未验证 提交 376c25c0 编写于 作者: W Wenyu 提交者: GitHub

update readme, add yoloe (#5703)

上级 98d57aa2
...@@ -17,13 +17,13 @@ ...@@ -17,13 +17,13 @@
## <img src="https://user-images.githubusercontent.com/48054808/157793354-6e7f381a-0aa6-4bb7-845c-9acf2ecc05c3.png" width="20"/> 产品动态 ## <img src="https://user-images.githubusercontent.com/48054808/157793354-6e7f381a-0aa6-4bb7-845c-9acf2ecc05c3.png" width="20"/> 产品动态
- 🔥 **2022.3.24:PaddleDetection发布[release/2.4版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)** - 🔥 **2022.3.24:PaddleDetection发布[release/2.4版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)**
- 发布高精度云边一体SOTA目标检测模型[PP-YOLOE](configs/ppyoloe),COCO数据集精度51.4%,V100预测速度78.1 FPS,支持混合精度训练,训练较PP-YOLOv2加速33%,全系列多尺度模型,满足不同硬件算力需求,可适配服务器、边缘端GPU及其他服务器端AI加速卡。 - 发布高精度云边一体SOTA目标检测模型[PP-YOLOE](configs/ppyoloe),COCO数据集精度51.4%,V100预测速度78.1 FPS,支持混合精度训练,训练较PP-YOLOv2加速33%,全系列多尺度模型,满足不同硬件算力需求,可适配服务器、边缘端GPU及其他服务器端AI加速卡。
- 发布边缘端和CPU端超轻量SOTA目标检测模型[PP-PicoDet增强版](configs/picodet),精度提升2%左右,CPU预测速度提升63%,新增参数量0.7M的PicoDet-XS模型,提供模型稀疏化和量化功能,便于模型加速,各类硬件无需单独开发后处理模块,降低部署门槛。 - 发布边缘端和CPU端超轻量SOTA目标检测模型[PP-PicoDet增强版](configs/picodet),精度提升2%左右,CPU预测速度提升63%,新增参数量0.7M的PicoDet-XS模型,提供模型稀疏化和量化功能,便于模型加速,各类硬件无需单独开发后处理模块,降低部署门槛。
- 发布实时行人分析工具[PP-Human](deploy/pphuman),支持行人跟踪、人流量统计、人体属性识别与摔倒检测四大能力,基于真实场景数据特殊优化,精准识别各类摔倒姿势,适应不同环境背景、光线及摄像角度。 - 发布实时行人分析工具[PP-Human](deploy/pphuman),支持行人跟踪、人流量统计、人体属性识别与摔倒检测四大能力,基于真实场景数据特殊优化,精准识别各类摔倒姿势,适应不同环境背景、光线及摄像角度。
- 2021.11.03: PaddleDetection发布[release/2.3版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3) - 2021.11.03: PaddleDetection发布[release/2.3版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3)
- 发布轻量级检测特色模型⚡[PP-PicoDet](configs/picodet),0.99m的参数量可实现精度30+mAP、速度150FPS。 - 发布轻量级检测特色模型⚡[PP-PicoDet](configs/picodet),0.99m的参数量可实现精度30+mAP、速度150FPS。
- 发布轻量级关键点特色模型⚡[PP-TinyPose](configs/keypoint/tiny_pose),单人场景FP16推理可达122FPS、51.8AP,具有精度高速度快、检测人数无限制、微小目标效果好的优势。 - 发布轻量级关键点特色模型⚡[PP-TinyPose](configs/keypoint/tiny_pose),单人场景FP16推理可达122FPS、51.8AP,具有精度高速度快、检测人数无限制、微小目标效果好的优势。
- 发布实时跟踪系统[PP-Tracking](deploy/pptracking),覆盖单、多镜头下行人、车辆、多类别跟踪,对小目标、密集型特殊优化,提供人、车流量技术解决方案。 - 发布实时跟踪系统[PP-Tracking](deploy/pptracking),覆盖单、多镜头下行人、车辆、多类别跟踪,对小目标、密集型特殊优化,提供人、车流量技术解决方案。
...@@ -32,13 +32,13 @@ ...@@ -32,13 +32,13 @@
- 新增轻量化关键点模型[Lite HRNet](configs/keypoint)关键点模型并支持Paddle Lite部署。 - 新增轻量化关键点模型[Lite HRNet](configs/keypoint)关键点模型并支持Paddle Lite部署。
- 2021.08.10: PaddleDetection发布[release/2.2版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2) - 2021.08.10: PaddleDetection发布[release/2.2版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2)
