Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
396a519b
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
396a519b
编写于
10月 15, 2021
作者:
J
JYChen
提交者:
GitHub
10月 15, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add WiderNaive-18 base model (#4312)
* fix naive-lite-hrnet backbone * add WiderNaive-18 model
上级
dbfc8c91
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
148 addition
and
7 deletion
+148
-7
configs/keypoint/README.md
configs/keypoint/README.md
+1
-0
configs/keypoint/lite_hrnet/wider_naive_hrnet_18_256x192_coco.yml
...keypoint/lite_hrnet/wider_naive_hrnet_18_256x192_coco.yml
+140
-0
ppdet/modeling/backbones/lite_hrnet.py
ppdet/modeling/backbones/lite_hrnet.py
+7
-7
未找到文件。
configs/keypoint/README.md
浏览文件 @
396a519b
...
...
@@ -23,6 +23,7 @@ COCO数据集
| HRNet-w32 | 384x288 | 77.8 |
[
hrnet_w32_384x288.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams
)
|
[
config
](
./hrnet/hrnet_w32_384x288.yml
)
|
| HRNet-w32+DarkPose | 256x192 | 78.0 |
[
dark_hrnet_w32_256x192.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_256x192.pdparams
)
|
[
config
](
./hrnet/dark_hrnet_w32_256x192.yml
)
|
| HRNet-w32+DarkPose | 384x288 | 78.3 |
[
dark_hrnet_w32_384x288.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_384x288.pdparams
)
|
[
config
](
./hrnet/dark_hrnet_w32_384x288.yml
)
|
| WiderNaiveHRNet-18 | 256x192 | 67.6(+DARK 68.4) |
[
wider_naive_hrnet_18_256x192_coco.pdparams
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/wider_naive_hrnet_18_256x192_coco.pdparams
)
|
[
config
](
./lite_hrnet/wider_naive_hrnet_18_256x192_coco.yml
)
|
| LiteHRNet-18 | 256x192 | 66.5 |
[
lite_hrnet_18_256x192_coco.pdparams
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_18_256x192_coco.pdparams
)
|
[
config
](
./lite_hrnet/lite_hrnet_18_256x192_coco.yml
)
|
| LiteHRNet-18 | 384x288 | 69.7 |
[
lite_hrnet_18_384x288_coco.pdparams
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_18_384x288_coco.pdparams
)
|
[
config
](
./lite_hrnet/lite_hrnet_18_384x288_coco.yml
)
|
| LiteHRNet-30 | 256x192 | 69.4 |
[
lite_hrnet_30_256x192_coco.pdparams
](
https://bj.bcebos.com/v1/paddledet/models/keypoint/lite_hrnet_30_256x192_coco.pdparams
)
|
[
config
](
./lite_hrnet/lite_hrnet_30_256x192_coco.yml
)
|
...
...
configs/keypoint/lite_hrnet/wider_naive_hrnet_18_256x192_coco.yml
0 → 100644
浏览文件 @
396a519b
use_gpu
:
true
log_iter
:
5
save_dir
:
output
snapshot_epoch
:
10
weights
:
output/wider_naive_hrnet_18_256x192_coco/model_final
epoch
:
210
num_joints
:
&num_joints
17
pixel_std
:
&pixel_std
200
metric
:
KeyPointTopDownCOCOEval
num_classes
:
1
train_height
:
&train_height
256
train_width
:
&train_width
192
trainsize
:
&trainsize
[
*train_width
,
*train_height
]
hmsize
:
&hmsize
[
48
,
64
]
flip_perm
:
&flip_perm
[[
1
,
2
],
[
3
,
4
],
[
5
,
6
],
[
7
,
8
],
[
9
,
10
],
[
11
,
12
],
[
13
,
14
],
[
15
,
16
]]
#####model
architecture
:
TopDownHRNet
TopDownHRNet
:
backbone
:
LiteHRNet
post_process
:
HRNetPostProcess
flip_perm
:
*flip_perm
num_joints
:
*num_joints
width
:
&width
