
(
${
TARGET_NAME
}
${
cc_test_SRCS
}
)
target_link_libraries
(
${
TARGET_NAME
}
${
cc_test_DEPS
}
paddle_gtest_main lod_tensor memory gtest gflags glog
)
if
(
WIN32
)
target_link_libraries
(
${
TARGET_NAME
}
shlwapi
)
endif
(
WIN32
)
add_dependencies
(
${
TARGET_NAME
}
${
cc_test_DEPS
}
paddle_gtest_main lod_tensor memory gtest gflags glog
)
add_test
(
NAME
${
TARGET_NAME
}
COMMAND
${
TARGET_NAME
}
${
cc_test_ARGS
}
...
...
cmake/operators.cmake
浏览文件 @
3c6102a3
...
...
@@ -84,9 +84,7 @@ function(op_library TARGET)
endif
()
if
(
WIN32
)
# remove windows unsupported op, because windows has no nccl, no warpctc such ops.
foreach
(
windows_unsupport_op
"nccl_op"
"gen_nccl_id_op"
"warpctc_op"
"hierarchical_sigmoid_op"
"crf_decoding_op"
"select_op"
"lstmp_op"
"gru_op"
"fusion_gru_op"
"lstm_op"
"fusion_lstm_op"
"cumsum_op"
"fusion_seqconv_eltadd_relu_op"
"channel_send_op"
"channel_create_op"
"channel_close_op"
"channel_recv_op"
)
foreach
(
windows_unsupport_op
"nccl_op"
"gen_nccl_id_op"
"warpctc_op"
)
if
(
"
${
TARGET
}
"
STREQUAL
"
${
windows_unsupport_op
}
"
)
return
()
endif
()
...
...
cmake/simd.cmake
浏览文件 @
3c6102a3
...
...
@@ -57,43 +57,46 @@ int main()
return 0;
}"
SSE3_FOUND
)
# Check AVX
set
(
CMAKE_REQUIRED_FLAGS
${
AVX_FLAG
}
)
set
(
AVX_FOUND_EXITCODE 1 CACHE STRING
"Result from TRY_RUN"
FORCE
)
CHECK_CXX_SOURCE_RUNS
(
"
#include <immintrin.h>
int main()
{
__m256 a = _mm256_set_ps (-1.0f, 2.0f, -3.0f, 4.0f, -1.0f, 2.0f, -3.0f, 4.0f);
__m256 b = _mm256_set_ps (1.0f, 2.0f, 3.0f, 4.0f, 1.0f, 2.0f, 3.0f, 4.0f);
__m256 result = _mm256_add_ps (a, b);
return 0;
}"
AVX_FOUND
)
# disable AVX by default on windows
if
(
NOT WIN32
)
# Check AVX
set
(
CMAKE_REQUIRED_FLAGS
${
AVX_FLAG
}
)
set
(
AVX_FOUND_EXITCODE 1 CACHE STRING
"Result from TRY_RUN"
FORCE
)
CHECK_CXX_SOURCE_RUNS
(
"
#include <immintrin.h>
int main()
{
__m256 a = _mm256_set_ps (-1.0f, 2.0f, -3.0f, 4.0f, -1.0f, 2.0f, -3.0f, 4.0f);
__m256 b = _mm256_set_ps (1.0f, 2.0f, 3.0f, 4.0f, 1.0f, 2.0f, 3.0f, 4.0f);
__m256 result = _mm256_add_ps (a, b);
return 0;
}"
AVX_FOUND
)
# Check AVX 2
set
(
CMAKE_REQUIRED_FLAGS
${
AVX2_FLAG
}
)
set
(
AVX2_FOUND_EXITCODE 1 CACHE STRING
"Result from TRY_RUN"
FORCE
)
CHECK_CXX_SOURCE_RUNS
(
"
#include <immintrin.h>
int main()
{
__m256i a = _mm256_set_epi32 (-1, 2, -3, 4, -1, 2, -3, 4);
__m256i result = _mm256_abs_epi32 (a);
return 0;
}"
AVX2_FOUND
)
# Check AVX 2
set
(
CMAKE_REQUIRED_FLAGS
${
AVX2_FLAG
}
)
set
(
AVX2_FOUND_EXITCODE 1 CACHE STRING
"Result from TRY_RUN"
FORCE
)
CHECK_CXX_SOURCE_RUNS
(
"
#include <immintrin.h>
int main()
{
__m256i a = _mm256_set_epi32 (-1, 2, -3, 4, -1, 2, -3, 4);
__m256i result = _mm256_abs_epi32 (a);
return 0;
}"
AVX2_FOUND
)
# Check AVX512F
set
(
CMAKE_REQUIRED_FLAGS
${
AVX512F_FLAG
}
)
set
(
AVX512F_FOUND_EXITCODE 1 CACHE STRING
"Result from TRY_RUN"
FORCE
)
CHECK_CXX_SOURCE_RUNS
(
"
#include <immintrin.h>
int main()
{
__m512i a = _mm512_set_epi32 (-1, 2, -3, 4, -1, 2, -3, 4,
13, -5, 6, -7, 9, 2, -6, 3);
__m512i result = _mm512_abs_epi32 (a);
return 0;
}"
AVX512F_FOUND
)
# Check AVX512F
set
(
CMAKE_REQUIRED_FLAGS
${
AVX512F_FLAG
}
)
set
(
AVX512F_FOUND_EXITCODE 1 CACHE STRING
"Result from TRY_RUN"
FORCE
)
CHECK_CXX_SOURCE_RUNS
(
"
#include <immintrin.h>
int main()
{
__m512i a = _mm512_set_epi32 (-1, 2, -3, 4, -1, 2, -3, 4,
13, -5, 6, -7, 9, 2, -6, 3);
__m512i result = _mm512_abs_epi32 (a);
return 0;
}"
AVX512F_FOUND
)
endif
(
NOT WIN32
)
set
(
CMAKE_REQUIRED_FLAGS
${
CMAKE_REQUIRED_FLAGS_RETAINED
}
)
mark_as_advanced
(
MMX_FOUND SSE2_FOUND SSE3_FOUND AVX_FOUND AVX2_FOUND AVX512F_FOUND
)
paddle/fluid/API.spec
浏览文件 @
3c6102a3
...
...
@@ -103,6 +103,7 @@ paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 's
paddle.fluid.layers.row_conv ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.multiplex ArgSpec(args=['inputs', 'index'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.layer_norm ArgSpec(args=['input', 'scale', 'shift', 'begin_norm_axis', 'epsilon', 'param_attr', 'bias_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(True, True, 1, 1e-05, None, None, None, None))
paddle.fluid.layers.group_norm ArgSpec(args=['input', 'groups', 'epsilon', 'param_attr', 'bias_attr', 'act', 'data_layout', 'name'], varargs=None, keywords=None, defaults=(1e-05, None, None, None, 'NCHW', None))
paddle.fluid.layers.softmax_with_cross_entropy ArgSpec(args=['logits', 'label', 'soft_label', 'ignore_index', 'numeric_stable_mode', 'return_softmax'], varargs=None, keywords=None, defaults=(False, -100, False, False))
paddle.fluid.layers.smooth_l1 ArgSpec(args=['x', 'y', 'inside_weight', 'outside_weight', 'sigma'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.one_hot ArgSpec(args=['input', 'depth'], varargs=None, keywords=None, defaults=None)
...
...
paddle/fluid/CMakeLists.txt
浏览文件 @
3c6102a3
...
...
@@ -3,13 +3,9 @@ add_subdirectory(platform)
add_subdirectory
(
framework
)
add_subdirectory
(
operators
)
add_subdirectory
(
string
)
add_subdirectory
(
pybind
)
if
(
NOT WIN32
)
add_subdirectory
(
recordio
)
endif
(
NOT WIN32
)
add_subdirectory
(
pybind
)
# NOTE: please add subdirectory inference at last.
add_subdirectory
(
inference
)
add_subdirectory
(
train
)
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
3c6102a3
...
...
@@ -31,9 +31,7 @@ function(windows_symbolic TARGET)
endfunction
()
add_subdirectory
(
ir
)
if
(
NOT WIN32
)
add_subdirectory
(
details
)
endif
(
NOT WIN32
)
# ddim lib
proto_library
(
framework_proto SRCS framework.proto
)
...
...
@@ -68,11 +66,7 @@ if(WITH_GPU)
else
()
cc_test
(
mixed_vector_test SRCS mixed_vector_test.cc DEPS place memory device_context tensor
)
endif
()
if
(
NOT WIN32
)
cc_library
(
lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor framework_proto recordio version
)
else
()
cc_library
(
lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor framework_proto version
)
endif
(
NOT WIN32
)
cc_library
(
lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor framework_proto recordio version
)
cc_test
(
lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor memory
)
nv_test
(
lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor
)
...
...
@@ -122,13 +116,8 @@ cc_test(op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker)
cc_library
(
op_info SRCS op_info.cc DEPS attribute framework_proto
)
cc_library
(
shape_inference SRCS shape_inference.cc DEPS ddim attribute device_context
)
if
(
NOT WIN32
)
cc_library
(
operator SRCS operator.cc DEPS op_info device_context tensor scope glog
shape_inference data_transform lod_tensor profiler
)
else
()
cc_library
(
operator SRCS operator.cc DEPS op_info device_context tensor scope glog
shape_inference data_transform lod_tensor
)
endif
(
NOT WIN32
)
cc_test
(
operator_test SRCS operator_test.cc DEPS operator op_registry device_context
)
...
...
@@ -183,12 +172,10 @@ else()
cc_test
(
test_naive_executor SRCS naive_executor_test.cc DEPS naive_executor elementwise_add_op
)
endif
()
if
(
NOT WIN32
)
cc_library
(
parallel_executor SRCS parallel_executor.cc DEPS
threaded_ssa_graph_executor scope_buffered_ssa_graph_executor
graph build_strategy
fast_threaded_ssa_graph_executor
)
endif
()
# NOT WIN32
cc_library
(
prune SRCS prune.cc DEPS framework_proto
)
cc_test
(
prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context
)
...
...
paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h
浏览文件 @
3c6102a3
...
...
@@ -13,9 +13,9 @@
// limitations under the License.
#pragma once
#include <ThreadPool.h>
#include <string>
#include <vector>
#include "ThreadPool.h"
#include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/framework/details/exception_holder.h"
#include "paddle/fluid/framework/details/execution_strategy.h"
...
...
paddle/fluid/framework/eigen.h
浏览文件 @
3c6102a3
...
...
@@ -13,11 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
// logging.h and windows.h conflict
#define GLOG_NO_ABBREVIATED_SEVERITIES
// solve static linking error in windows
// https://github.com/google/glog/issues/301
#define GOOGLE_GLOG_DLL_DECL
#include "paddle/fluid/framework/tensor.h"
#include "unsupported/Eigen/CXX11/Tensor"
...
...
paddle/fluid/framework/op_registry.h
浏览文件 @
3c6102a3
...
...
@@ -23,11 +23,6 @@ limitations under the License. */
#include <unordered_map>
#include <unordered_set>
#if defined(_WIN32)
#define GLOG_NO_ABBREVIATED_SEVERITIES // msvc conflict logging with windows.h
#define GOOGLE_GLOG_DLL_DECL
#endif
#include "glog/logging.h" // For VLOG()
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/details/op_registry.h"
...
...
paddle/fluid/framework/operator.cc
浏览文件 @
3c6102a3
...
...
@@ -11,8 +11,6 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL
#include <gflags/gflags.h>
#include <glog/logging.h>
...
...
paddle/fluid/framework/operator.h
浏览文件 @
3c6102a3
...
...
@@ -20,8 +20,6 @@ limitations under the License. */
#include <tuple>
#include <unordered_map>
#include <vector>
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL
#include "glog/logging.h" // For VLOG
#include "paddle/fluid/framework/attribute.h"
...
...
paddle/fluid/inference/api/api_impl.h
浏览文件 @
3c6102a3
...
...
@@ -14,12 +14,6 @@ limitations under the License. */
#pragma once
// logging.h and windows.h conflict
#define GLOG_NO_ABBREVIATED_SEVERITIES
// solve static linking error in windows
// https://github.com/google/glog/issues/301
#define GOOGLE_GLOG_DLL_DECL
#include <glog/logging.h>
#include <map>
#include <memory>
...
...
paddle/fluid/memory/allocation/cpu_allocator.h
浏览文件 @
3c6102a3
...
...
@@ -15,6 +15,12 @@
#pragma once
#include "paddle/fluid/memory/allocation/allocator.h"
#ifdef _WIN32
#define posix_memalign_free _aligned_free
#define posix_memalign(p, a, s) \
(((*(p)) = _aligned_malloc((s), (a))), *(p) ? 0 : errno)
#endif
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
3c6102a3
...
...
@@ -22,9 +22,7 @@ if(WITH_DISTRIBUTE)
add_subdirectory
(
distributed_ops
)
endif
()
if
(
NOT WIN32
)
add_subdirectory
(
reader
)
endif
()
add_subdirectory
(
reader
)
if
(
NOT WIN32
)
add_subdirectory
(
nccl
)
...
...
@@ -41,25 +39,30 @@ endif()
register_operators
(
EXCLUDES warpctc_op conv_fusion_op DEPS
${
OP_HEADER_DEPS
}
)
# warpctc_
cudnn need
cudnn 7 above
if
(
WITH_GPU
)
# warpctc_
op needs
cudnn 7 above
if
(
WITH_GPU
AND NOT WIN32
)
if
(
${
CUDNN_MAJOR_VERSION
}
VERSION_LESS 7
)
op_library
(
warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale SRCS warpctc_op.cc warpctc_op.cu.cc
)
else
()
op_library
(
warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale
)
endif
()
op_library
(
conv_fusion_op
)
file
(
APPEND
${
pybind_file
}
"USE_CUDA_ONLY_OP(conv2d_fusion);
\n
"
)
# conv_fusion_op needs cudnn 7 above
if
(
NOT
${
CUDNN_MAJOR_VERSION
}
VERSION_LESS 7
)
op_library
(
conv_fusion_op
)
file
(
APPEND
${
pybind_file
}
"USE_CUDA_ONLY_OP(conv2d_fusion);
\n
"
)
endif
()
else
()
op_library
(
warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale
)
endif
()
set
(
COMMON_OP_DEPS
${
OP_HEADER_DEPS
}
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
selected_rows_functor selected_rows lod_tensor maxouting unpooling pooling lod_rank_table context_project sequence_pooling executor
dynload_warpctc sequence_padding sequence_scale cos_sim_functor memory jit_kernel concat_and_split cross_entropy softmax vol2col im2col sampler
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
selected_rows_functor selected_rows lod_tensor maxouting unpooling pooling lod_rank_table context_project sequence_pooling executor
)
if
(
NOT WIN32
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
sequence2batch lstm_compute matrix_bit_code gru_compute activation_functions
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
dynload_warpctc
)
endif
()
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
sequence_padding sequence_scale cos_sim_functor memory jit_kernel concat_and_split cross_entropy softmax vol2col im2col sampler
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
sequence2batch lstm_compute matrix_bit_code gru_compute activation_functions
)
if
(
WITH_GPU
)
set
(
COMMON_OP_DEPS
${
COMMON_OP_DEPS
}
depthwise_conv
)
endif
()
...
...
paddle/fluid/operators/conv_fusion_op.cu.cc
浏览文件 @
3c6102a3
...
...
@@ -22,6 +22,7 @@ DECLARE_bool(cudnn_exhaustive_search);
namespace
paddle
{
namespace
operators
{
#if CUDNN_VERSION >= 7001
using
Tensor
=
framework
::
Tensor
;
using
ScopedTensorDescriptor
=
platform
::
ScopedTensorDescriptor
;
using
ScopedFilterDescriptor
=
platform
::
ScopedFilterDescriptor
;
...
...
@@ -178,10 +179,13 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
workspace_handle
.
RunFunc
(
cudnn_func
,
workspace_size_in_bytes
);
}
};
#endif
}
// namespace operators
}
// namespace paddle
#if CUDNN_VERSION >= 7001
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
conv2d_fusion
,
ops
::
CUDNNConvFusionOpKernel
<
float
>
,
ops
::
CUDNNConvFusionOpKernel
<
double
>
);
#endif
paddle/fluid/operators/group_norm_op.cc
0 → 100644
浏览文件 @
3c6102a3
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/group_norm_op.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
DataLayout
=
framework
::
DataLayout
;
class
GroupNormOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of GroupNormOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Y"
),
"Output(Y) of GroupNormOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Mean"
),
"Output(Mean) of GroupNormOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Variance"
),
"Output(Variance) of GroupNormOp should not be null."