- 发布Transformer检测系列模型,包括[DETR](configs/detr), [Deformable DETR](configs/deformable_detr), [Sparse RCNN](configs/sparse_rcnn) - 发布Transformer检测系列模型,包括[DETR](configs/detr), [Deformable DETR](configs/deformable_detr), [Sparse RCNN](configs/sparse_rcnn)
- 新增Dark HRNet关键点模型和MPII数据集[关键点模型](configs/keypoint) - 新增Dark HRNet关键点模型和MPII数据集[关键点模型](configs/keypoint)
- 新增[人头](configs/mot/headtracking21)[车辆](configs/mot/vehicle)跟踪垂类模型。 - 新增[人头](configs/mot/headtracking21)[车辆](configs/mot/vehicle)跟踪垂类模型。
- 2021.05.20: PaddleDetection发布[release/2.1版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1) - 2021.05.20: PaddleDetection发布[release/2.1版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1)
- 新增[关键点检测](configs/keypoint),模型包括HigherHRNet,HRNet。 - 新增[关键点检测](configs/keypoint),模型包括HigherHRNet,HRNet。
- 新增[多目标跟踪](configs/mot)能力,模型包括DeepSORT,JDE,FairMOT。 - 新增[多目标跟踪](configs/mot)能力,模型包括DeepSORT,JDE,FairMOT。
- 发布PPYOLO系列模型压缩模型,新增[ONNX模型导出教程](deploy/EXPORT_ONNX_MODEL.md) - 发布PPYOLO系列模型压缩模型,新增[ONNX模型导出教程](deploy/EXPORT_ONNX_MODEL.md)
...@@ -71,7 +71,7 @@ ...@@ -71,7 +71,7 @@
- 如果你发现任何PaddleDetection存在的问题或者是建议, 欢迎通过[GitHub Issues](https://github.com/PaddlePaddle/PaddleDetection/issues)给我们提issues。 - 如果你发现任何PaddleDetection存在的问题或者是建议, 欢迎通过[GitHub Issues](https://github.com/PaddlePaddle/PaddleDetection/issues)给我们提issues。
- 欢迎加入PaddleDetection QQ、微信(添加并回复小助手“检测”)用户群 - 欢迎加入PaddleDetection QQ、微信(添加并回复小助手“检测”)用户群
<div align="center"> <div align="center">
<img src="https://user-images.githubusercontent.com/48054808/157800129-2f9a0b72-6bb8-4b10-8310-93ab1639253f.jpg" width = "200" /> <img src="https://user-images.githubusercontent.com/48054808/157800129-2f9a0b72-6bb8-4b10-8310-93ab1639253f.jpg" width = "200" />
<img src="https://user-images.githubusercontent.com/48054808/160531099-9811bbe6-cfbb-47d5-8bdb-c2b40684d7dd.png" width = "200" /> <img src="https://user-images.githubusercontent.com/48054808/160531099-9811bbe6-cfbb-47d5-8bdb-c2b40684d7dd.png" width = "200" />
...@@ -244,6 +244,7 @@ ...@@ -244,6 +244,7 @@
- `Cascade-Faster-RCNN``Cascade-Faster-RCNN-ResNet50vd-DCN`,PaddleDetection将其优化到COCO数据mAP为47.8%时推理速度为20FPS - `Cascade-Faster-RCNN``Cascade-Faster-RCNN-ResNet50vd-DCN`,PaddleDetection将其优化到COCO数据mAP为47.8%时推理速度为20FPS
- `PP-YOLO`在COCO数据集精度45.9%,Tesla V100预测速度72.9FPS,精度速度均优于[YOLOv4](https://arxiv.org/abs/2004.10934) - `PP-YOLO`在COCO数据集精度45.9%,Tesla V100预测速度72.9FPS,精度速度均优于[YOLOv4](https://arxiv.org/abs/2004.10934)
- `PP-YOLO v2`是对`PP-YOLO`模型的进一步优化,在COCO数据集精度49.5%,Tesla V100预测速度68.9FPS - `PP-YOLO v2`是对`PP-YOLO`模型的进一步优化,在COCO数据集精度49.5%,Tesla V100预测速度68.9FPS
