提交 3b95b55f 编写于 作者: J Jacek Czaja

- Softmax MKLDNN primitive integration

removed diagnostic

- Added Unit tests for Softmax MKLDNN Forward

Added fix for div by 0 to happen in cross_entropy backward

Conflicts:
	paddle/fluid/operators/CMakeLists.txt

- Cosmetic fixes to SoftMax MKLDNN fluid operator

Added misssing softmax fluid operator file

Disabled MKLDNN softmax operator by default

Fix to softmax op unittest merge

clang_formater fixes

clang_formatter fixes

- Name changing of softmax mkldnn operator to maintin consistency
  across codebase

- updated comment

fix to comment
上级 a431f984
...@@ -78,7 +78,7 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel<T> { ...@@ -78,7 +78,7 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel<T> {
for (int64_t i = 0; i < batch_size; ++i) { for (int64_t i = 0; i < batch_size; ++i) {
PADDLE_ASSERT(label_data[i] >= 0 || label_data[i] < class_num); PADDLE_ASSERT(label_data[i] >= 0 || label_data[i] < class_num);
int64_t index = i * class_num + label_data[i]; int64_t index = i * class_num + label_data[i];
dx_data[index] = -dy_data[i] / x_data[index]; dx_data[index] = math::TolerableValue<T>()(-dy_data[i] / x_data[index]);
} }
} }
} }
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "mkldnn.hpp"
#include "paddle/fluid/operators/softmax_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include <iostream>
namespace paddle {
namespace operators {
using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;
using mkldnn::memory; // Note: paddle has also "memory" namespace
using mkldnn::primitive;
using mkldnn::softmax_forward;
using mkldnn::prop_kind;
using mkldnn::stream;
template <typename T>
class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
auto mkldnn_engine = dev_ctx.GetEngine();
const Tensor* input = ctx.Input<Tensor>("X");
Tensor* output = ctx.Output<Tensor>("Out");
PADDLE_ENFORCE(input->dims().size() == 2UL,
"The input of softmax op must be a 2D matrix.");
const T* input_data = input->data<T>();
// allocate memory for output
T* output_data = output->mutable_data<T>(ctx.GetPlace());
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
// MKL-DNN does support softmax over selected axis. Having 2D Tensor,
// we will make normalization after final eg. axis: 1
PADDLE_ENFORCE(((src_tz[0] == dst_tz[0]) && (src_tz[1] == dst_tz[1])),
"Softmax input and output dimensions should match");
// Same memory descriptor to be used for input and output
memory::dims softmax_tz = {src_tz[0], src_tz[1]};
// Currently only supports NC data format
// TODO(jczaja-intel): support more formats
auto softmax_md =
MKLDNNMemDesc({softmax_tz}, memory::f32, memory::format::nc);
// Normalization is made after innermost dimension eg. C out of NC
auto softmax_desc = softmax_forward::desc(prop_kind::forward_scoring,
softmax_md, 1 /*dim: C*/);
// create memory primitives
auto softmax_src_memory =
memory({softmax_md, mkldnn_engine}, (void*)input_data);
auto softmax_dst_memory =
memory({softmax_md, mkldnn_engine}, (void*)output_data);
auto softmax_prim_desc =
softmax_forward::primitive_desc(softmax_desc, mkldnn_engine);
auto softmax = softmax_forward(softmax_prim_desc, softmax_src_memory,
softmax_dst_memory);
std::vector<primitive> pipeline{softmax};
stream(stream::kind::eager).submit(pipeline).wait();
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_KERNEL(softmax, MKLDNN, ::paddle::platform::CPUPlace,
ops::SoftmaxMKLDNNKernel<float>);
...@@ -14,6 +14,9 @@ limitations under the License. */ ...@@ -14,6 +14,9 @@ limitations under the License. */
#include "paddle/fluid/operators/softmax_op.h" #include "paddle/fluid/operators/softmax_op.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -51,13 +54,18 @@ class SoftmaxOp : public framework::OperatorWithKernel { ...@@ -51,13 +54,18 @@ class SoftmaxOp : public framework::OperatorWithKernel {