);
auto
x_dim
=
ctx
->
GetInputDim
(
"X"
);
auto
channel_num
=
x_dim
[
1
];
auto
batch_size
=
x_dim
[
0
];
auto
groups
=
ctx
->
Attrs
().
Get
<
int
>
(
"groups"
);
PADDLE_ENFORCE_LE
(
groups
,
channel_num
,
"'groups' must be less equal than the number of channels."
);
PADDLE_ENFORCE_GE
(
groups
,
1
,
"'groups' must be greater equal than 1."
);
if
(
ctx
->
HasInput
(
"Scale"
))
{
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
).
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
)[
0
],
channel_num
);
}
if
(
ctx
->
HasInput
(
"Bias"
))
{
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Bias"
).
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Bias"
)[
0
],
channel_num
);
}
ctx
->
SetOutputDim
(
"Y"
,
ctx
->
GetInputDim
(
"X"
));
ctx
->
SetOutputDim
(
"Mean"
,
{
batch_size
,
groups
});
ctx
->
SetOutputDim
(
"Variance"
,
{
batch_size
,
groups
});
ctx
->
ShareLoD
(
"X"
,
"Y"
);
}
};
class
GroupNormOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"The input tensor."
);
AddInput
(
"Scale"
,
"Scale is a 1-dimensional tensor of size C"
"that is applied to the output."
)
.
AsDispensable
();
AddInput
(
"Bias"
,
"Bias is a 1-dimensional tensor of size C "
"that is applied to the output"
)
.
AsDispensable
();
AddOutput
(
"Y"
,
"Result after normalization."
);
AddOutput
(
"Mean"
,
"Mean of each group."
).
AsIntermediate
();
AddOutput
(
"Variance"
,
"Variance of each group."
).
AsIntermediate
();
AddAttr
<
float
>
(
"epsilon"
,
"Constant for numerical stability [default 1e-5]."
)
.
SetDefault
(
1e-5
)
.
AddCustomChecker
([](
const
float
&
epsilon
)
{
PADDLE_ENFORCE
(
epsilon
>=
0.0
f
&&
epsilon
<=
1.0
f
,
"'epsilon' should be between 0.0 and 1.0."
);
});
AddAttr
<
int
>
(
"groups"
,
"The number of groups that divided from channels."
)
.
AddCustomChecker
([](
const
int
&
groups
)
{
PADDLE_ENFORCE_GT
(
groups
,
0
,
"'groups' should be greater than zero."
);
});
AddComment
(
R"DOC(
Group Normalization
Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_
)DOC"
);
}
};
class
GroupNormGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
// check input
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of GroupNormOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Mean"
),
"Input(Mean) of GroupNormOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Variance"
),
"Input(Variance) of GroupNormOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Y"
)),
"Input(Y@GRAD) of GroupNormOp should not be null."
);
// check output
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Scale"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Scale"
),
ctx
->
GetInputDim
(
"Scale"
));
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Bias"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Bias"
),
ctx
->
GetInputDim
(
"Bias"
));
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
var
=
ctx
.
InputVar
(
framework
::
GradVarName
(
"Y"
));
if
(
var
==
nullptr
)
{
PADDLE_THROW
(
"can't find Y@GRAD"
);
}
const
Tensor
*
t
=
nullptr
;
if
(
var
->
IsType
<
Tensor
>
())
{
t
=
&
var
->
Get
<
Tensor
>
();
}
else
if
(
var
->
IsType
<
LoDTensor
>
())
{
t
=
&
var
->
Get
<
LoDTensor
>
();
}
if
(
t
==
nullptr
)
{
PADDLE_THROW
(
"can't find Y@GRAD"
);
}
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
t
->
type
()),
ctx
.
GetPlace
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
group_norm
,
ops
::
GroupNormOp
,
ops
::
GroupNormOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
group_norm_grad
,
ops
::
GroupNormGradOp
);
REGISTER_OP_CPU_KERNEL
(
group_norm
,
ops
::
GroupNormKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
GroupNormKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
group_norm_grad
,
ops
::
GroupNormGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
GroupNormGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/group_norm_op.cu
0 → 100644
浏览文件 @
3c6102a3
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cub/cub.cuh>
#include "paddle/fluid/operators/group_norm_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
__global__
void
GroupNormForwardGetMeanAndVar
(
const
T
*
x
,
int
N
,
int
C
,
int
imsize
,
int
groups
,
int
group_size
,
T
*
mean
,
T
*
var
)
{
int
gid
=
blockIdx
.
y
;
int
cid
=
blockIdx
.
x
;
int
bid
=
blockIdx
.
z
;
int
number
=
min
(
group_size
,
static_cast
<
int
>
(
C
-
gid
*
group_size
));
int
ccid
=
gid
*
group_size
+
cid
;
if
(
ccid
>=
C
)
return
;
T
x_mean
=
0
,
x_var
=
0
;
for
(
int
imid
=
threadIdx
.
x
;
imid
<
imsize
;
imid
+=
blockDim
.
x
)
{
T
val
=
x
[(
bid
*
C
+
ccid
)
*
imsize
+
imid
];
x_mean
+=
val
;
x_var
+=
val
*
val
;
}
x_mean
/=
number
*
imsize
;
x_var
/=
number
*
imsize
;
__shared__
T
s_mem
[
2
];
if
(
threadIdx
.
x
==
0
)
{
s_mem
[
0
]
=
s_mem
[
1
]
=
0
;
}
__syncthreads
();
paddle
::
platform
::
CudaAtomicAdd
(
&
s_mem
[
0
],
x_mean
);
paddle
::
platform
::
CudaAtomicAdd
(
&
s_mem
[
1
],
x_var
);
__syncthreads
();
if
(
threadIdx
.
x
==
0
)
{
paddle
::
platform
::
CudaAtomicAdd
(
&
mean
[
bid
*
groups
+
gid
],
s_mem
[
0
]);
paddle
::
platform
::
CudaAtomicAdd
(
&
var
[
bid
*
groups
+
gid
],
s_mem
[
1
]);
}
}
template
<
typename
T
>
__global__
void
GroupNormForward
(
const
T
*
x
,
const
T
*
mean
,
const
T
*
var
,
const
T
*
scale
,
const
T
*
bias
,
int
N
,
int
C
,
int
imsize
,
int
groups
,
int
group_size
,
T
epsilon
,
T
*
y
,
T
*
real_var
)
{
int
gid
=
blockIdx
.
y
;
int
cid
=
blockIdx
.
x
;
int
bid
=
blockIdx
.
z
;
int
ccid
=
gid
*
group_size
+
cid
;
if
(
ccid
>=
C
)
return
;
T
x_mean
=
mean
[
bid
*
groups
+
gid
];
T
x_var
=
var
[
bid
*
groups
+
gid
];
x_var
=
x_var
-
x_mean
*
x_mean
;
T
var_inv
=
1.0
/
sqrt
(
x_var
+
epsilon
);
if
(
cid
==
0
&&
threadIdx
.
x
==
0
)
real_var
[
bid
*
groups
+
gid
]
=
x_var
;
for
(
int
imid
=
threadIdx
.
x
;
imid
<
imsize
;
imid
+=
blockDim
.
x
)
{
T
val
=
x
[(
bid
*
C
+
ccid
)
*
imsize
+
imid
];
val
=
(
val
-
x_mean
)
*
var_inv
;
if
(
scale
)
val
*=
scale
[
gid
*
group_size
+
cid
];
if
(
bias
)
val
+=
bias
[
gid
*
group_size
+
cid
];
y
[(
bid
*
C
+
ccid
)
*
imsize
+
imid
]
=
val
;
}
}
template
<
typename
T
>
class
GroupNormKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
mean
=
ctx
.
Output
<
Tensor
>
(
"Mean"
);
auto
*
var
=
ctx
.
Output
<
Tensor
>
(
"Variance"
);
const
auto
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
const
auto
x_dims
=
x
->
dims
();
const
int
group_size
=
(
x_dims
[
1
]
-
1
)
/
groups
+
1
;
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
var
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
set_zero
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
Tensor
temp_var
;
temp_var
.
mutable_data
<
T
>
(
var
->
dims
(),
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
mean
,
static_cast
<
T
>
(
0
));
set_zero
(
dev_ctx
,
&
temp_var
,
static_cast
<
T
>
(
0
));
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
y_data
=
y
->
data
<
T
>
();
auto
*
mean_data
=
mean
->
data
<
T
>
();
auto
*
var_data
=
var
->
data
<
T
>
();
auto
*
temp_var_data
=
temp_var
.
data
<
T
>
();
const
T
*
scale_data
=
nullptr
;
if
(
scale
)
scale_data
=
scale
->
data
<
T
>
();
const
T
*
bias_data
=
nullptr
;
if
(
bias
)
bias_data
=
bias
->
data
<
T
>
();
int
imsize
=
x_dims
[
2
]
*
x_dims
[
3
];
int
block_size
=
std
::
min
(
512
,
imsize
);
dim3
grid
(
group_size
,
groups
,
x_dims
[
0
]);
dim3
threads
(
block_size
,
1
,
1
);
GroupNormForwardGetMeanAndVar
<
T
><<<
grid
,
threads
,
0
,
dev_ctx
.
stream
()
>>>
(
x_data
,
x_dims
[
0
],
x_dims
[
1
],
imsize
,
groups
,
group_size
,
mean_data
,
temp_var_data
);
GroupNormForward
<
T
><<<
grid
,
threads
,
0
,
dev_ctx
.
stream
()
>>>
(
x_data
,
mean_data
,
temp_var_data
,
scale_data
,
bias_data
,
x_dims
[
0
],
x_dims
[
1
],
imsize
,
groups
,
group_size
,
epsilon
,
y_data
,
var_data
);
}
};
template
<
typename
T
>
__global__
void
GroupNormBackwardGetMeanAndVar
(
const
T
*
x
,
const
T
*
mean
,
const
T
*
var
,
const
T
*
scale
,
const
T
*
d_y
,
int
N
,
int
C
,
int
imsize
,
int
groups
,
int
group_size
,
T
epsilon
,
T
*
d_x
,
T
*
d_mean
,
T
*
d_var
,
T
*
d_scale
,
T
*
d_bias
)
{
int
gid
=
blockIdx
.
y
;
int
cid
=
blockIdx
.
x
;
int
bid
=
blockIdx
.
z
;
int
number
=
min
(
group_size
,
static_cast
<
int
>
(
C
-
gid
*
group_size
));
int
ccid
=
gid
*
group_size
+
cid
;
if
(
ccid
>=
C
)
return
;
T
x_mean
=
mean
[
bid
*
groups
+
gid
];
T
x_var
=
var
[
bid
*
groups
+
gid
];
T
var_inv
=
1.0
/
sqrt
(
x_var
+
epsilon
);
T
d_var_inv
=
0
,
d_x_mean
=
0
;
T
d_mean_data
=
0
,
d_var_data
=
0
,
d_scale_data
=
0
,
d_bias_data
=
0
;
for
(
int
imid
=
threadIdx
.
x
;
imid
<
imsize
;
imid
+=
blockDim
.
x
)
{
T
tmp
=
x
[(
bid
*
C
+
ccid
)
*
imsize
+
imid
];
T
val
=
(
tmp
-
x_mean
)
*
var_inv
;
T
dval
=
d_y
[(
bid
*
C
+
ccid
)
*
imsize
+
imid
];
if
(
d_bias
)
d_bias_data
+=
dval
;
if
(
d_scale
)
d_scale_data
+=
val
*
dval
;
if
(
scale
)
dval
=
dval
*
scale
[
ccid
];
d_var_data
+=
(
tmp
-
x_mean
)
*
dval
;
T
d_tmp
=
dval
*
var_inv
;
if
(
d_x
)
d_x
[(
bid
*
C
+
ccid
)
*
imsize
+
imid
]
=
d_tmp
;
d_mean_data
-=
d_tmp
;
}
__shared__
T
s_mem
[
4
];
if
(
threadIdx
.
x
==
0
)
{
s_mem
[
0
]
=
s_mem
[
1
]
=
0
;
if
(
d_scale
)
s_mem
[
2
]
=
0
;
if
(
d_bias
)
s_mem
[
3
]
=
0
;
}
__syncthreads
();
paddle
::
platform
::
CudaAtomicAdd
(
&
s_mem
[
0
],
d_mean_data
);
paddle
::
platform
::
CudaAtomicAdd
(
&
s_mem
[
1
],
d_var_data
);
if
(
d_scale
)
paddle
::
platform
::
CudaAtomicAdd
(
&
s_mem
[
2
],
d_scale_data
);
if
(
d_bias
)
paddle
::
platform
::
CudaAtomicAdd
(
&
s_mem
[
3
],
d_bias_data
);
__syncthreads
();
if
(
threadIdx
.
x
==
0
)
{
paddle
::
platform
::
CudaAtomicAdd
(
&
d_mean
[
bid
*
groups
+
gid
],
s_mem
[
0
]);
paddle
::
platform
::
CudaAtomicAdd
(
&
d_var
[
bid
*
groups
+
gid
],
s_mem
[
1
]);
if
(
d_scale
)
paddle
::
platform
::
CudaAtomicAdd
(
&
d_scale
[
ccid
],
s_mem
[
2
]);
if
(
d_bias
)
paddle
::
platform
::
CudaAtomicAdd
(
&
d_bias
[
ccid
],
s_mem
[
3
]);
}
}
template
<
typename
T
>
__global__
void
GroupNormBackward
(
const
T
*
x
,
const
T
*
mean
,
const
T
*
var
,
const
T
*
d_mean
,
const
T
*
d_var
,
int
N
,
int
C
,
int
imsize
,
int
groups
,
int
group_size
,
T
epsilon
,
T
*
d_x
)
{
int
gid
=
blockIdx
.
y
;
int
cid
=
blockIdx
.
x
;
int
bid
=
blockIdx
.
z
;
int
number
=
min
(
group_size
,
static_cast
<
int
>
(
C
-
gid
*
group_size
));
int
ccid
=
gid
*
group_size
+
cid
;
if
(
ccid
>=
C
)
return
;
T
x_mean
=
mean
[
bid
*
groups
+
gid
];
T
x_var
=
var
[
bid
*
groups
+
gid
];
T
d_x_mean
=
d_mean
[
bid
*
groups
+
gid
];
T
d_var_inv
=
d_var
[
bid
*
groups
+
gid
];
T
d_x_var
=
-
1.0
/
(
2
*
(
x_var
+
epsilon
)
*
sqrt
(
x_var
+
epsilon
))
*
d_var_inv
;
d_x_mean
-=
2
*
d_x_var
*
x_mean
;
d_x_var
/=
number
*
imsize
;
d_x_mean
/=
number
*
imsize
;
for
(
int
imid
=
threadIdx
.
x
;
imid
<
imsize
;
imid
+=
blockDim
.
x
)
{
T
tmp
=
x
[(
bid
*
C
+
ccid
)
*
imsize
+
imid
];
if
(
d_x
)
d_x
[(
bid
*
C
+
ccid
)
*
imsize
+
imid
]
+=
d_x_mean
+
tmp
*
2
*
d_x_var
;
}
}
template
<
typename
T
>
class
GroupNormGradKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
auto
*
var
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
*
d_y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
auto
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
// init output
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
const
auto
&
x_dims
=
x
->
dims
();
const
int
group_size
=
(
x_dims
[
1
]
-
1
)
/
groups
+
1
;
T
*
d_x_data
=
nullptr
;
if
(
d_x
)
{
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_x_data
=
d_x
->
data
<
T
>
();
}
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
set_zero
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
Tensor
temp_var
;
temp_var
.
mutable_data
<
T
>
(
var
->
dims
(),
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
&
temp_var
,
static_cast
<
T
>
(
0
));
T
*
temp_var_data
=
temp_var
.
data
<
T
>
();
Tensor
temp_mean
;
temp_mean
.
mutable_data
<
T
>
(
var
->
dims
(),
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
&
temp_mean
,
static_cast
<
T
>
(
0
));
T
*
temp_mean_data
=
temp_mean
.
data
<
T
>
();
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
y_data
=
d_y
->
data
<
T
>
();
auto
*
mean_data
=
mean
->
data
<
T
>
();
auto
*
var_data
=
var
->
data
<
T
>
();
T
*
d_scale_data
=
nullptr
;
if
(
d_scale
)
{
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
d_scale
,
static_cast
<
T
>
(
0
));
d_scale_data
=
d_scale
->
data
<
T
>
();
}
T
*
d_bias_data
=
nullptr
;
if
(
d_bias
)
{
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
d_bias
,
static_cast
<
T
>
(
0
));
d_bias_data
=
d_bias
->
data
<
T
>
();
}
const
T
*
scale_data
=
nullptr
;
if
(
scale
)
scale_data
=
scale
->
data
<
T
>
();
int
imsize
=
x_dims
[
2
]
*
x_dims
[
3
];
int
block_size
=
std
::
min
(
512
,
imsize
);
dim3
grid
(
group_size
,
groups
,
x_dims
[
0
]);
dim3
threads
(
block_size
,
1
,
1
);
GroupNormBackwardGetMeanAndVar
<
T
><<<
grid
,
threads
,
0
,
dev_ctx
.
stream
()
>>>
(
x_data
,
mean_data
,
var_data
,
scale_data
,
y_data
,
x_dims
[
0
],
x_dims
[
1
],
imsize
,
groups
,
group_size
,
epsilon
,
d_x_data
,
temp_mean_data
,
temp_var_data
,
d_scale_data
,
d_bias_data
);
GroupNormBackward
<
T
><<<
grid
,
threads
,
0
,
dev_ctx
.
stream
()
>>>
(
x_data
,
mean_data
,
var_data
,
temp_mean_data
,
temp_var_data
,
x_dims
[
0
],
x_dims
[
1
],
imsize
,
groups
,
group_size
,
epsilon
,
d_x_data
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
group_norm
,
ops
::
GroupNormKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
GroupNormKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
group_norm_grad
,
ops
::
GroupNormGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
GroupNormGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/group_norm_op.h
0 → 100644
浏览文件 @
3c6102a3
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
DataLayout
=
framework
::
DataLayout
;
template
<
typename
DeviceContext
,
typename
T
>
class
GroupNormKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
mean
=
ctx
.