- `PP-YOLOE`是对`PP-YOLO v2`模型的进一步优化,在COCO数据集精度51.4%,Tesla V100预测速度78.1FPS
- 图中模型均可在[模型库](#模型库)中获取 - 图中模型均可在[模型库](#模型库)中获取
各移动端模型在COCO数据集上精度mAP和高通骁龙865处理器上预测速度(FPS)对比图。 各移动端模型在COCO数据集上精度mAP和高通骁龙865处理器上预测速度(FPS)对比图。
...@@ -269,16 +270,16 @@ ...@@ -269,16 +270,16 @@
### 进阶教程 ### 进阶教程
- 参数配置 - 参数配置
- [RCNN参数说明](docs/tutorials/config_annotation/faster_rcnn_r50_fpn_1x_coco_annotation.md) - [RCNN参数说明](docs/tutorials/config_annotation/faster_rcnn_r50_fpn_1x_coco_annotation.md)
- [PP-YOLO参数说明](docs/tutorials/config_annotation/ppyolo_r50vd_dcn_1x_coco_annotation.md) - [PP-YOLO参数说明](docs/tutorials/config_annotation/ppyolo_r50vd_dcn_1x_coco_annotation.md)
- 模型压缩(基于[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim)) - 模型压缩(基于[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim))
- [剪裁/量化/蒸馏教程](configs/slim) - [剪裁/量化/蒸馏教程](configs/slim)
- [推理部署](deploy/README.md) - [推理部署](deploy/README.md)
- [模型导出教程](deploy/EXPORT_MODEL.md) - [模型导出教程](deploy/EXPORT_MODEL.md)
- [Paddle Inference部署](deploy/README.md) - [Paddle Inference部署](deploy/README.md)
- [Python端推理部署](deploy/python) - [Python端推理部署](deploy/python)
...@@ -289,7 +290,7 @@ ...@@ -289,7 +290,7 @@
- [推理benchmark](deploy/BENCHMARK_INFER.md) - [推理benchmark](deploy/BENCHMARK_INFER.md)
- 进阶开发 - 进阶开发
- [数据处理模块](docs/advanced_tutorials/READER.md) - [数据处理模块](docs/advanced_tutorials/READER.md)
- [新增检测模型](docs/advanced_tutorials/MODEL_TECHNICAL.md) - [新增检测模型](docs/advanced_tutorials/MODEL_TECHNICAL.md)
......
...@@ -17,7 +17,7 @@ English | [简体中文](README_cn.md) ...@@ -17,7 +17,7 @@ English | [简体中文](README_cn.md)
## <img src="https://user-images.githubusercontent.com/48054808/157793354-6e7f381a-0aa6-4bb7-845c-9acf2ecc05c3.png" width="20"/> Latest News ## <img src="https://user-images.githubusercontent.com/48054808/157793354-6e7f381a-0aa6-4bb7-845c-9acf2ecc05c3.png" width="20"/> Latest News
- 🔥 **2022.3.24:PaddleDetection [release 2.4 version](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)** - 🔥 **2022.3.24:PaddleDetection [release 2.4 version](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)**
- Release GPU SOTA object detection series models (s/m/l/x) [PP-YOLOE](configs/ppyoloe), achieving mAP as 51.4% on COCO test dataset and 78.1 FPS on Nvidia V100, supporting AMP training and its training speed is 33% faster than PP-YOLOv2. - Release GPU SOTA object detection series models (s/m/l/x) [PP-YOLOE](configs/ppyoloe), achieving mAP as 51.4% on COCO test dataset and 78.1 FPS on Nvidia V100, supporting AMP training and its training speed is 33% faster than PP-YOLOv2.