if (use_cudnn && runtime_cudnn_support) { if (use_cudnn && runtime_cudnn_support) {
library_ = framework::LibraryType::kCUDNN; library_ = framework::LibraryType::kCUDNN;
} }
#ifdef PADDLE_WITH_MKLDNN
if (library_ == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kMKLDNN;
}
#endif
std::string data_format = ctx.Attr<std::string>("data_format"); std::string data_format = ctx.Attr<std::string>("data_format");
return framework::OpKernelType( return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(), framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
framework::StringToDataLayout(data_format), library_); framework::StringToDataLayout(data_format), library_);
} }
}; };
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker { class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
public: public:
SoftmaxOpMaker(OpProto* proto, OpAttrChecker* op_checker) SoftmaxOpMaker(OpProto* proto, OpAttrChecker* op_checker)
...@@ -77,6 +85,9 @@ class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -77,6 +85,9 @@ class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
"Defaults to \"NHWC\". Specify the data format of the output data, " "Defaults to \"NHWC\". Specify the data format of the output data, "
"the input will be transformed automatically. ") "the input will be transformed automatically. ")
.SetDefault("AnyLayout"); .SetDefault("AnyLayout");
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddComment(R"DOC( AddComment(R"DOC(
Softmax Operator. Softmax Operator.
......
...@@ -399,6 +399,9 @@ class LayerHelper(object): ...@@ -399,6 +399,9 @@ class LayerHelper(object):
if isinstance(act, basestring): if isinstance(act, basestring):
act = {'type': act} act = {'type': act}
tmp = self.create_tmp_variable(dtype=input_var.dtype) tmp = self.create_tmp_variable(dtype=input_var.dtype)
if 'use_mkldnn' in self.kwargs:
act['use_mkldnn'] = self.kwargs.get('use_mkldnn')
act_type = act.pop('type') act_type = act.pop('type')
self.append_op( self.append_op(
type=act_type, type=act_type,
......
...@@ -81,6 +81,7 @@ def fc(input, ...@@ -81,6 +81,7 @@ def fc(input,
num_flatten_dims=1, num_flatten_dims=1,
param_attr=None, param_attr=None,
bias_attr=None, bias_attr=None,
use_mkldnn=False,
act=None, act=None,
name=None): name=None):
""" """
...@@ -162,8 +163,11 @@ def fc(input, ...@@ -162,8 +163,11 @@ def fc(input,
inputs={"X": input_var, inputs={"X": input_var,
"Y": w}, "Y": w},
outputs={"Out": tmp}, outputs={"Out": tmp},
attrs={"x_num_col_dims": num_flatten_dims, attrs={
"y_num_col_dims": 1}) "x_num_col_dims": num_flatten_dims,
"y_num_col_dims": 1,
'use_mkldnn': use_mkldnn
})
mul_results.append(tmp) mul_results.append(tmp)
# sum # sum
......
...@@ -27,15 +27,20 @@ def stable_softmax(x): ...@@ -27,15 +27,20 @@ def stable_softmax(x):
class TestSoftmaxOp(OpTest): class TestSoftmaxOp(OpTest):
def setUp(self): def setUp(self):
self.use_mkldnn = False
self.op_type = "softmax" self.op_type = "softmax"
self.use_cudnn = False self.use_cudnn = False
self.init_op_type()
self.inputs = { self.inputs = {
'X': np.random.uniform(0.1, 1, [10, 10]).astype("float32") 'X': np.random.uniform(0.1, 1, [10, 10]).astype("float32")
} }
self.outputs = { self.outputs = {
'Out': np.apply_along_axis(stable_softmax, 1, self.inputs['X']) 'Out': np.apply_along_axis(stable_softmax, 1, self.inputs['X'])
} }
self.attrs = {'use_cudnn': self.use_cudnn, } self.attrs = {
'use_cudnn': self.use_cudnn,
'use_mkldnn': self.use_mkldnn
}
def init_op_type(self): def init_op_type(self):
pass pass
...@@ -61,5 +66,10 @@ class TestSoftmaxCUDNNOp(TestSoftmaxOp): ...@@ -61,5 +66,10 @@ class TestSoftmaxCUDNNOp(TestSoftmaxOp):
self.use_cudnn = True self.use_cudnn = True
class TestMKLDNN(TestSoftmaxOp):
def init_op_type(self):
self.use_mkldnn = True
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册