Output
<
Tensor
>
(
"Mean"
);
auto
*
var
=
ctx
.
Output
<
Tensor
>
(
"Variance"
);
const
auto
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
const
auto
x_dims
=
x
->
dims
();
const
int
group_size
=
(
x_dims
[
1
]
-
1
)
/
groups
+
1
;
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
var
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
y_data
=
y
->
data
<
T
>
();
auto
*
mean_data
=
mean
->
data
<
T
>
();
auto
*
var_data
=
var
->
data
<
T
>
();
const
T
*
scale_data
=
nullptr
;
if
(
scale
)
scale_data
=
scale
->
data
<
T
>
();
const
T
*
bias_data
=
nullptr
;
if
(
bias
)
bias_data
=
bias
->
data
<
T
>
();
int
imsize
=
x_dims
[
2
]
*
x_dims
[
3
];
auto
*
iter_x_data
=
x_data
;
auto
*
iter_y_data
=
y_data
;
for
(
int
bid
=
0
;
bid
<
x_dims
[
0
];
bid
++
)
for
(
int
gid
=
0
;
gid
<
groups
;
gid
++
)
{
T
x_mean
=
0
,
x_var
=
0
;
int
number
=
std
::
min
(
group_size
,
static_cast
<
int
>
(
x_dims
[
1
]
-
gid
*
group_size
));
auto
*
tmp
=
iter_x_data
;
for
(
int
cid
=
0
;
cid
<
number
;
cid
++
)
{
for
(
int
imid
=
0
;
imid
<
imsize
;
imid
++
,
iter_x_data
++
)
{
x_mean
+=
iter_x_data
[
0
];
x_var
+=
iter_x_data
[
0
]
*
iter_x_data
[
0
];
}
}
x_mean
/=
number
*
imsize
;
x_var
/=
number
*
imsize
;
x_var
=
x_var
-
x_mean
*
x_mean
;
T
var_inv
=
1.0
/
sqrt
(
x_var
+
epsilon
);
mean_data
[
bid
*
groups
+
gid
]
=
x_mean
;
var_data
[
bid
*
groups
+
gid
]
=
x_var
;
for
(
int
cid
=
0
;
cid
<
number
;
cid
++
)
{
for
(
int
imid
=
0
;
imid
<
imsize
;
imid
++
,
tmp
++
,
iter_y_data
++
)
{
T
val
=
(
tmp
[
0
]
-
x_mean
)
*
var_inv
;
if
(
scale_data
)
val
*=
scale_data
[
gid
*
group_size
+
cid
];
if
(
bias_data
)
val
+=
bias_data
[
gid
*
group_size
+
cid
];
iter_y_data
[
0
]
=
val
;
}
}
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
GroupNormGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
auto
*
var
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
*
d_y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
auto
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
// init output
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
const
auto
&
x_dims
=
x
->
dims
();
const
int
group_size
=
(
x_dims
[
1
]
-
1
)
/
groups
+
1
;
// TODO(liangdun): need to check d_x is null
math
::
SetConstant
<
DeviceContext
,
T
>
set_zero
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
T
*
d_x_data
=
nullptr
;
if
(
d_x
)
{
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
d_x
,
static_cast
<
T
>
(
0
));
d_x_data
=
d_x
->
data
<
T
>
();
}
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
y_data
=
d_y
->
data
<
T
>
();
auto
*
mean_data
=
mean
->
data
<
T
>
();
auto
*
var_data
=
var
->
data
<
T
>
();
T
*
d_scale_data
=
nullptr
;
if
(
d_scale
)
{
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
d_scale
,
static_cast
<
T
>
(
0
));
d_scale_data
=
d_scale
->
data
<
T
>
();
}
T
*
d_bias_data
=
nullptr
;
if
(
d_bias
)
{
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
d_bias
,
static_cast
<
T
>
(
0
));
d_bias_data
=
d_bias
->
data
<
T
>
();
}
const
T
*
scale_data
=
nullptr
;
if
(
scale
)
scale_data
=
scale
->
data
<
T
>
();
int
imsize
=
x_dims
[
2
]
*
x_dims
[
3
];
auto
*
iter_x_data
=
x_data
;
auto
*
iter_d_x_data
=
d_x_data
;
auto
*
iter_y_data
=
y_data
;
for
(
int
bid
=
0
;
bid
<
x_dims
[
0
];
bid
++
)
for
(
int
gid
=
0
;
gid
<
groups
;
gid
++
)
{
T
x_mean
=
mean_data
[
bid
*
groups
+
gid
];
T
x_var
=
var_data
[
bid
*
groups
+
gid
];
T
var_inv
=
1.0
/
sqrt
(
x_var
+
epsilon
);
int
number
=
std
::
min
(
group_size
,
static_cast
<
int
>
(
x_dims
[
1
]
-
gid
*
group_size
));
auto
*
tmp
=
iter_x_data
;
auto
*
tmp2
=
iter_d_x_data
;
T
d_var_inv
=
0
,
d_x_mean
=
0
;
for
(
int
cid
=
0
;
cid
<
number
;
cid
++
)
{
for
(
int
imid
=
0
;
imid
<
imsize
;
imid
++
,
tmp
++
,
iter_y_data
++
,
iter_d_x_data
++
)
{
T
val
=
(
tmp
[
0
]
-
x_mean
)
*
var_inv
;
T
dval
=
iter_y_data
[
0
];
if
(
d_bias_data
)
d_bias_data
[
gid
*
group_size
+
cid
]
+=
dval
;
if
(
d_scale_data
)
d_scale_data
[
gid
*
group_size
+
cid
]
+=
val
*
dval
;
if
(
scale_data
)
dval
=
scale_data
[
gid
*
group_size
+
cid
]
*
dval
;
d_var_inv
+=
(
tmp
[
0
]
-
x_mean
)
*
dval
;
T
d_tmp
=
dval
*
var_inv
;
if
(
d_x_data
)
iter_d_x_data
[
0
]
+=
d_tmp
;
d_x_mean
-=
d_tmp
;
}
}
T
d_x_var
=
-
1.0
/
(
2
*
(
x_var
+
epsilon
)
*
sqrt
(
x_var
+
epsilon
))
*
d_var_inv
;
d_x_mean
-=
2
*
d_x_var
*
x_mean
;
d_x_var
/=
number
*
imsize
;
d_x_mean
/=
number
*
imsize
;
iter_d_x_data
=
tmp2
;
if
(
d_x_data
)
{
for
(
int
cid
=
0
;
cid
<
number
;
cid
++
)
{
for
(
int
imid
=
0
;
imid
<
imsize
;
imid
++
,
iter_x_data
++
,
iter_d_x_data
++
)
{
iter_d_x_data
[
0
]
+=
d_x_mean
;
iter_d_x_data
[
0
]
+=
iter_x_data
[
0
]
*
2
*
d_x_var
;
}
}
}
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/math/CMakeLists.txt
浏览文件 @
3c6102a3
if
(
NOT WIN32
)
add_subdirectory
(
detail
)
endif
(
NOT WIN32
)
add_subdirectory
(
detail
)
function
(
math_library TARGET
)
# math_library is a function to create math library.
...
...
@@ -43,10 +41,8 @@ math_library(depthwise_conv)
math_library
(
im2col
)
math_library
(
sampler
)
if
(
NOT WIN32
)
# windows do not support avx functions yet.
math_library
(
gru_compute DEPS activation_functions math_function
)
math_library
(
lstm_compute DEPS activation_functions
)
endif
(
NOT WIN32
)
math_library
(
gru_compute DEPS activation_functions math_function
)
math_library
(
lstm_compute DEPS activation_functions
)
cc_library
(
blas SRCS blas.cc DEPS cblas framework_proto device_context
)
math_library
(
math_function DEPS blas
)
...
...
@@ -58,9 +54,9 @@ math_library(sequence_padding)
math_library
(
sequence_pooling DEPS math_function
)
math_library
(
sequence_scale
)
math_library
(
softmax DEPS math_function
)
if
(
NOT WIN32
)
math_library
(
matrix_bit_code
)
endif
(
NOT WIN32
)
math_library
(
matrix_bit_code
)
math_library
(
unpooling
)
math_library
(
vol2col
)
...
...
@@ -76,13 +72,12 @@ if(WITH_GPU)
endif
()
cc_test
(
concat_test SRCS concat_test.cc DEPS concat_and_split
)
cc_test
(
cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info
)
if
(
NOT WIN32
)
set
(
JIT_KERNEL_SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_rnn.cc jit_kernel_crf_decode.cc jit_kernel_layer_norm.cc
)
set
(
JIT_KERNEL_DEPS cpu_info cblas gflags enforce
)
if
(
WITH_XBYAK
)
list
(
APPEND JIT_KERNEL_SRCS jit_gen.cc jit_code.cc
)
list
(
APPEND JIT_KERNEL_DEPS xbyak
)
endif
()
cc_library
(
jit_kernel SRCS
${
JIT_KERNEL_SRCS
}
DEPS
${
JIT_KERNEL_DEPS
}
)
cc_test
(
jit_kernel_test SRCS jit_kernel_test.cc DEPS jit_kernel
)
endif
(
NOT WIN32
)
set
(
JIT_KERNEL_SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_rnn.cc jit_kernel_crf_decode.cc jit_kernel_layer_norm.cc
)
set
(
JIT_KERNEL_DEPS cpu_info cblas gflags enforce
)
if
(
WITH_XBYAK
)
list
(
APPEND JIT_KERNEL_SRCS jit_gen.cc jit_code.cc
)
list
(
APPEND JIT_KERNEL_DEPS xbyak
)
endif
()
cc_library
(
jit_kernel SRCS
${
JIT_KERNEL_SRCS
}
DEPS
${
JIT_KERNEL_DEPS
}
)
cc_test
(
jit_kernel_test SRCS jit_kernel_test.cc DEPS jit_kernel
)
paddle/fluid/operators/math/detail/activation_functions.h
浏览文件 @
3c6102a3
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include <math.h>
#include <string>
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/hostdevice.h"
...
...
paddle/fluid/operators/math/matrix_bit_code.h
浏览文件 @
3c6102a3
...
...
@@ -69,7 +69,7 @@ inline constexpr size_t FindLastSet(size_t x) {
:
(
std
::
is_same
<
size_t
,
unsigned
long
>::
value
// NOLINT
?
(
x
?
8
*
sizeof
(
x
)
-
__builtin_clzl
(
x
)
:
0
)
:
(
x
?
8
*
sizeof
(
x
)
-
__builtin_clzll
(
x
)
:
0
));
}
#else
// windows don't have built-in clz, ctz function
template
<
typename
T
>
...
...
@@ -94,7 +94,6 @@ inline int clz(const T& value) {
inline
size_t
FindLastSet
(
size_t
x
)
{
return
sizeof
(
size_t
)
*
8
-
clz
(
x
);
}
#endif // !_WIN32
}
// set a code interface to create multiple code
class
Code
{
public:
...
...
paddle/fluid/operators/reader/create_py_reader_op.cc
浏览文件 @
3c6102a3
...
...
@@ -74,7 +74,7 @@ class CreatePyReaderOpMaker : public FileReaderMakerBase {
"Name of the `LoDTensorBlockingQueueHolder` variable"
);
AddComment
(
R"DOC(
Create PyReader to support LoDTensor data feeding in Python side.
Create PyReader to support LoDTensor data feeding in Python side.
)DOC"
);
}
};
...
...
paddle/fluid/operators/roi_align_op.cc
浏览文件 @
3c6102a3
...
...
@@ -35,10 +35,10 @@ class ROIAlignOp : public framework::OperatorWithKernel {
"The format of input tensor is NCHW."
);
PADDLE_ENFORCE
(
rois_dims
.
size
()
==
2
,
"ROIs should be a 2-D LoDTensor of shape (num_rois, 4)"
"given as [[x1, y1, x2, y2],
…
]."
);
"given as [[x1, y1, x2, y2],
...
]."
);
PADDLE_ENFORCE
(
rois_dims
[
1
]
==
4
,
"ROIs should be a 2-D LoDTensor of shape (num_rois, 4)"
"given as [[x1, y1, x2, y2],
…
]."
);
"given as [[x1, y1, x2, y2],
...
]."
);
int
pooled_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"pooled_height"
);
int
pooled_width
=
ctx
->
Attrs
().
Get
<
int
>
(
"pooled_width"
);
float
spatial_scale
=
ctx
->
Attrs
().
Get
<
float
>
(
"spatial_scale"
);
...
...
@@ -103,7 +103,7 @@ class ROIAlignOpMaker : public framework::OpProtoAndCheckerMaker {
"(LoDTensor), "
"ROIs (Regions of Interest) to pool over. "
"should be a 2-D LoDTensor of shape (num_rois, 4)"
"given as [[x1, y1, x2, y2],
…
]. "
"given as [[x1, y1, x2, y2],
...
]. "
"(x1, y1) is the top left coordinates, and "
"(x2, y2) is the bottom right coordinates."
);
AddOutput
(
"Out"
,
...
...
paddle/fluid/operators/roi_pool_op.cc
浏览文件 @
3c6102a3
...
...
@@ -40,10 +40,10 @@ class ROIPoolOp : public framework::OperatorWithKernel {
"The format of input tensor is NCHW."
);
PADDLE_ENFORCE
(
rois_dims
.
size
()
==
2
,
"ROIs should be a 2-D LoDTensor of shape (num_rois, 4)"
"given as [[x1, y1, x2, y2],
…
]."
);
"given as [[x1, y1, x2, y2],
...
]."
);
PADDLE_ENFORCE
(
rois_dims
[
1
]
==
kROISize
,
"ROIs should be a 2-D LoDTensor of shape (num_rois, 4)"
"given as [[x1, y1, x2, y2],
…
]."
);
"given as [[x1, y1, x2, y2],
...
]."
);
int
pooled_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"pooled_height"
);
int
pooled_width
=
ctx
->
Attrs
().
Get
<
int
>
(
"pooled_width"
);
...
...
@@ -110,7 +110,7 @@ class ROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
"(LoDTensor), "
"ROIs (Regions of Interest) to pool over. "
"should be a 2-D LoDTensor of shape (num_rois, 4)"
"given as [[x1, y1, x2, y2],
…
]. "
"given as [[x1, y1, x2, y2],
...
]. "
"Where batch_id is the id of the data, "
"(x1, y1) is the top left coordinates, and "
"(x2, y2) is the bottom right coordinates."
);
...
...
paddle/fluid/operators/space_to_depth_op.cc
浏览文件 @
3c6102a3
...
...
@@ -86,7 +86,7 @@ class SpaceToDepthOpMaker : public framework::OpProtoAndCheckerMaker {
.
GreaterThan
(
1
);
AddComment
(
R"DOC(
reorg operator used in Yolo v2.
The equation is: C2 = C1/blocksize * blocksize, W2 = W1 * blocksize + offset % blocksize, H2 = H1 * blocksize + offset / blocksize,
The equation is: C2 = C1/blocksize * blocksize, W2 = W1 * blocksize + offset % blocksize, H2 = H1 * blocksize + offset / blocksize,
Reshape Input(X) into the shape according to Attr(blocksize). The
data in Input(X) are unchanged.
...