- Release enhanced models of [PP-PicoDet](configs/picodet), including PP-PicoDet-XS model with 0.7M parameters, its mAP promoted ~2% on COCO, inference speed accelerated 63% on CPU, and post-processing integrated into the network to optimize deployment pipeline. - Release enhanced models of [PP-PicoDet](configs/picodet), including PP-PicoDet-XS model with 0.7M parameters, its mAP promoted ~2% on COCO, inference speed accelerated 63% on CPU, and post-processing integrated into the network to optimize deployment pipeline.
- Release real-time human analysis tool [PP-Human](deploy/pphuman), which is based on data from real-life situations, supporting pedestrian detection, attribute recognition, human tracking, multi-camera tracking, human statistics and action recognition. - Release real-time human analysis tool [PP-Human](deploy/pphuman), which is based on data from real-life situations, supporting pedestrian detection, attribute recognition, human tracking, multi-camera tracking, human statistics and action recognition.
...@@ -46,20 +46,20 @@ PaddleDetection is an end-to-end object detection development kit based on Paddl ...@@ -46,20 +46,20 @@ PaddleDetection is an end-to-end object detection development kit based on Paddl
## <img src="https://user-images.githubusercontent.com/48054808/157799599-e6a66855-bac6-4e75-b9c0-96e13cb9612f.png" width="20"/> Features ## <img src="https://user-images.githubusercontent.com/48054808/157799599-e6a66855-bac6-4e75-b9c0-96e13cb9612f.png" width="20"/> Features
- **Rich Models** - **Rich Models**
PaddleDetection provides rich of models, including **250+ pre-trained models** such as **object detection**, **instance segmentation**, **face detection**, **keypoint detection**, **multi-object tracking** and etc, covering a variety of **global competition champion** schemes. PaddleDetection provides rich of models, including **250+ pre-trained models** such as **object detection**, **instance segmentation**, **face detection**, **keypoint detection**, **multi-object tracking** and etc, covering a variety of **global competition champion** schemes.
- **Highly Flexible** - **Highly Flexible**
Components are designed to be modular. Model architectures, as well as data preprocess pipelines and optimization strategies, can be easily customized with simple configuration changes. Components are designed to be modular. Model architectures, as well as data preprocess pipelines and optimization strategies, can be easily customized with simple configuration changes.
- **Production Ready** - **Production Ready**
From data augmentation, constructing models, training, compression, depolyment, get through end to end, and complete support for multi-architecture, multi-device deployment for **cloud and edge device**. From data augmentation, constructing models, training, compression, depolyment, get through end to end, and complete support for multi-architecture, multi-device deployment for **cloud and edge device**.
- **High Performance** - **High Performance**
Based on the high performance core of PaddlePaddle, advantages of training speed and memory occupation are obvious. FP16 training and multi-machine training are supported as well. Based on the high performance core of PaddlePaddle, advantages of training speed and memory occupation are obvious. FP16 training and multi-machine training are supported as well.
## <img title="" src="https://user-images.githubusercontent.com/48054808/157800467-2a9946ad-30d1-49a9-b9db-ba33413d9c90.png" alt="" width="20"> Community ## <img title="" src="https://user-images.githubusercontent.com/48054808/157800467-2a9946ad-30d1-49a9-b9db-ba33413d9c90.png" alt="" width="20"> Community
...@@ -67,7 +67,7 @@ PaddleDetection is an end-to-end object detection development kit based on Paddl ...@@ -67,7 +67,7 @@ PaddleDetection is an end-to-end object detection development kit based on Paddl
- If you have any problem or suggestion on PaddleDetection, please send us issues through [GitHub Issues](https://github.com/PaddlePaddle/PaddleDetection/issues). - If you have any problem or suggestion on PaddleDetection, please send us issues through [GitHub Issues](https://github.com/PaddlePaddle/PaddleDetection/issues).
- Welcome to Join PaddleDetection QQ Group and Wechat Group (reply "Det"). - Welcome to Join PaddleDetection QQ Group and Wechat Group (reply "Det").