40
loss
:
KeyPointMSELoss
use_dark
:
false
LiteHRNet
:
network_type
:
wider_naive
freeze_at
:
-1
freeze_norm
:
false
return_idx
:
[
0
]
KeyPointMSELoss
:
use_target_weight
:
true
loss_scale
:
1.0
#####optimizer
LearningRate
:
base_lr
:
0.002
schedulers
:
-
!PiecewiseDecay
milestones
:
[
170
,
200
]
gamma
:
0.1
-
!LinearWarmup
start_factor
:
0.001
steps
:
500
OptimizerBuilder
:
optimizer
:
type
:
Adam
regularizer
:
factor
:
0.0
type
:
L2
#####data
TrainDataset
:
!KeypointTopDownCocoDataset
image_dir
:
train2017
anno_path
:
annotations/person_keypoints_train2017.json
dataset_dir
:
dataset/coco
num_joints
:
*num_joints
trainsize
:
*trainsize
pixel_std
:
*pixel_std
use_gt_bbox
:
True
EvalDataset
:
!KeypointTopDownCocoDataset
image_dir
:
val2017
anno_path
:
annotations/person_keypoints_val2017.json
dataset_dir
:
dataset/coco
num_joints
:
*num_joints
trainsize
:
*trainsize
pixel_std
:
*pixel_std
use_gt_bbox
:
True
image_thre
:
0.0
TestDataset
:
!ImageFolder
anno_path
:
dataset/coco/keypoint_imagelist.txt
worker_num
:
2
global_mean
:
&global_mean
[
0.485
,
0.456
,
0.406
]
global_std
:
&global_std
[
0.229
,
0.224
,
0.225
]
TrainReader
:
sample_transforms
:
-
RandomFlipHalfBodyTransform
:
scale
:
0.25
rot
:
30
num_joints_half_body
:
8
prob_half_body
:
0.3
pixel_std
:
*pixel_std
trainsize
:
*trainsize
upper_body_ids
:
[
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
]
flip_pairs
:
*flip_perm
-
TopDownAffine
:
trainsize
:
*trainsize
-
ToHeatmapsTopDown
:
hmsize
:
*hmsize
sigma
:
2
batch_transforms
:
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
64
shuffle
:
true
drop_last
:
false
EvalReader
:
sample_transforms
:
-
TopDownAffine
:
trainsize
:
*trainsize
batch_transforms
:
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
16
TestReader
:
inputs_def
:
image_shape
:
[
3
,
*train_height
,
*train_width
]
sample_transforms
:
-
Decode
:
{}
-
TopDownEvalAffine
:
trainsize
:
*trainsize
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
1
ppdet/modeling/backbones/lite_hrnet.py
浏览文件 @
396a519b
...
...
@@ -271,7 +271,7 @@ class ShuffleUnit(nn.Layer):
norm_decay
=
0.
):
super
(
ShuffleUnit
,
self
).
__init__
()
branch_channel
=
out_channel
//
2
s
tride
=
self
.
stride
s
elf
.
stride
=
stride
if
self
.
stride
==
1
:
assert
(
in_channel
==
branch_channel
*
2
,
...
...
@@ -544,11 +544,11 @@ class LiteHRNetModule(nn.Layer):
norm_decay
=
norm_decay
))
return
nn
.
Sequential
(
*
layers
)
def
_make_naive_branchs
(
self
,
num_branches
,
num_blocks
,
freeze_norm
=
False
,
norm_decay
=
0.
):
def
_make_naive_branch
e
s
(
self
,
num_branches
,
num_blocks
,
freeze_norm
=
False
,
norm_decay
=
0.
):
branches
=
[]
for
branch_idx
in
range
(
num_branches
):
layers
=
[]
...
...
@@ -644,7 +644,7 @@ class LiteHRNetModule(nn.Layer):
out
=
self
.
layers
(
x
)
elif
self
.
module_type
==
'NAIVE'
:
for
i
in
range
(
self
.
num_branches
):
x
[
i
]
=
self
.
layers
(
x
[
i
])
x
[
i
]
=
self
.
layers
[
i
]
(
x
[
i
])
out
=
x
if
self
.
with_fuse
:
out_fuse
=
[]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录