...
paddle/fluid/platform/CMakeLists.txt
浏览文件 @
3c6102a3
if
(
NOT WIN32
)
proto_library
(
profiler_proto SRCS profiler.proto DEPS framework_proto
)
py_proto_compile
(
profiler_py_proto SRCS profiler.proto
)
...
...
@@ -6,11 +5,19 @@ add_custom_target(profiler_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch _
add_dependencies
(
profiler_py_proto profiler_py_proto_init
)
if
(
NOT WIN32
)
add_custom_command
(
TARGET profiler_py_proto POST_BUILD
COMMAND
${
CMAKE_COMMAND
}
-E make_directory
${
PADDLE_BINARY_DIR
}
/python/paddle/fluid/proto/profiler
COMMAND cp *.py
${
PADDLE_BINARY_DIR
}
/python/paddle/fluid/proto/profiler
COMMENT
"Copy generated python proto into directory paddle/fluid/proto/profiler."
WORKING_DIRECTORY
${
CMAKE_CURRENT_BINARY_DIR
}
)
else
(
NOT WIN32
)
string
(
REPLACE
"/"
"
\\
"
proto_dstpath
"
${
PADDLE_BINARY_DIR
}
/python/paddle/fluid/proto/profiler/"
)
add_custom_command
(
TARGET profiler_py_proto POST_BUILD
COMMAND
${
CMAKE_COMMAND
}
-E make_directory
${
PADDLE_BINARY_DIR
}
/python/paddle/fluid/proto/profiler
COMMAND copy /Y *.py
${
proto_dstpath
}
COMMENT
"Copy generated python proto into directory paddle/fluid/proto/profiler."
WORKING_DIRECTORY
${
CMAKE_CURRENT_BINARY_DIR
}
)
endif
(
NOT WIN32
)
if
(
WITH_GPU
)
...
...
@@ -60,12 +67,9 @@ cc_test(init_test SRCS init_test.cc DEPS device_context)
nv_test
(
cudnn_helper_test SRCS cudnn_helper_test.cc DEPS dynload_cuda
)
nv_test
(
transform_test SRCS transform_test.cu DEPS memory place device_context
)
if
(
NOT WIN32
)
cc_library
(
device_tracer SRCS device_tracer.cc DEPS boost profiler_proto framework_proto
${
GPU_CTX_DEPS
}
)
cc_library
(
profiler SRCS profiler.cc DEPS device_context device_tracer
)
cc_test
(
profiler_test SRCS profiler_test.cc DEPS profiler
)
endif
(
NOT WIN32
)
nv_test
(
float16_gpu_test SRCS float16_test.cu DEPS lod_tensor
)
cc_test
(
float16_test SRCS float16_test.cc DEPS lod_tensor
)
...
...
paddle/fluid/platform/cpu_helper.cc
浏览文件 @
3c6102a3
...
...
@@ -29,6 +29,13 @@ namespace platform {
void
SetNumThreads
(
int
num_threads
)
{
#ifdef PADDLE_USE_OPENBLAS
// windows has no support for openblas multi-thread
// please refer to: https://github.com/PaddlePaddle/Paddle/issues/7234
#ifdef _WIN32
if
(
num_threads
>
1
)
{
num_threads
=
1
;
}
#endif
int
real_num_threads
=
num_threads
>
1
?
num_threads
:
1
;
openblas_set_num_threads
(
real_num_threads
);
#elif defined(PADDLE_WITH_MKLML)
...
...
paddle/fluid/platform/device_tracer.h
浏览文件 @
3c6102a3
...
...
@@ -13,17 +13,11 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#if !defined(_WIN32)
#include <sys/time.h>
#else
#include <windows.h>
#endif // !_WIN32
#include <time.h>
#include <chrono> // NOLINT
#include <string>
#include "paddle/fluid/platform/dynload/cupti.h"
#include "paddle/fluid/platform/port.h"
#include "paddle/fluid/platform/profiler.pb.h"
namespace
paddle
{
...
...
@@ -32,15 +26,11 @@ namespace platform {
///////////////////////
// WARN: Under Development. Don't depend on it yet.
//////////////////////
#if !defined(_WIN32)
inline
uint64_t
PosixInNsec
()
{
struct
timeval
tv
;
gettimeofday
(
&
tv
,
nullptr
);
return
1000
*
(
static_cast
<
uint64_t
>
(
tv
.
tv_sec
)
*
1000000
+
tv
.
tv_usec
);
}
#else
inline
uint64_t
PosixInNsec
()
{
return
static_cast
<
uint64_t
>
(
0
);
}
#endif // !_WIN32
// DeviceTracer performs the following tasks:
// 1. Register cuda callbacks for various events: kernel, memcpy, etc.
...
...
paddle/fluid/platform/dynload/cudnn.h
浏览文件 @
3c6102a3
...
...
@@ -13,8 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL
#include <glog/logging.h>
#include <cudnn.h>
...
...
paddle/fluid/platform/enforce.h
浏览文件 @
3c6102a3
...
...
@@ -18,12 +18,6 @@ limitations under the License. */
#include <cxxabi.h> // for __cxa_demangle
#endif // __GNUC__
#if defined(_WIN32)
#define NOMINMAX // msvc max/min macro conflict with std::min/max
#define GLOG_NO_ABBREVIATED_SEVERITIES // msvc conflict logging with windows.h
#define GOOGLE_GLOG_DLL_DECL
#endif
#ifdef PADDLE_WITH_CUDA
#include <cublas_v2.h>
#include <cudnn.h>
...
...
@@ -127,14 +121,14 @@ struct EOFException : public std::exception {
#define UNLIKELY(condition) __builtin_expect(static_cast<bool>(condition), 0)
#else
// there is no equivalent intrinsics in msvc.
#define UNLIKELY(condition) (condition
== 0
)
#define UNLIKELY(condition) (condition)
#endif
#if !defined(_WIN32)
#define LIKELY(condition) __builtin_expect(static_cast<bool>(condition), 1)
#else
// there is no equivalent intrinsics in msvc.
#define LIKELY(condition) (condition
!= 0
)
#define LIKELY(condition) (condition)
#endif
template
<
typename
...
Args
>
...
...
@@ -248,7 +242,6 @@ inline void throw_on_error(T e) {
throw_on_error
(
e
,
""
);
}
#if !defined(_WIN32)
#define PADDLE_THROW(...) \
do { \
throw ::paddle::platform::EnforceNotMet( \
...
...
@@ -272,17 +265,6 @@ inline void throw_on_error(T e) {
#define PADDLE_ENFORCE(...) ::paddle::platform::throw_on_error(__VA_ARGS__);
#endif // REPLACE_ENFORCE_GLOG
#else // !_WIN32
// disable enforce, caused by the varardic macro exception error
#define PADDLE_THROW(x) \
do { \
throw std::make_exception_ptr( \
std::runtime_error("Windows disable the enforce.")); \
} while (false)
#define PADDLE_ENFORCE(x, ...) x
#endif // !_WIN32
#define PADDLE_THROW_EOF() \
do { \
throw ::paddle::platform::EOFException("There is no next data.", __FILE__, \
...
...
@@ -302,20 +284,6 @@ inline void throw_on_error(T e) {
* extra messages is also supported, for example:
* PADDLE_ENFORCE(a, b, "some simple enforce failed between %d numbers", 2)
*/
#if !defined(_WIN32)
#define PADDLE_ENFORCE_EQ(__VAL0, __VAL1, ...) \
__PADDLE_BINARY_COMPARE(__VAL0, __VAL1, ==, !=, __VA_ARGS__)
#define PADDLE_ENFORCE_NE(__VAL0, __VAL1, ...) \
__PADDLE_BINARY_COMPARE(__VAL0, __VAL1, !=, ==, __VA_ARGS__)
#define PADDLE_ENFORCE_GT(__VAL0, __VAL1, ...) \
__PADDLE_BINARY_COMPARE(__VAL0, __VAL1, >, <=, __VA_ARGS__)
#define PADDLE_ENFORCE_GE(__VAL0, __VAL1, ...) \
__PADDLE_BINARY_COMPARE(__VAL0, __VAL1, >=, <, __VA_ARGS__)
#define PADDLE_ENFORCE_LT(__VAL0, __VAL1, ...) \
__PADDLE_BINARY_COMPARE(__VAL0, __VAL1, <, >=, __VA_ARGS__)
#define PADDLE_ENFORCE_LE(__VAL0, __VAL1, ...) \
__PADDLE_BINARY_COMPARE(__VAL0, __VAL1, <=, >, __VA_ARGS__)
#define PADDLE_ENFORCE_NOT_NULL(__VAL, ...) \
do { \
if (UNLIKELY(nullptr == (__VAL))) { \
...
...
@@ -335,27 +303,19 @@ inline void throw_on_error(T e) {
paddle::string::Sprintf("" __VA_ARGS__)); \
} \
} while (0)
#else
#define PADDLE_ENFORCE_EQ(__VAL0, __VAL1, ...) ((__VAL0) == (__VAL1))
#define PADDLE_ENFORCE_NE(__VAL0, __VAL1, ...) ((__VAL0) != (__VAL1))
#define PADDLE_ENFORCE_GT(__VAL0, __VAL1, ...) ((__VAL0) > (__VAL1))
#define PADDLE_ENFORCE_GE(__VAL0, __VAL1, ...) ((__VAL0) >= (__VAL1))
#define PADDLE_ENFORCE_LT(__VAL0, __VAL1, ...) ((__VAL0) < (__VAL1))
#define PADDLE_ENFORCE_LE(__VAL0, __VAL1, ...) ((__VAL0) <= (__VAL1))
#define __PADDLE_BINARY_COMPARE(__VAL0, __VAL1, __CMP, __INV_CMP, ...) \
do { \
if (!((__VAL0)__CMP(__VAL1))) { \
PADDLE_THROW("Windows disable the enforce. Enforce failed."); \
} \
} while (0)
#define PADDLE_ENFORCE_NOT_NULL(__VAL1, ...) \
do { \
if (nullptr == (__VAL1)) { \
PADDLE_THROW("Windows disable the enforce. Enforce failed"); \
} \
} while (0)
#endif // !_WIN32
#define PADDLE_ENFORCE_EQ(__VAL0, __VAL1, ...) \
__PADDLE_BINARY_COMPARE(__VAL0, __VAL1, ==, !=, __VA_ARGS__)
#define PADDLE_ENFORCE_NE(__VAL0, __VAL1, ...) \
__PADDLE_BINARY_COMPARE(__VAL0, __VAL1, !=, ==, __VA_ARGS__)
#define PADDLE_ENFORCE_GT(__VAL0, __VAL1, ...) \
__PADDLE_BINARY_COMPARE(__VAL0, __VAL1, >, <=, __VA_ARGS__)
#define PADDLE_ENFORCE_GE(__VAL0, __VAL1, ...) \
__PADDLE_BINARY_COMPARE(__VAL0, __VAL1, >=, <, __VA_ARGS__)
#define PADDLE_ENFORCE_LT(__VAL0, __VAL1, ...) \
__PADDLE_BINARY_COMPARE(__VAL0, __VAL1, <, >=, __VA_ARGS__)
#define PADDLE_ENFORCE_LE(__VAL0, __VAL1, ...) \
__PADDLE_BINARY_COMPARE(__VAL0, __VAL1, <=, >, __VA_ARGS__)
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/init.cc
浏览文件 @
3c6102a3
...
...
@@ -117,13 +117,6 @@ void InitDevices(bool init_p2p, const std::vector<int> devices) {
places
.
emplace_back
(
platform
::
CPUPlace
());
platform
::
DeviceContextPool
::
Init
(
places
);
// windows has no support for openblas multi-thread
#ifdef _WIN32
if
(
FLAGS_paddle_num_threads
>
1
)
{
FLAGS_paddle_num_threads
=
1
;
}
#endif
#ifndef PADDLE_WITH_MKLDNN
platform
::
SetNumThreads
(
FLAGS_paddle_num_threads
);
#endif
...
...
paddle/fluid/platform/init.h
浏览文件 @
3c6102a3
...
...
@@ -16,9 +16,6 @@ limitations under the License. */
#include <string>
#include <vector>
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL
#include "gflags/gflags.h"
#include "glog/logging.h"
...
...
paddle/fluid/platform/port.h
浏览文件 @
3c6102a3
...
...
@@ -17,6 +17,7 @@
#include <cstdio>
#include <stdexcept>
#include <time.h>
#include <memory>
#include <string>
...
...
@@ -27,8 +28,13 @@
#include <dlfcn.h> // dladdr
#include <execinfo.h> // backtrace
#include <sys/stat.h>
#include <sys/time.h>
#include <algorithm> // std::accumulate
#else
#define NOMINMAX // msvc max/min macro conflict with std::min/max
// solve static linking error in windows
// https://github.com/google/glog/issues/301
#define GOOGLE_GLOG_DLL_DECL
#include <io.h> // _popen, _pclose
#include <stdio.h>
#include <windows.h>
...
...
@@ -57,6 +63,25 @@ static void *dlopen(const char *filename, int flag) {
return
reinterpret_cast
<
void
*>
(
hModule
);
}
static
int
gettimeofday
(
struct
timeval
*
tp
,
void
*
tzp
)
{
time_t
clock
;
struct
tm
tm
;
SYSTEMTIME
wtm
;
GetLocalTime
(
&
wtm
);
tm
.
tm_year
=
wtm
.
wYear
-
1900
;
tm
.
tm_mon
=
wtm
.
wMonth
-
1
;
tm
.
tm_mday
=
wtm
.
wDay
;
tm
.
tm_hour
=
wtm
.
wHour
;
tm
.
tm_min
=
wtm
.
wMinute
;
tm
.
tm_sec
=
wtm
.
wSecond
;
tm
.
tm_isdst
=
-
1
;
clock
=
mktime
(
&
tm
);
tp
->
tv_sec
=
clock
;
tp
->
tv_usec
=
wtm
.
wMilliseconds
*
1000
;
return
(
0
);
}
#endif // !_WIN32
static
void
ExecShellCommand
(
const
std
::
string
&
cmd
,
std
::
string
*
message
)
{
...
...
@@ -132,10 +157,12 @@ static void MkDir(const char *path) {
}
}
#else
CreateDirectory
(
path
,
NULL
);
auto
errorno
=
GetLastError
();
if
(
errorno
!=
ERROR_ALREADY_EXISTS
)
{
throw
std
::
runtime_error
(
path_error
);
BOOL
return_value
=
CreateDirectory
(
path
,
NULL
);
if
(
!
return_value
)
{
auto
errorno
=
GetLastError
();
if
(
errorno
!=
ERROR_ALREADY_EXISTS
)
{
throw
std
::
runtime_error
(
path_error
);
}
}
#endif // !_WIN32
}
...
...
paddle/fluid/platform/profiler.cc
浏览文件 @
3c6102a3
...
...
@@ -13,8 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/platform/port.h"
#include <sys/time.h>
#include <algorithm>
#include <iomanip>
#include <limits>
...
...
paddle/fluid/platform/profiler.h
浏览文件 @
3c6102a3
...
...
@@ -69,7 +69,6 @@ void PushEvent(const std::string& name, const DeviceContext* dev_ctx);
void
PopEvent
(
const
std
::
string
&
name
,
const
DeviceContext
*
dev_ctx
);
#if !defined(_WIN32)
struct
RecordEvent
{
// dev_ctx can be set to nullptr if device is cpu.
RecordEvent
(
const
std
::
string
&
name
,
const
DeviceContext
*
dev_ctx
);
...
...
@@ -106,15 +105,6 @@ struct RecordBlock {
std
::
string
name_
;
uint64_t
start_ns_
;
};
#else
// windows do not support profiler temporarily.
struct
RecordEvent
{
RecordEvent
(
const
std
::
string
&
name
,
const
DeviceContext
*
dev_ctx
)
{}
};
struct
RecordBlock
{
explicit
RecordBlock
(
int
block_id
)
{}
};
#endif
// Return the event list of all threads. Assumed the returned value calls
// event_lists, event_lists[i][j] represents the j-th Event of i-th thread.
...
...
paddle/fluid/platform/stream_callback_manager.h
浏览文件 @
3c6102a3
...
...
@@ -45,16 +45,15 @@ class StreamCallbackManager {
inline
void
AddCallback
(
Callback
&&
callback
)
const
{
auto
*
stream_callback_context
=
new
StreamCallbackContext
(
this
,
std
::
forward
<
Callback
>
(
callback
));
PADDLE_ENFORCE
(
#if CUDA_VERSION >= 10000
cudaLaunchHostFunc
(
stream_
,
StreamCallbackManager
::
StreamCallbackFunc
,
stream_callback_context
)
PADDLE_ENFORCE
(
cudaLaunchHostFunc
(
stream_
,
StreamCallbackManager
::
StreamCallbackFunc
,
stream_callback_context
));
// NOLINT
#else
cudaStreamAddCallback
(
stream_
,
StreamCallbackManager
::
StreamCallbackFunc
,
stream_callback_context
,
0
)
PADDLE_ENFORCE
(
cudaStreamAddCallback
(
stream_
,
StreamCallbackManager
::
StreamCallbackFunc
,
stream_callback_context
,
0
));
// NOLINT
#endif
);
// NOLINT
}
void
Wait
()
const
{
thread_pool_
.
reset
(
new
ThreadPool
(
1
));
}
...
...
paddle/fluid/pybind/CMakeLists.txt
浏览文件 @
3c6102a3
set
(
PYBIND_DEPS pybind python proto_desc memory executor prune feed_fetch_method pass_builder
)
set
(
PYBIND_SRCS pybind.cc exception.cc protobuf.cc const_value.cc
)
if
(
NOT WIN32
)
list
(
APPEND PYBIND_DEPS parallel_executor profiler
)
list
(
APPEND PYBIND_SRCS recordio.cc
)
endif
(
NOT WIN32
)
set
(
PYBIND_DEPS pybind python proto_desc memory executor prune feed_fetch_method pass_builder parallel_executor profiler
)
set
(
PYBIND_SRCS pybind.cc exception.cc protobuf.cc const_value.cc recordio.cc
)
if
(
WITH_PYTHON
)
if
(
WITH_AMD_GPU
)
hip_library
(
paddle_pybind SHARED
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
3c6102a3
...
...
@@ -21,13 +21,6 @@ limitations under the License. */
#include <utility>
#include <vector>
#if defined(_WIN32)
#define NOMINMAX
#define GLOG_NO_ABBREVIATED_SEVERITIES // msvc conflict logging with windows.h
#define GOOGLE_GLOG_DLL_DECL
#include <Windows.h>
#endif
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
...
...
@@ -36,9 +29,7 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#ifndef _WIN32
#include "paddle/fluid/framework/parallel_executor.h"
#endif
#include "paddle/fluid/framework/prune.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/selected_rows.h"
...
...
@@ -46,6 +37,7 @@ limitations under the License. */
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/init.h"
#include "paddle/fluid/platform/place.h"
...
...
@@ -95,6 +87,9 @@ bool IsCompiledWithDIST() {
}
PYBIND11_PLUGIN
(
core
)
{
// Not used, just make sure cpu_info.cc is linked.
paddle
::
platform
::
CpuTotalPhysicalMemory
();
paddle
::
memory
::
allocation
::
UseAllocatorStrategyGFlag
();
py
::
module
m
(
"core"
,
"C++ core of PaddlePaddle"
);
...
...
@@ -359,22 +354,16 @@ All parameter, weight, gradient are variables in Paddle.
return
self
.
GetMutable
<
platform
::
Communicator
>
();
},
py
::
return_value_policy
::
reference
)
#endif
#ifndef _WIN32
.
def
(
"get_reader"
,
[](
Variable
&
self
)
->
framework
::
ReaderHolder
*
{
PADDLE_ENFORCE
(
self
.
IsType
<
framework
::
ReaderHolder
>
());
return
self
.
GetMutable
<
framework
::
ReaderHolder
>
();
},
py
::
return_value_policy
::
reference
)
#endif
;
// NOLINT
py
::
return_value_policy
::
reference
);
#if !defined(_WIN32)
py
::
class_
<
framework
::
ReaderHolder
>
(
m
,
"Reader"
,
""
)
.
def
(
"reset"
,
&
framework
::
ReaderHolder
::
ResetAll
);
#endif
using
LoDTensorBlockingQueue
=
::
paddle
::
operators
::
reader
::
LoDTensorBlockingQueue
;
...
...
@@ -643,7 +632,6 @@ All parameter, weight, gradient are variables in Paddle.
#endif
#endif
#ifndef _WIN32
py
::
enum_
<
platform
::
ProfilerState
>
(
m
,
"ProfilerState"
,
py
::
arithmetic
())
.
value
(
"kDisabled"
,
platform
::
ProfilerState
::
kDisabled
)
.
value
(
"kCPU"
,
platform
::
ProfilerState
::
kCPU
)
...
...
@@ -664,7 +652,6 @@ All parameter, weight, gradient are variables in Paddle.
m
.
def
(
"disable_profiler"
,
platform
::
DisableProfiler
);
m
.
def
(
"is_profiler_enabled"
,
platform
::
IsProfileEnabled
);
m
.
def
(
"reset_profiler"
,
platform
::
ResetProfiler
);
#endif
py
::
class_
<
ir
::
Pass
,
std
::
shared_ptr
<
ir
::
Pass
>>
pass
(
m
,
"Pass"
);
pass
.
def
(
py
::
init
())
...
...
@@ -693,7 +680,6 @@ All parameter, weight, gradient are variables in Paddle.
.
def
(
"remove_pass"
,
[](
ir
::
PassBuilder
&
self
,
size_t
idx
)
{
self
.
RemovePass
(
idx
);
});
#ifndef _WIN32
// -- python binds for parallel executor.
py
::
class_
<
ParallelExecutor
>
pe
(
m
,
"ParallelExecutor"
);
py
::
class_
<
ExecutionStrategy
>
exec_strategy
(
pe
,
"ExecutionStrategy"
,
R"DOC(
...
...
@@ -921,7 +907,6 @@ All parameter, weight, gradient are variables in Paddle.
});
BindRecordIOWriter
(
&
m
);
#endif
return
m
.
ptr
();
}
}
// namespace pybind
...
...
python/paddle/fluid/__init__.py
浏览文件 @
3c6102a3
...
...
@@ -115,9 +115,8 @@ def __bootstrap__():
'use_pinned_memory'
,
'check_nan_inf'
,
'benchmark'
,
'eager_delete_scope'
,
'use_mkldnn'
,
'use_ngraph'
,
'initial_cpu_memory_in_mb'
,
'init_allocated_mem'
,
'free_idle_memory'
,
'paddle_num_threads'
,
"dist_threadpool_size"
,
'cpu_deterministic'
,
'eager_delete_tensor_gb'
,
'allocator_strategy'
,
'reader_queue_speed_test_mode'
,
'print_sub_graph_dir'
"dist_threadpool_size"
,
'eager_delete_tensor_gb'
,
'allocator_strategy'
,
'reader_queue_speed_test_mode'
,
'print_sub_graph_dir'
]
if
os
.
name
!=
'nt'
:
read_env_flags
.
append
(
'warpctc_dir'
)
...
...
python/paddle/fluid/contrib/inferencer.py
浏览文件 @
3c6102a3
...
...
@@ -15,15 +15,13 @@
from
__future__
import
print_function
import
contextlib
import
os
from
..
import
core
from
..
import
executor
from
..
import
framework
from
..
import
io
if
os
.
name
!=
'nt'
:
from
..
import
parallel_executor
from
..
import
parallel_executor
from
..
import
unique_name
from
.trainer
import
check_and_get_place
...
...
python/paddle/fluid/contrib/trainer.py
浏览文件 @
3c6102a3
...
...
@@ -28,8 +28,7 @@ from .. import framework
from
..
import
io
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
from
..
import
optimizer
as
opt_module
if
os
.
name
!=
'nt'
:
from
..
import
parallel_executor
from
..
import
parallel_executor
from
..transpiler
import
distribute_transpiler
__all__
=
[
...
...
python/paddle/fluid/contrib/utils/__init__.py
0 → 100644
浏览文件 @
3c6102a3
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
from
.
import
hdfs_utils
from
.hdfs_utils
import
*
__all__
=
hdfs_utils
.
__all__
python/paddle/fluid/contrib/utils/hdfs_utils.py
0 → 100644
浏览文件 @
3c6102a3
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""HDFS Utils"""
import
os
import
subprocess
import
multiprocessing
from
datetime
import
datetime
import
re
import
copy
import
errno
import
logging
__all__
=
[
"HDFSClient"
,
"multi_download"
]
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(message)s'
)
_logger
=
logging
.
getLogger
(
"hdfs_utils"
)
_logger
.
setLevel
(
logging
.
INFO
)
class
HDFSClient
(
object
):
def
__init__
(
self
,
hadoop_home
,
configs
):
self
.
pre_commands
=
[]
hadoop_bin
=
'%s/bin/hadoop'
%
hadoop_home
self
.
pre_commands
.
append
(
hadoop_bin
)
dfs
=
'fs'
self
.
pre_commands
.
append
(
dfs
)
for
k
,
v
in
configs
.
iteritems
():
config_command
=
'-D%s=%s'
%
(
k
,
v
)
self
.
pre_commands
.
append
(
config_command
)
def
__run_hdfs_cmd
(
self
,
commands
,
retry_times
=
5
):
whole_commands
=
copy
.
deepcopy
(
self
.
pre_commands
)
whole_commands
.
extend
(
commands
)
print
(
'Running system command: {0}'
.
format
(
' '
.
join
(
whole_commands
)))
ret_code
=
0
ret_out
=
None
ret_err
=
None
for
x
in
range
(
retry_times
+
1
):
proc
=
subprocess
.
Popen
(
whole_commands
,
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
)
(
output
,
errors
)
=
proc
.
communicate
()
ret_code
,
ret_out
,
ret_err
=
proc
.
returncode
,
output
,
errors
if
ret_code
:
_logger
.
warn
(
'Times: %d, Error running command: %s. Return code: %d, Error: %s'
%
(
x
,
' '
.
join
(
whole_commands
),
proc
.
returncode
,
errors
))
else
:
break
return
ret_code
,
ret_out
,
ret_err
def
upload
(
self
,
hdfs_path
,
local_path
,
overwrite
=
False
,
retry_times
=
5
):
"""
upload the local file to hdfs
args:
local_file_path: the local file path
remote_file_path: default value(${OUTPUT_PATH}/${SYS_USER_ID}/${SYS_JOB_ID}/tmp)
return:
True or False
"""
assert
hdfs_path
is
not
None
assert
local_path
is
not
None
and
os
.
path
.
exists
(
local_path
)
if
os
.
path
.
isdir
(
local_path
):
_logger
.
warn
(
"The Local path: {} is dir and I will support it later, return"
.
format
(
local_path
))
return
base
=
os
.
path
.
basename
(
local_path
)
if
not
self
.
is_exist
(
hdfs_path
):
self
.
makedirs
(
hdfs_path
)
else
:
if
self
.
is_exist
(
os
.
path
.
join
(
hdfs_path
,
base
)):
if
overwrite
:
_logger
.
error
(
"The HDFS path: {} is exist and overwrite is True, delete it"
.
format
(
hdfs_path
))
self
.
delete
(
hdfs_path
)
else
:
_logger
.
error
(
"The HDFS path: {} is exist and overwrite is False, return"
.
format
(
hdfs_path
))
return
False
put_commands
=
[
"-put"
,
local_path
,
hdfs_path
]
returncode
,
output
,
errors
=
self
.
__run_hdfs_cmd
(
put_commands
,
retry_times
)
if
returncode
:
_logger
.
error
(
"Put local path: {} to HDFS path: {} failed"
.
format
(
local_path
,
hdfs_path
))
return
False
else
:
_logger
.
info
(
"Put local path: {} to HDFS path: {} successfully"
.
format
(
local_path
,
hdfs_path
))
return
True
def
download
(
self
,
hdfs_path
,
local_path
,
overwrite
=
False
,
unzip
=
False
):
"""
download from hdfs
args:
local_file_path: the local file path
remote_file_path: remote dir on hdfs
return:
True or False
"""
_logger
.
info
(
'Downloading %r to %r.'
,
hdfs_path
,
local_path
)
_logger
.
info
(
'Download of %s to %r complete.'
,
hdfs_path
,
local_path
)
if
not
self
.
is_exist
(
hdfs_path
):
print
(
"HDFS path: {} do not exist"
.
format
(
hdfs_path
))
return
False
if
self
.
is_dir
(
hdfs_path
):
_logger
.
error
(
"The HDFS path: {} is dir and I will support it later, return"
.
format
(
hdfs_path
))
if
os
.
path
.
exists
(
local_path
):
base
=
os
.
path
.
basename
(
hdfs_path
)
local_file
=
os
.
path
.
join
(
local_path
,
base
)
if
os
.
path
.
exists
(
local_file
):
if
overwrite
:
os
.
remove
(
local_file
)
else
:
_logger
.
error
(
"The Local path: {} is exist and overwrite is False, return"
.
format
(
local_file
))
return
False
self
.
make_local_dirs
(
local_path
)
download_commands
=
[
"-get"
,
hdfs_path
,
local_path
]
returncode
,
output
,
errors
=
self
.
__run_hdfs_cmd
(
download_commands
)
if
returncode
:
_logger
.
error
(
"Get local path: {} from HDFS path: {} failed"
.
format
(
local_path
,
hdfs_path
))
return
False
else
:
_logger
.
info
(
"Get local path: {} from HDFS path: {} successfully"
.
format
(
local_path
,
hdfs_path
))
return
True
def
is_exist
(
self
,
hdfs_path
=
None
):
"""
whether the remote hdfs path exists?
args:
remote_file_path: default value(${OUTPUT_PATH}/${SYS_USER_ID}/${SYS_JOB_ID}/tmp)
fs_name: The default values are the same as in the job configuration
fs_ugi: The default values are the same as in the job configuration
return:
True or False
"""
exist_cmd
=
[
'-test'
,
'-e'
,
hdfs_path
]
returncode
,
output
,
errors
=
self
.
__run_hdfs_cmd
(
exist_cmd
,
retry_times
=
1
)
if
returncode
:
_logger
.
error
(
"HDFS is_exist HDFS path: {} failed"
.
format
(
hdfs_path
))
return
False
else
:
_logger
.
info
(
"HDFS is_exist HDFS path: {} successfully"
.
format
(
hdfs_path
))
return
True
def
is_dir
(
self
,
hdfs_path
=
None
):
"""
whether the remote hdfs path exists?
args:
remote_file_path: default value(${OUTPUT_PATH}/${SYS_USER_ID}/${SYS_JOB_ID}/tmp)
fs_name: The default values are the same as in the job configuration
fs_ugi: The default values are the same as in the job configuration
return:
True or False
"""
if
not
self
.
is_exist
(
hdfs_path
):
return
False
dir_cmd
=
[
'-test'
,
'-d'
,
hdfs_path
]
returncode
,
output
,
errors
=
self
.
__run_hdfs_cmd
(
dir_cmd
,
retry_times
=
1
)
if
returncode
:
_logger
.
error
(
"HDFS path: {} failed is not a directory"
.
format
(
hdfs_path
))
return
False
else
:
_logger
.
info
(
"HDFS path: {} successfully is a directory"
.
format
(
hdfs_path
))
return
True
def
delete
(
self
,
hdfs_path
):
"""Remove a file or directory from HDFS.
:param hdfs_path: HDFS path.
:param recursive: Recursively delete files and directories. By default,
this method will raise an :class:`HdfsError` if trying to delete a
non-empty directory.
This function returns `True` if the deletion was successful and `False` if
no file or directory previously existed at `hdfs_path`.
"""
_logger
.
info
(
'Deleting %r.'
,
hdfs_path
)
if
not
self
.
is_exist
(
hdfs_path
):
_logger
.
warn
(
"HDFS path: {} do not exist"
.
format
(
hdfs_path
))
return
True
if
self
.
is_dir
(
hdfs_path
):
del_cmd
=
[
'-rmr'
,
hdfs_path
]
else
:
del_cmd
=
[
'-rm'
,
hdfs_path
]
returncode
,
output
,
errors
=
self
.
__run_hdfs_cmd
(
del_cmd
,
retry_times
=
0
)
if
returncode
:
_logger
.
error
(
"HDFS path: {} delete files failure"
.
format
(
hdfs_path
))
return
False
else
:
_logger
.
info
(
"HDFS path: {} delete files successfully"
.
format
(
hdfs_path
))
return
True
def
rename
(
self
,
hdfs_src_path
,
hdfs_dst_path
,
overwrite
=
False
):
"""Move a file or folder.
:param hdfs_src_path: Source path.
:param hdfs_dst_path: Destination path. If the path already exists and is
a directory, the source will be moved into it. If the path exists and is
a file, or if a parent destination directory is missing, this method will
raise an :class:`HdfsError`.
"""
assert
hdfs_src_path
is
not
None
assert
hdfs_dst_path
is
not
None
if
not
self
.
is_exist
(
hdfs_src_path
):
_logger
.
info
(
"HDFS path do not exist: {}"
.
format
(
hdfs_src_path
))
if
self
.
is_exist
(
hdfs_dst_path
)
and
not
overwrite
:
_logger
.
error
(
"HDFS path is exist: {} and overwrite=False"
.
format
(
hdfs_dst_path
))
rename_command
=
[
'-mv'
,
hdfs_src_path
,
hdfs_dst_path
]
returncode
,
output
,
errors
=
self
.
__run_hdfs_cmd
(
rename_command
,
retry_times
=
1
)
if
returncode
:
_logger
.
error
(
"HDFS rename path: {} to {} failed"
.
format
(
hdfs_src_path
,
hdfs_dst_path
))
return
False
else
:
_logger
.
info
(
"HDFS rename path: {} to {} successfully"
.
format
(
hdfs_src_path
,
hdfs_dst_path
))
return
True
@
staticmethod
def
make_local_dirs
(
local_path
):
try
:
os
.
makedirs
(
local_path
)
except
OSError
as
e
:
if
e
.
errno
!=
errno
.
EEXIST
:
raise
def
makedirs
(
self
,
hdfs_path
):
"""Create a remote directory, recursively if necessary.
:param hdfs_path: Remote path. Intermediate directories will be created
appropriately.
"""
_logger
.
info
(
'Creating directories to %r.'
,
hdfs_path
)
assert
hdfs_path
is
not
None
if
self
.
is_exist
(
hdfs_path
):
return
mkdirs_commands
=
[
'-mkdir'
,
hdfs_path
]
returncode
,
output
,
errors
=
self
.
__run_hdfs_cmd
(
mkdirs_commands
,
retry_times
=
1
)
if
returncode
:
_logger
.
error
(
"HDFS mkdir path: {} failed"
.
format
(
hdfs_path
))
return
False
else
:
_logger
.
error
(
"HDFS mkdir path: {} successfully"
.
format
(
hdfs_path
))
return
True
def
ls
(
self
,
hdfs_path
):
assert
hdfs_path
is
not
None
if
not
self
.
is_exist
(
hdfs_path
):
return
[]
ls_commands
=
[
'-ls'
,
hdfs_path
]
returncode
,
output
,
errors
=
self
.
__run_hdfs_cmd
(
ls_commands
,
retry_times
=
1
)
if
returncode
:
_logger
.
error
(
"HDFS list path: {} failed"
.
format
(
hdfs_path
))
return
[]
else
:
_logger
.
info
(
"HDFS list path: {} successfully"
.
format
(
hdfs_path
))
ret_lines
=
[]
regex
=
re
.
compile
(
'\s+'
)
out_lines
=
output
.
strip
().
split
(
"
\n
"
)
for
line
in
out_lines
:
re_line
=
regex
.
split
(
line
)
if
len
(
re_line
)
==
8
:
ret_lines
.
append
(
re_line
[
7
])
return
ret_lines
def
lsr
(
self
,
hdfs_path
,
only_file
=
True
,
sort
=
True
):
def
sort_by_time
(
v1
,
v2
):
v1_time
=
datetime
.
strptime
(
v1
[
1
],
'%Y-%m-%d %H:%M'
)
v2_time
=
datetime
.
strptime
(
v2
[
1
],
'%Y-%m-%d %H:%M'
)
return
v1_time
>
v2_time
assert
hdfs_path
is
not
None
if
not
self
.
is_exist
(
hdfs_path
):
return
[]
ls_commands
=
[
'-lsr'
,
hdfs_path
]
returncode
,
output
,
errors
=
self
.
__run_hdfs_cmd
(
ls_commands
,
retry_times
=
1
)
if
returncode
:
_logger
.
error
(
"HDFS list all files: {} failed"
.
format
(
hdfs_path
))
return
[]
else
:
_logger
.
info
(
"HDFS list all files: {} successfully"
.
format
(
hdfs_path
))
lines
=
[]
regex
=
re
.
compile
(
'\s+'
)
out_lines
=
output
.
strip
().
split
(
"
\n
"
)
for
line
in
out_lines
:
re_line
=
regex
.
split
(
line
)
if
len
(
re_line
)
==
8
:
if
only_file
and
re_line
[
0
][
0
]
==
"d"
:
continue
else
:
lines
.
append
(
(
re_line
[
7
],
re_line
[
5
]
+
" "
+
re_line
[
6
]))
if
sort
:
sorted
(
lines
,
cmp
=
sort_by_time
)
ret_lines
=
[
ret
[
0
]
for
ret
in
lines
]
return
ret_lines
def
multi_upload
(
client
,
hdfs_path
,
local_path
,
multi_processes
=
5
,
overwrite
=
False
):
"""
:param overwrite: will overwrite hdfs file or not
:param multi_processes: the upload data process at the same time, default=5
:param client: instance of HDFSClient
:param hdfs_path: path on hdfs
:param local_path: path on local
:return:
"""
def
__subprocess_upload
(
datas
):
for
data
in
datas
:
re_path
=
os
.
path
.
relpath
(
os
.
path
.
dirname
(
data
),
local_path
)
hdfs_re_path
=
os
.
path
.
join
(
hdfs_path
,
re_path
)
client
.
upload
(
hdfs_re_path
,
data
,
overwrite
,
retry_times
=
5
)
def
get_local_files
(
path
):
rlist
=
[]
if
not
os
.
path
.
isdir
(
path
):
return
rlist
for
dirname
,
folder
,
files
in
os
.
walk
(
path
):
for
i
in
files
:
t
=
os
.
path
.
join
(
dirname
,
i
)
rlist
.
append
(
t
)
return
rlist
assert
isinstance
(
client
,
HDFSClient
)
all_files
=
get_local_files
(
local_path
)
if
not
all_files
:
_logger
.
info
(
"there are nothing need to upload, exit"
)
return
_logger
.
info
(
"Start {} multi process to upload datas"
.
format
(
multi_processes
))
procs
=
[]
for
i
in
range
(
multi_processes
):
process_datas
=
all_files
[
i
::
multi_processes
]
p
=
multiprocessing
.
Process
(
target
=
__subprocess_upload
,
args
=
(
process_datas
,
))
procs
.
append
(
p
)
p
.
start
()
# complete the processes
for
proc
in
procs
:
proc
.
join
()
_logger
.
info
(
"Finish {} multi process to upload datas"
.
format
(
multi_processes
))
def
multi_download
(
client
,
hdfs_path
,
local_path
,
trainer_id
,
trainers
,
multi_processes
=
5
):
"""
multi_download
:param client: instance of HDFSClient
:param hdfs_path: path on hdfs
:param local_path: path on local
:param trainer_id: current trainer id
:param trainers: all trainers number
:param multi_processes: the download data process at the same time, default=5
:return: None
"""
def
__subprocess_download
(
datas
):
for
data
in
datas
:
re_path
=
os
.
path
.
relpath
(
os
.
path
.
dirname
(
data
),
hdfs_path
)
local_re_path
=
os
.
path
.
join
(
local_path
,
re_path
)
client
.
download
(
data
,
local_re_path
)
assert
isinstance
(
client
,
HDFSClient
)
client
.
make_local_dirs
(
local_path
)
_logger
.
info
(
"Make local dir {} successfully"
.
format
(
local_path
))
all_need_download
=
client
.
lsr
(
hdfs_path
,
sort
=
True
)
need_download
=
all_need_download
[
trainer_id
::
trainers
]
_logger
.
info
(
"Get {} files From all {} files need to be download from {}"
.
format
(
len
(
need_download
),
len
(
all_need_download
),
hdfs_path
))
_logger
.
info
(
"Start {} multi process to download datas"
.
format
(
multi_processes
))
procs
=
[]
for
i
in
range
(
multi_processes
):
process_datas
=
need_download
[
i
::
multi_processes
]
p
=
multiprocessing
.
Process
(
target
=
__subprocess_download
,
args
=
(
process_datas
,
))
procs
.
append
(
p
)
p
.
start
()
# complete the processes
for
proc
in
procs
:
proc
.
join
()
_logger
.
info
(
"Finish {} multi process to download datas"
.
format
(
multi_processes
))
local_downloads
=
[]
for
data
in
need_download
:
data_name
=
os
.
path
.
basename
(
data
)
re_path
=
os
.
path
.
relpath
(
os
.
path
.
dirname
(
data
),
hdfs_path
)
local_re_path
=
os
.
path
.
join
(
local_path
,
re_path
,
data_name
)
local_downloads
.
append
(
local_re_path
)
return
local_downloads
if
__name__
==
"__main__"
:
hadoop_home
=
"/home/client/hadoop-client/hadoop/"
configs
=
{
"fs.default.name"
:
"hdfs://xxx.hadoop.com:54310"
,
"hadoop.job.ugi"
:
"hello,hello123"
}
client
=
HDFSClient
(
hadoop_home
,
configs
)
client
.
ls
(
"/user/com/train-25"
)
files
=
client
.
lsr
(
"/user/com/train-25/models"
)
downloads
=
multi_download
(
client
,
"/user/com/train-25/model"
,
"/home/xx/data1"
,
1
,
5
,
multi_processes
=
5
)
multi_upload
(
client
,
"/user/com/train-25/model"
,
"/home/xx/data1"
)
python/paddle/fluid/layers/io.py
浏览文件 @
3c6102a3
...
...
@@ -347,72 +347,70 @@ def _copy_reader_create_op_(block, op):
return
new_op
if
os
.
name
!=
'nt'
:
@
templatedoc
(
op_type
=
'create_recordio_file_reader'
)
def
open_recordio_file
(
filename
,
shapes
,
lod_levels
,
dtypes
,
pass_num
=
1
,
for_parallel
=
True
):
"""
${comment}
Args:
filename(${filename_type}): ${filename_comment}.
shapes(list): List of tuples which declaring data shapes.
lod_levels(${lod_levels_type}): ${lod_levels_comment}.
dtypes(list): List of strs which declaring data type.
pass_num(int): Number of passes to run.
for_parallel(Bool): Set it as True if you are going to run
subsequent operators in parallel.
Returns:
${out_comment}.
Examples:
>>> import paddle.fluid as fluid
>>> reader = fluid.layers.io.open_recordio_file(
>>> filename='./data.recordio',
>>> shapes=[(3,224,224), (1)],
>>> lod_levels=[0, 0],
>>> dtypes=['float32', 'int64'])
>>> # Via the reader, we can use 'read_file' layer to get data:
>>> image, label = fluid.layers.io.read_file(reader)
"""
dtypes
=
[
convert_np_dtype_to_dtype_
(
dt
)
for
dt
in
dtypes
]
shape_concat
=
[]
ranks
=
[]
@
templatedoc
(
op_type
=
'create_recordio_file_reader'
)
def
open_recordio_file
(
filename
,
shapes
,
lod_levels
,
dtypes
,
pass_num
=
1
,
for_parallel
=
True
):
"""
${comment}
for
shape
in
shapes
:
shape_concat
.
extend
(
shape
)
ranks
.
append
(
len
(
shape
))
Args:
filename(${filename_type}): ${filename_comment}.
shapes(list): List of tuples which declaring data shapes.
lod_levels(${lod_levels_type}): ${lod_levels_comment}.
dtypes(list): List of strs which declaring data type.
pass_num(int): Number of passes to run.
for_parallel(Bool): Set it as True if you are going to run
subsequent operators in parallel.
var_name
=
unique_name
(
'open_recordio_file'
)
Returns:
${out_comment}.
startup_blk
=
default_startup_program
().
current_block
()
startup_var
=
startup_blk
.
create_var
(
name
=
var_name
)
startup_blk
.
append_op
(
type
=
'create_recordio_file_reader'
,
outputs
=
{
'Out'
:
[
startup_var
]},
attrs
=
{
'shape_concat'
:
shape_concat
,
'lod_levels'
:
lod_levels
,
'filename'
:
filename
,
'ranks'
:
ranks
})
Examples:
startup_var
.
desc
.
set_dtypes
(
dtypes
)
startup_var
.
persistable
=
True
main_prog_var
=
_copy_reader_var_
(
default_main_program
().
current_block
(),
startup_var
)
>>> import paddle.fluid as fluid
>>> reader = fluid.layers.io.open_recordio_file(
>>> filename='./data.recordio',
>>> shapes=[(3,224,224), (1)],
>>> lod_levels=[0, 0],
>>> dtypes=['float32', 'int64'])
>>> # Via the reader, we can use 'read_file' layer to get data:
>>> image, label = fluid.layers.io.read_file(reader)
"""
dtypes
=
[
convert_np_dtype_to_dtype_
(
dt
)
for
dt
in
dtypes
]
shape_concat
=
[]
ranks
=
[]
if
pass_num
>
1
:
main_prog_var
=
multi_pass
(
reader
=
main_prog_var
,
pass_num
=
pass_num
)
for
shape
in
shapes
:
shape_concat
.
extend
(
shape
)
ranks
.
append
(
len
(
shape
))
var_name
=
unique_name
(
'open_recordio_file'
)
startup_blk
=
default_startup_program
().
current_block
()
startup_var
=
startup_blk
.
create_var
(
name
=
var_name
)
startup_blk
.
append_op
(
type
=
'create_recordio_file_reader'
,
outputs
=
{
'Out'
:
[
startup_var
]},
attrs
=
{
'shape_concat'
:
shape_concat
,
'lod_levels'
:
lod_levels
,
'filename'
:
filename
,
'ranks'
:
ranks
})
return
monkey_patch_reader_methods
(
main_prog_var
)
startup_var
.
desc
.
set_dtypes
(
dtypes
)
startup_var
.
persistable
=
True
main_prog_var
=
_copy_reader_var_
(
default_main_program
().
current_block
(),
startup_var
)
if
pass_num
>
1
:
main_prog_var
=
multi_pass
(
reader
=
main_prog_var
,
pass_num
=
pass_num
)
return
monkey_patch_reader_methods
(
main_prog_var
)
def
random_data_generator
(
low
,
high
,
shapes
,
lod_levels
,
for_parallel
=
True
):
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
3c6102a3
...
...
@@ -85,6 +85,7 @@ __all__ = [
'row_conv'
,
'multiplex'
,
'layer_norm'
,
'group_norm'
,
'softmax_with_cross_entropy'
,
'smooth_l1'
,
'one_hot'
,
...
...
@@ -343,128 +344,126 @@ def embedding(input,
return
tmp
if
os
.
name
!=
'nt'
:
@
templatedoc
(
op_type
=
"lstm"
)
def
dynamic_lstm
(
input
,
size
,
h_0
=
None
,
c_0
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
use_peepholes
=
True
,
is_reverse
=
False
,
gate_activation
=
'sigmoid'
,
cell_activation
=
'tanh'
,
candidate_activation
=
'tanh'
,
dtype
=
'float32'
,
name
=
None
):
"""
${comment}
@
templatedoc
(
op_type
=
"lstm"
)
def
dynamic_lstm
(
input
,
size
,
h_0
=
None
,
c_0
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
use_peepholes
=
True
,
is_reverse
=
False
,
gate_activation
=
'sigmoid'
,
cell_activation
=
'tanh'
,
candidate_activation
=
'tanh'
,
dtype
=
'float32'
,
name
=
None
):
"""
${comment}
Args:
input (Variable): ${input_comment}
size (int): 4 * hidden size.
h_0(Variable): The initial hidden state is an optional input, default is zero.
This is a tensor with shape (N x D), where N is the
batch size and D is the hidden size.
c_0(Variable): The initial cell state is an optional input, default is zero.
This is a tensor with shape (N x D), where N is the
batch size. `h_0` and `c_0` can be NULL but only at the same time.
param_attr(ParamAttr|None): The parameter attribute for the learnable
hidden-hidden weights.
- Weights = {:math:`W_{ch}, W_{ih},
\
W_{fh}, W_{oh}`}
- The shape is (D x 4D), where D is the hidden
size.
If it is set to None or one attribute of ParamAttr,
dynamic_lstm will create ParamAttr as param_attr.
If the Initializer of the param_attr is not set, the
parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|None): The bias attribute for the learnable bias
weights, which contains two parts, input-hidden
bias weights and peephole connections weights if
setting `use_peepholes` to `True`.
1. `use_peepholes = False`
- Biases = {:math:`b_c, b_i, b_f, b_o`}.
- The shape is (1 x 4D).
2. `use_peepholes = True`
- Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic},
\
W_{fc}, W_{oc}`}.
- The shape is (1 x 7D).
If it is set to None or one attribute of ParamAttr,
dynamic_lstm will create ParamAttr as bias_attr.
If the Initializer of the bias_attr is not set,
the bias is initialized zero. Default: None.
use_peepholes (bool): ${use_peepholes_comment}
is_reverse (bool): ${is_reverse_comment}
gate_activation (str): ${gate_activation_comment}
cell_activation (str): ${cell_activation_comment}
candidate_activation (str): ${candidate_activation_comment}
dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
tuple: The hidden state, and cell state of LSTM. The shape of both
\
is (T x D), and lod is the same with the `input`.
Examples:
.. code-block:: python
hidden_dim = 512
forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
bias_attr=False)
forward, _ = fluid.layers.dynamic_lstm(
input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
"""
assert
bias_attr
is
not
False
,
"bias_attr should not be False in dynamic_lstmp."
helper
=
LayerHelper
(
'lstm'
,
**
locals
())
size
=
size
//
4
weight
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
size
,
4
*
size
],
dtype
=
dtype
)
bias_size
=
[
1
,
7
*
size
]
if
not
use_peepholes
:
bias_size
[
1
]
=
4
*
size
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
bias_size
,
dtype
=
dtype
,
is_bias
=
True
)
Args:
input (Variable): ${input_comment}
size (int): 4 * hidden size.
h_0(Variable): The initial hidden state is an optional input, default is zero.
This is a tensor with shape (N x D), where N is the
batch size and D is the hidden size.
c_0(Variable): The initial cell state is an optional input, default is zero.
This is a tensor with shape (N x D), where N is the
batch size. `h_0` and `c_0` can be NULL but only at the same time.
param_attr(ParamAttr|None): The parameter attribute for the learnable
hidden-hidden weights.
hidden
=
helper
.
create_variable_for_type_inference
(
dtype
)
cell
=
helper
.
create_variable_for_type_inference
(
dtype
)
batch_gate
=
helper
.
create_variable_for_type_inference
(
dtype
)
batch_cell_pre_act
=
helper
.
create_variable_for_type_inference
(
dtype
)
inputs
=
{
'Input'
:
input
,
'Weight'
:
weight
,
'Bias'
:
bias
}
batch_size
=
input
.
shape
[
0
]
if
h_0
:
assert
h_0
.
shape
==
(
batch_size
,
size
),
\
'The shape of h0 should be (batch_size, %d)'
%
size
inputs
[
'H0'
]
=
h_0
if
c_0
:
assert
c_0
.
shape
==
(
batch_size
,
size
),
\
'The shape of c0 should be (batch_size, %d)'
%
size
inputs
[
'C0'
]
=
c_0
- Weights = {:math:`W_{ch}, W_{ih},
\
W_{fh}, W_{oh}`}
- The shape is (D x 4D), where D is the hidden
size.
helper
.
append_op
(
type
=
'lstm'
,
inputs
=
inputs
,
outputs
=
{
'Hidden'
:
hidden
,
'Cell'
:
cell
,
'BatchGate'
:
batch_gate
,
'BatchCellPreAct'
:
batch_cell_pre_act
},
attrs
=
{
'use_peepholes'
:
use_peepholes
,
'is_reverse'
:
is_reverse
,
'gate_activation'
:
gate_activation
,
'cell_activation'
:
cell_activation
,
'candidate_activation'
:
candidate_activation
})
return
hidden
,
cell
If it is set to None or one attribute of ParamAttr,
dynamic_lstm will create ParamAttr as param_attr.
If the Initializer of the param_attr is not set, the
parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|None): The bias attribute for the learnable bias
weights, which contains two parts, input-hidden
bias weights and peephole connections weights if
setting `use_peepholes` to `True`.
1. `use_peepholes = False`
- Biases = {:math:`b_c, b_i, b_f, b_o`}.
- The shape is (1 x 4D).
2. `use_peepholes = True`
- Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic},
\
W_{fc}, W_{oc}`}.
- The shape is (1 x 7D).
If it is set to None or one attribute of ParamAttr,
dynamic_lstm will create ParamAttr as bias_attr.
If the Initializer of the bias_attr is not set,
the bias is initialized zero. Default: None.
use_peepholes (bool): ${use_peepholes_comment}
is_reverse (bool): ${is_reverse_comment}
gate_activation (str): ${gate_activation_comment}
cell_activation (str): ${cell_activation_comment}
candidate_activation (str): ${candidate_activation_comment}
dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
tuple: The hidden state, and cell state of LSTM. The shape of both
\
is (T x D), and lod is the same with the `input`.
Examples:
.. code-block:: python
hidden_dim = 512
forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
bias_attr=False)
forward, _ = fluid.layers.dynamic_lstm(
input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
"""
assert
bias_attr
is
not
False
,
"bias_attr should not be False in dynamic_lstmp."
helper
=
LayerHelper
(
'lstm'
,
**
locals
())
size
=
size
//
4
weight
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
size
,
4
*
size
],
dtype
=
dtype
)
bias_size
=
[
1
,
7
*
size
]
if
not
use_peepholes
:
bias_size
[
1
]
=
4
*
size
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
bias_size
,
dtype
=
dtype
,
is_bias
=
True
)
hidden
=
helper
.
create_variable_for_type_inference
(
dtype
)
cell
=
helper
.
create_variable_for_type_inference
(
dtype
)
batch_gate
=
helper
.
create_variable_for_type_inference
(
dtype
)
batch_cell_pre_act
=
helper
.
create_variable_for_type_inference
(
dtype
)
inputs
=
{
'Input'
:
input
,
'Weight'
:
weight
,
'Bias'
:
bias
}
batch_size
=
input
.
shape
[
0
]
if
h_0
:
assert
h_0
.
shape
==
(
batch_size
,
size
),
\
'The shape of h0 should be (batch_size, %d)'
%
size
inputs
[
'H0'
]
=
h_0
if
c_0
:
assert
c_0
.
shape
==
(
batch_size
,
size
),
\
'The shape of c0 should be (batch_size, %d)'
%
size
inputs
[
'C0'
]
=
c_0
helper
.
append_op
(
type
=
'lstm'
,
inputs
=
inputs
,
outputs
=
{
'Hidden'
:
hidden
,
'Cell'
:
cell
,
'BatchGate'
:
batch_gate
,
'BatchCellPreAct'
:
batch_cell_pre_act
},
attrs
=
{
'use_peepholes'
:
use_peepholes
,
'is_reverse'
:
is_reverse
,
'gate_activation'
:
gate_activation
,
'cell_activation'
:
cell_activation
,
'candidate_activation'
:
candidate_activation
})
return
hidden
,
cell
def
dynamic_lstmp
(
input
,
...
...
@@ -963,43 +962,39 @@ def linear_chain_crf(input, label, param_attr=None):
return
log_likelihood
if
os
.
name
!=
'nt'
:
@
templatedoc
()
def
crf_decoding
(
input
,
param_attr
,
label
=
None
):
"""
${comment}
@
templatedoc
()
def
crf_decoding
(
input
,
param_attr
,
label
=
None
):
"""
${comment}
Args:
input(${emission_type}): ${emission_comment}
Args:
input(${emission_type}): ${emission_comment}
param_attr(ParamAttr): The parameter attribute for training.
param_attr(ParamAttr): The parameter attribute for training.
label(${label_type}): ${label_comment}
label(${label_type}): ${label_comment}
Returns:
Variable: ${viterbi_path_comment}
Returns:
Variable: ${viterbi_path_comment}
Examples:
.. code-block:: python
Examples:
.. code-block:: python
crf_decode = layers.crf_decoding(
input=hidden, param_attr=ParamAttr(name="crfw"))
"""
helper
=
LayerHelper
(
'crf_decoding'
,
**
locals
())
transition
=
helper
.
get_parameter
(
param_attr
.
name
)
viterbi_path
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'crf_decoding'
,
inputs
=
{
"Emission"
:
[
input
],
crf_decode = layers.crf_decoding(
input=hidden, param_attr=ParamAttr(name="crfw"))
"""
helper
=
LayerHelper
(
'crf_decoding'
,
**
locals
())
transition
=
helper
.
get_parameter
(
param_attr
.
name
)
viterbi_path
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'crf_decoding'
,
inputs
=
{
"Emission"
:
[
input
],
"Transition"
:
transition
,
"Label"
:
label
},
outputs
=
{
"ViterbiPath"
:
[
viterbi_path
]})
"Label"
:
label
},
outputs
=
{
"ViterbiPath"
:
[
viterbi_path
]})
return
viterbi_path
return
viterbi_path
@
templatedoc
()
...
...
@@ -2553,6 +2548,84 @@ def layer_norm(input,
return
helper
.
append_activation
(
layer_norm_out
)
@
templatedoc
()
def
group_norm
(
input
,
groups
,
epsilon
=
1e-05
,
param_attr
=
None
,
bias_attr
=
None
,
act
=
None
,
data_layout
=
'NCHW'
,
name
=
None
):
"""
**Group Normalization Layer**
Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`
Args:
input(Variable): The input tensor variable.
groups(int): The number of groups that divided from channels.
epsilon(float): The small value added to the variance to prevent
division by zero.
param_attr(ParamAttr|None): The parameter attribute for the learnable
scale :math:`g`. If it is set to False, no scale will be added to the output units.
If it is set to None, the bias is initialized one. Default: None.
bias_attr(ParamAttr|None): The parameter attribute for the learnable
bias :math:`b`. If it is set to False, no bias will be added to the output units.
If it is set to None, the bias is initialized zero. Default: None.
act(str): Activation to be applied to the output of group normalizaiton.
data_layout(string|NCHW): Only NCHW is supported.
name (str): The name of this layer. It is optional.
Returns:
Variable: A tensor variable which is the result after applying group normalization on the input.
Examples:
>>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
>>> dtype='float32')
>>> x = fluid.layers.group_norm(input=data, groups=4)
"""
helper
=
LayerHelper
(
'group_norm'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
# create intput and parameters
inputs
=
{
'X'
:
input
}
input_shape
=
input
.
shape
if
data_layout
!=
'NCHW'
:
raise
ValueError
(
"unsupported data layout:"
+
data_layout
)
param_shape
=
[
input_shape
[
1
]]
if
param_attr
:
scale
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
param_shape
,
dtype
=
dtype
,
default_initializer
=
Constant
(
1.0
))
inputs
[
'Scale'
]
=
scale
if
bias_attr
:
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
param_shape
,
dtype
=
dtype
,
is_bias
=
True
)
inputs
[
'Bias'
]
=
bias
# create output
mean_out
=
helper
.
create_tmp_variable
(
dtype
=
dtype
,
stop_gradient
=
True
)
variance_out
=
helper
.
create_tmp_variable
(
dtype
=
dtype
,
stop_gradient
=
True
)
group_norm_out
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
"group_norm"
,
inputs
=
inputs
,
outputs
=
{
"Y"
:
group_norm_out
,
"Mean"
:
mean_out
,
"Variance"
:
variance_out
,
},
attrs
=
{
"epsilon"
:
epsilon
,
"groups"
:
groups
})
return
helper
.
append_activation
(
group_norm_out
)
def
conv2d_transpose
(
input
,
num_filters
,
output_size
=
None
,
...
...
@@ -5642,48 +5715,42 @@ def label_smooth(label,
return
smooth_label
if
os
.
name
!=
'nt'
:
@
templatedoc
()
def
roi_pool
(
input
,
rois
,
pooled_height
=
1
,
pooled_width
=
1
,
spatial_scale
=
1.0
):
"""
${comment}
Args:
input (Variable): ${x_comment}
rois (Variable): ROIs (Regions of Interest) to pool over.
pooled_height (integer): ${pooled_height_comment} Default: 1
pooled_width (integer): ${pooled_width_comment} Default: 1
spatial_scale (float): ${spatial_scale_comment} Default: 1.0
Returns:
Variable: ${out_comment}.
Examples:
.. code-block:: python
pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
"""
helper
=
LayerHelper
(
'roi_pool'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
pool_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
argmaxes
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
helper
.
append_op
(
type
=
"roi_pool"
,
inputs
=
{
"X"
:
input
,
"ROIs"
:
rois
},
outputs
=
{
"Out"
:
pool_out
,
"Argmax"
:
argmaxes
},
attrs
=
{
"pooled_height"
:
pooled_height
,
"pooled_width"
:
pooled_width
,
"spatial_scale"
:
spatial_scale
})
return
pool_out
@
templatedoc
()
def
roi_pool
(
input
,
rois
,
pooled_height
=
1
,
pooled_width
=
1
,
spatial_scale
=
1.0
):
"""
${comment}
Args:
input (Variable): ${x_comment}
rois (Variable): ROIs (Regions of Interest) to pool over.
pooled_height (integer): ${pooled_height_comment} Default: 1
pooled_width (integer): ${pooled_width_comment} Default: 1
spatial_scale (float): ${spatial_scale_comment} Default: 1.0
Returns:
Variable: ${out_comment}.
Examples:
.. code-block:: python
pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
"""
helper
=
LayerHelper
(
'roi_pool'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
pool_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
argmaxes
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
helper
.
append_op
(
type
=
"roi_pool"
,
inputs
=
{
"X"
:
input
,
"ROIs"
:
rois
},
outputs
=
{
"Out"
:
pool_out
,
"Argmax"
:
argmaxes
},
attrs
=
{
"pooled_height"
:
pooled_height
,
"pooled_width"
:
pooled_width
,
"spatial_scale"
:
spatial_scale
})
return
pool_out
@
templatedoc
()
...
...
python/paddle/fluid/layers/ops.py
浏览文件 @
3c6102a3
...
...
@@ -100,26 +100,27 @@ Examples:
>>> result = fluid.layers.hard_shrink(x=data, threshold=0.3)
"""
if
os
.
name
!=
'nt'
:
__all__
+=
[
'cumsum'
]
_cum_sum_
=
generate_layer_fn
(
'cumsum'
)
def
cumsum
(
x
,
axis
=
None
,
exclusive
=
None
,
reverse
=
None
):
locals_var
=
locals
().
keys
()
kwargs
=
dict
()
for
name
in
locals_var
:
val
=
locals
()[
name
]
if
val
is
not
None
:
kwargs
[
name
]
=
val
return
_cum_sum_
(
**
kwargs
)
cumsum
.
__doc__
=
_cum_sum_
.
__doc__
+
"""
Examples:
>>> data = fluid.layers.data(name="input", shape=[32, 784])
>>> result = fluid.layers.cumsum(data, axis=0)
"""
__all__
+=
[
'cumsum'
]
_cum_sum_
=
generate_layer_fn
(
'cumsum'
)
def
cumsum
(
x
,
axis
=
None
,
exclusive
=
None
,
reverse
=
None
):
locals_var
=
locals
().
keys
()
kwargs
=
dict
()
for
name
in
locals_var
:
val
=
locals
()[
name
]
if
val
is
not
None
:
kwargs
[
name
]
=
val
return
_cum_sum_
(
**
kwargs
)
cumsum
.
__doc__
=
_cum_sum_
.
__doc__
+
"""
Examples:
>>> data = fluid.layers.data(name="input", shape=[32, 784])
>>> result = fluid.layers.cumsum(data, axis=0)
"""
__all__
+=
[
'thresholded_relu'
]
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
3c6102a3
...
...
@@ -23,6 +23,12 @@ if(NOT WITH_DISTRIBUTE)
LIST
(
REMOVE_ITEM TEST_OPS test_dist_text_classification
)
endif
(
NOT WITH_DISTRIBUTE
)
if
(
NOT
${
WITH_GPU
}
)
LIST
(
REMOVE_ITEM TEST_OPS test_conv2d_fusion_op
)
elseif
(
${
CUDNN_MAJOR_VERSION
}
VERSION_LESS 7
)
LIST
(
REMOVE_ITEM TEST_OPS test_conv2d_fusion_op
)
endif
()
list
(
REMOVE_ITEM TEST_OPS test_seq_concat_op
)
# FIXME(helin): https://github.com/PaddlePaddle/Paddle/issues/8290
list
(
REMOVE_ITEM TEST_OPS test_modified_huber_loss_op
)
# FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5184
list
(
REMOVE_ITEM TEST_OPS test_lstm_unit_op
)
# # FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5185
...
...
@@ -75,10 +81,12 @@ list(REMOVE_ITEM TEST_OPS test_dist_se_resnext)
list
(
REMOVE_ITEM TEST_OPS test_dist_transformer
)
list
(
REMOVE_ITEM TEST_OPS test_parallel_executor_transformer
)
list
(
REMOVE_ITEM TEST_OPS test_image_classification_resnet
)
list
(
REMOVE_ITEM TEST_OPS test_interpolate_op
)
foreach
(
TEST_OP
${
TEST_OPS
}
)
py_test_modules
(
${
TEST_OP
}
MODULES
${
TEST_OP
}
)
endforeach
(
TEST_OP
)
py_test_modules
(
test_warpctc_op MODULES test_warpctc_op ENVS FLAGS_warpctc_dir=
${
WARPCTC_LIB_DIR
}
SERIAL
)
py_test_modules
(
test_interpolate_op MODULES test_interpolate_op SERIAL
)
if
(
WITH_DISTRIBUTE
)
py_test_modules
(
test_dist_train MODULES test_dist_train SERIAL
)
set_tests_properties
(
test_listen_and_serv_op PROPERTIES TIMEOUT 20
)
...
...
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
3c6102a3
...
...
@@ -381,8 +381,8 @@ class OpTest(unittest.TestCase):
outs
.
sort
(
key
=
len
)
checker
(
outs
)
def
_
_
assert_is_close
(
self
,
numeric_grads
,
analytic_grads
,
names
,
max_relative_error
,
msg_prefix
):
def
_assert_is_close
(
self
,
numeric_grads
,
analytic_grads
,
names
,
max_relative_error
,
msg_prefix
):
for
a
,
b
,
name
in
six
.
moves
.
zip
(
numeric_grads
,
analytic_grads
,
names
):
abs_a
=
np
.
abs
(
a
)
...
...
@@ -451,9 +451,9 @@ class OpTest(unittest.TestCase):
analytic_grads
=
self
.
_get_gradient
(
inputs_to_check
,
place
,
output_names
,
no_grad_set
)
self
.
_
_
assert_is_close
(
numeric_grads
,
analytic_grads
,
inputs_to_check
,
max_relative_error
,
"Gradient Check On %s"
%
str
(
place
))
self
.
_assert_is_close
(
numeric_grads
,
analytic_grads
,
inputs_to_check
,
max_relative_error
,
"Gradient Check On %s"
%
str
(
place
))
@
staticmethod
def
_numpy_to_lod_tensor
(
np_value
,
lod
,
place
):
...
...
python/paddle/fluid/tests/unittests/test_group_norm_op.py
0 → 100644
浏览文件 @
3c6102a3
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
operator
import
mul
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
op_test
import
OpTest
from
testsuite
import
create_op
def
group_norm_naive
(
x
,
scale
,
bias
,
epsilon
,
groups
):
N
,
C
,
H
,
W
=
x
.
shape
G
=
groups
x
=
x
.
reshape
((
N
*
G
,
-
1
))
mean
=
np
.
mean
(
x
,
axis
=
1
,
keepdims
=
True
)
var
=
np
.
var
(
x
,
axis
=
1
,
keepdims
=
True
)
output
=
(
x
-
mean
)
/
np
.
sqrt
(
var
+
epsilon
)
output
=
output
.
reshape
((
N
,
C
,
H
,
W
))
*
scale
.
reshape
(
(
-
1
,
1
,
1
))
+
bias
.
reshape
((
-
1
,
1
,
1
))
return
output
,
mean
.
reshape
((
N
,
G
)),
var
.
reshape
((
N
,
G
))
class
TestGroupNormOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"group_norm"
self
.
data_format
=
"NCHW"
self
.
dtype
=
np
.
float32
self
.
shape
=
(
2
,
4
,
3
,
3
)
self
.
attrs
=
{
'epsilon'
:
1e-5
,
'groups'
:
2
}
self
.
compare_between_place
=
False
self
.
init_test_case
()
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
scale
=
np
.
random
.
random
([
self
.
shape
[
1
]]).
astype
(
self
.
dtype
)
bias
=
np
.
random
.
random
([
self
.
shape
[
1
]]).
astype
(
self
.
dtype
)
output
,
mean
,
var
=
group_norm_naive
(
input
,
scale
,
bias
,
self
.
attrs
[
'epsilon'
],
self
.
attrs
[
'groups'
])
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
input
),
'Scale'
:
OpTest
.
np_dtype_to_fluid_dtype
(
scale
),
'Bias'
:
OpTest
.
np_dtype_to_fluid_dtype
(
bias
)
}
self
.
outputs
=
{
'Y'
:
output
,
'Mean'
:
mean
,
'Variance'
:
var
}
def
test_check_output
(
self
):
atol
=
1e-4
place
=
core
.
CPUPlace
()
self
.
check_output_with_place
(
place
,
atol
=
atol
)
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
,
atol
=
atol
)
def
do_compare_between_place
(
self
):
if
not
core
.
is_compiled_with_cuda
():
return
place
=
core
.
CPUPlace
()
place2
=
core
.
CUDAPlace
(
0
)
self
.
scope
=
core
.
Scope
()
op_inputs
=
self
.
inputs
if
hasattr
(
self
,
"inputs"
)
else
dict
()
op_outputs
=
self
.
outputs
if
hasattr
(
self
,
"outputs"
)
else
dict
()
op_attrs
=
self
.
attrs
if
hasattr
(
self
,
"attrs"
)
else
dict
()
self
.
op
=
create_op
(
self
.
scope
,
self
.
op_type
,
op_inputs
,
op_outputs
,
op_attrs
)
inputs_to_check
=
set
([
'X'
,
'Scale'
,
'Bias'
])
output_names
=
'Y'
cpu_grads
=
self
.
_get_gradient
(
inputs_to_check
,
place
,
output_names
,
None
)
gpu_grads
=
self
.
_get_gradient
(
inputs_to_check
,
place2
,
output_names
,
None
)
self
.
_assert_is_close
(
cpu_grads
,
gpu_grads
,
inputs_to_check
,
0.005
,
"Gradient Check On %s"
%
str
(
place
))
def
test_check_grad
(
self
):
if
self
.
compare_between_place
:
self
.
do_compare_between_place
()
return
place
=
core
.
CPUPlace
()
self
.
check_grad_with_place
(
place
,
set
([
'X'
,
'Scale'
,
'Bias'
]),
'Y'
,
max_relative_error
=
0.01
)
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
set
([
'X'
,
'Scale'
,
'Bias'
]),
'Y'
,
max_relative_error
=
0.01
)
def
init_test_case
(
self
):
pass
class
TestGroupNormOp1
(
TestGroupNormOp
):
def
init_test_case
(
self
):
self
.
attrs
[
'groups'
]
=
1
class
TestGroupNormOp2
(
TestGroupNormOp
):
def
init_test_case
(
self
):
self
.
attrs
[
'groups'
]
=
4
class
TestGroupNormOpBigEps1
(
TestGroupNormOp
):
def
init_test_case
(
self
):
self
.
attrs
[
'groups'
]
=
1
self
.
attrs
[
'epsilon'
]
=
0.5
class
TestGroupNormOpBigEps2
(
TestGroupNormOp
):
def
init_test_case
(
self
):
self
.
attrs
[
'groups'
]
=
4
self
.
attrs
[
'epsilon'
]
=
0.5
class
TestGroupNormOpBigEps3
(
TestGroupNormOp
):
def
init_test_case
(
self
):
self
.
attrs
[
'epsilon'
]
=
0.5
class
TestGroupNormOpLargeData
(
TestGroupNormOp
):
def
init_test_case
(
self
):
self
.
shape
=
(
2
,
32
,
64
,
64
)
self
.
attrs
[
'groups'
]
=
8
self
.
compare_between_place
=
True
if
__name__
==
'__main__'
:
unittest
.
main
()
tools/manylinux1/Dockerfile.x64
浏览文件 @
3c6102a3
...
...
@@ -36,17 +36,21 @@ RUN cd /opt && wget -q --no-check-certificate https://github.com/google/protobuf
tar xzf protobuf-cpp-3.1.0.tar.gz && \
cd protobuf-3.1.0 && ./configure && make -j4 && make install && cd .. && rm -f protobuf-cpp-3.1.0.tar.gz
RUN wget
-O /root/requirements.txt https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/python
/requirements.txt
RUN wget
https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/python/requirements.txt -O /root
/requirements.txt
RUN LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs4/lib:${LD_LIBRARY_PATH} /opt/python/cp27-cp27mu/bin/pip install -r /root/requirements.txt && \
LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs2/lib:${LD_LIBRARY_PATH} /opt/python/cp27-cp27m/bin/pip install -r /root/requirements.txt && \
LD_LIBRARY_PATH=/opt/_internal/cpython-3.5.1/lib/:${LD_LIBRARY_PATH} /opt/_internal/cpython-3.5.1/bin/pip3 install -r /root/requirements.txt && \
LD_LIBRARY_PATH=/opt/_internal/cpython-3.6.0/lib/:${LD_LIBRARY_PATH} /opt/_internal/cpython-3.6.0/bin/pip3 install -r /root/requirements.txt && \
LD_LIBRARY_PATH=/opt/_internal/cpython-3.7.0/lib/:${LD_LIBRARY_PATH} /opt/_internal/cpython-3.7.0/bin/pip3 install -r /root/requirements.txt && \
go get github.com/Masterminds/glide && \
rm -rf /root/requirements.txt
RUN LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs4/lib:${LD_LIBRARY_PATH} /opt/python/cp27-cp27mu/bin/pip install pre-commit 'ipython==5.3.0' opencv-python && \
LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs2/lib:${LD_LIBRARY_PATH} /opt/python/cp27-cp27m/bin/pip install pre-commit 'ipython==5.3.0' opencv-python && \
LD_LIBRARY_PATH=/opt/_internal/cpython-3.5.1/lib/:${LD_LIBRARY_PATH} /opt/_internal/cpython-3.5.1/bin/pip3 install pre-commit 'ipython==5.3.0' opencv-python
LD_LIBRARY_PATH=/opt/_internal/cpython-3.5.1/lib/:${LD_LIBRARY_PATH} /opt/_internal/cpython-3.5.1/bin/pip3 install pre-commit 'ipython==5.3.0' opencv-python && \
LD_LIBRARY_PATH=/opt/_internal/cpython-3.6.0/lib/:${LD_LIBRARY_PATH} /opt/_internal/cpython-3.6.0/bin/pip3 install pre-commit 'ipython==5.3.0' opencv-python && \
LD_LIBRARY_PATH=/opt/_internal/cpython-3.7.0/lib/:${LD_LIBRARY_PATH} /opt/_internal/cpython-3.7.0/bin/pip3 install pre-commit 'ipython==5.3.0' opencv-python
RUN wget -O /opt/swig-2.0.12.tar.gz https://cytranet.dl.sourceforge.net/project/swig/swig/swig-2.0.12/swig-2.0.12.tar.gz && \
cd /opt && tar xzf swig-2.0.12.tar.gz && cd /opt/swig-2.0.12 && ./configure && make && make install && cd /opt && rm swig-2.0.12.tar.gz
...
...
tools/manylinux1/build_scripts/build.sh
浏览文件 @
3c6102a3
...
...
@@ -9,12 +9,12 @@ set -ex
# remove others to expedite build and reduce docker image size. The original
# manylinux docker image project builds many python versions.
# NOTE We added back 3.5.1, since auditwheel requires python 3.3+
CPYTHON_VERSIONS
=
"
2.7.11 3.5.
1"
CPYTHON_VERSIONS
=
"
3.7.0 3.6.0 3.5.1 2.7.1
1"
# openssl version to build, with expected sha256 hash of .tar.gz
# archive
OPENSSL_ROOT
=
openssl-1.
0.2l
OPENSSL_HASH
=
ce07195b659e75f4e1db43552860070061f156a98bb37b672b101ba6e3ddf30c
OPENSSL_ROOT
=
openssl-1.
1.0i
OPENSSL_HASH
=
ebbfc844a8c8cc0ea5dc10b86c9ce97f401837f3fa08c17b2cdadc118253cf99
EPEL_RPM_HASH
=
e5ed9ecf22d0c4279e92075a64c757ad2b38049bcf5c16c4f2b75d5f6860dc0d
DEVTOOLS_HASH
=
a8ebeb4bed624700f727179e6ef771dafe47651131a00a78b342251415646acc
PATCHELF_HASH
=
d9afdff4baeacfbc64861454f368b7f2c15c44d245293f7587bbf726bfe722fb
...
...
@@ -25,7 +25,7 @@ AUTOCONF_HASH=954bd69b391edc12d6a4a51a2dd1476543da5c6bbf05a95b59dc0dd6fd4c2969
# Dependencies for compiling Python that we want to remove from
# the final image after compiling Python
PYTHON_COMPILE_DEPS
=
"zlib-devel bzip2-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel db4-devel libpcap-devel xz-devel"
PYTHON_COMPILE_DEPS
=
"zlib-devel bzip2-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel db4-devel libpcap-devel xz-devel
libffi-devel
"
# Libraries that are allowed as part of the manylinux1 profile
MANYLINUX1_DEPS
=
"glibc-devel libstdc++-devel glib2-devel libX11-devel libXext-devel libXrender-devel mesa-libGL-devel libICE-devel libSM-devel ncurses-devel freetype-devel libpng-devel"
...
...
@@ -61,7 +61,7 @@ yum -y install bzip2 make git patch unzip bison yasm diffutils \
wget
-q
https://cmake.org/files/v3.5/cmake-3.5.2.tar.gz
&&
tar
xzf cmake-3.5.2.tar.gz
&&
\
cd
cmake-3.5.2
&&
./bootstrap
&&
\
make
-j
4
&&
make
install
&&
cd
..
&&
rm
cmake-3.5.2.tar.gz
make
-j
8
&&
make
install
&&
cd
..
&&
rm
cmake-3.5.2.tar.gz
# Install newest autoconf
...
...
@@ -77,11 +77,13 @@ mkdir -p /opt/python
build_cpythons
$CPYTHON_VERSIONS
PY35_BIN
=
/opt/python/cp35-cp35m/bin
PY36_BIN
=
/opt/python/cp36-cp36m/bin
PY37_BIN
=
/opt/python/cp37-cp37m/bin
# NOTE Since our custom manylinux image builds pythons with shared
# libpython, we need to add libpython's dir to LD_LIBRARY_PATH before running
# python.
ORIGINAL_LD_LIBRARY_PATH
=
"
${
LD_LIBRARY_PATH
}
"
LD_LIBRARY_PATH
=
"
${
ORIGINAL_LD_LIBRARY_PATH
}
:
$(
dirname
${
PY35_BIN
}
)
/lib"
LD_LIBRARY_PATH
=
"
${
ORIGINAL_LD_LIBRARY_PATH
}
:
$(
dirname
${
PY35_BIN
}
)
/lib
:
$(
dirname
${
PY36_BIN
}
)
/lib:
$(
dirname
${
PY37_BIN
}
)
/lib
"
# Our openssl doesn't know how to find the system CA trust store
# (https://github.com/pypa/manylinux/issues/53)
...
...
@@ -119,9 +121,8 @@ ln -s $PY35_BIN/auditwheel /usr/local/bin/auditwheel
# final image
yum
-y
erase wireless-tools gtk2 libX11 hicolor-icon-theme
\
avahi freetype bitstream-vera-fonts
\
${
PYTHON_COMPILE_DEPS
}
>
/dev/null 2>&1
yum
-y
install
${
MANYLINUX1_DEPS
}
yum
-y
clean all
>
/dev/null 2>&1
${
PYTHON_COMPILE_DEPS
}
>
/dev/null 2>&1
||
true
yum
-y
install
${
MANYLINUX1_DEPS
}
&&
yum
-y
clean all
>
/dev/null 2>&1
||
true
yum list installed
# we don't need libpython*.a, and they're many megabytes
find /opt/_internal
-name
'*.a'
-print0
| xargs
-0
rm
-f
...
...
tools/manylinux1/build_scripts/build_utils.sh
浏览文件 @
3c6102a3
...
...
@@ -52,9 +52,17 @@ function do_cpython_build {
# NOTE --enable-shared for generating libpython shared library needed for
# linking of some of the nupic.core test executables.
CFLAGS
=
"-Wformat"
./configure
--prefix
=
${
prefix
}
--enable-shared
$unicode_flags
>
/dev/null
make
-j2
>
/dev/null
make
install
>
/dev/null
if
[
$(
lex_pyver
$py_ver
)
-ge
$(
lex_pyver 3.7
)
]
;
then
# NOTE python 3.7 should be installed via make altinstall rather than
# make install, and we should specify the location of ssl
CFLAGS
=
"-Wformat"
./configure
--prefix
=
${
prefix
}
--with-openssl
=
/usr/local/ssl
--enable-shared
$unicode_flags
>
/dev/null
make
-j8
>
/dev/null
make altinstall
>
/dev/null
else
CFLAGS
=
"-Wformat"
./configure
--prefix
=
${
prefix
}
--enable-shared
$unicode_flags
>
/dev/null
make
-j8
>
/dev/null
make
install
>
/dev/null
fi
popd
echo
"ZZZ looking for libpython"
find /
-name
'libpython*.so*'
...
...
@@ -64,6 +72,9 @@ function do_cpython_build {
if
[
-e
${
prefix
}
/bin/python3
]
;
then
ln
-s
python3
${
prefix
}
/bin/python
fi
if
[
-e
${
prefix
}
/bin/python3.7
]
;
then
ln
-s
python3.7
${
prefix
}
/bin/python
fi
# NOTE Make libpython shared library visible to python calls below
LD_LIBRARY_PATH
=
"
${
prefix
}
/lib"
${
prefix
}
/bin/python get-pip.py
LD_LIBRARY_PATH
=
"
${
prefix
}
/lib"
${
prefix
}
/bin/pip
install
wheel
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录