<div align="center"> <div align="center">
<img src="https://user-images.githubusercontent.com/48054808/157800129-2f9a0b72-6bb8-4b10-8310-93ab1639253f.jpg" width = "200" /> <img src="https://user-images.githubusercontent.com/48054808/157800129-2f9a0b72-6bb8-4b10-8310-93ab1639253f.jpg" width = "200" />
<img src="https://user-images.githubusercontent.com/48054808/160531099-9811bbe6-cfbb-47d5-8bdb-c2b40684d7dd.png" width = "200" /> <img src="https://user-images.githubusercontent.com/48054808/160531099-9811bbe6-cfbb-47d5-8bdb-c2b40684d7dd.png" width = "200" />
...@@ -243,7 +243,7 @@ The relationship between COCO mAP and FPS on Tesla V100 of representative models ...@@ -243,7 +243,7 @@ The relationship between COCO mAP and FPS on Tesla V100 of representative models
- `PP-YOLO` achieves mAP of 45.9% on COCO and 72.9FPS on Tesla V100. Both precision and speed surpass [YOLOv4](https://arxiv.org/abs/2004.10934) - `PP-YOLO` achieves mAP of 45.9% on COCO and 72.9FPS on Tesla V100. Both precision and speed surpass [YOLOv4](https://arxiv.org/abs/2004.10934)
- `PP-YOLO v2` is optimized version of `PP-YOLO` which has mAP of 49.5% and 68.9FPS on Tesla V100 - `PP-YOLO v2` is optimized version of `PP-YOLO` which has mAP of 49.5% and 68.9FPS on Tesla V100
- `PP-YOLOE` is optimized version of `PP-YOLO v2` which has mAP of 51.4% and 78.1FPS on Tesla V100
- All these models can be get in [Model Zoo](#ModelZoo) - All these models can be get in [Model Zoo](#ModelZoo)
The relationship between COCO mAP and FPS on Qualcomm Snapdragon 865 of representative mobile side models. The relationship between COCO mAP and FPS on Qualcomm Snapdragon 865 of representative mobile side models.
...@@ -268,16 +268,16 @@ The relationship between COCO mAP and FPS on Qualcomm Snapdragon 865 of represen ...@@ -268,16 +268,16 @@ The relationship between COCO mAP and FPS on Qualcomm Snapdragon 865 of represen
### Advanced Tutorials ### Advanced Tutorials
- Parameter configuration - Parameter configuration
- [Parameter configuration for RCNN model](docs/tutorials/config_annotation/faster_rcnn_r50_fpn_1x_coco_annotation_en.md) - [Parameter configuration for RCNN model](docs/tutorials/config_annotation/faster_rcnn_r50_fpn_1x_coco_annotation_en.md)
- [Parameter configuration for PP-YOLO model](docs/tutorials/config_annotation/ppyolo_r50vd_dcn_1x_coco_annotation_en.md) - [Parameter configuration for PP-YOLO model](docs/tutorials/config_annotation/ppyolo_r50vd_dcn_1x_coco_annotation_en.md)
- Model Compression(Based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim)) - Model Compression(Based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim))
- [Prune/Quant/Distill](configs/slim) - [Prune/Quant/Distill](configs/slim)
- Inference and deployment - Inference and deployment
- [Export model for inference](deploy/EXPORT_MODEL_en.md) - [Export model for inference](deploy/EXPORT_MODEL_en.md)
- [Paddle Inference](deploy/README_en.md) - [Paddle Inference](deploy/README_en.md)
- [Python inference](deploy/python) - [Python inference](deploy/python)
...@@ -289,7 +289,7 @@ The relationship between COCO mAP and FPS on Qualcomm Snapdragon 865 of represen ...@@ -289,7 +289,7 @@ The relationship between COCO mAP and FPS on Qualcomm Snapdragon 865 of represen
- [Exporting to ONNX and using OpenVINO for inference](docs/advanced_tutorials/openvino_inference/README.md) - [Exporting to ONNX and using OpenVINO for inference](docs/advanced_tutorials/openvino_inference/README.md)
- Advanced development - Advanced development
- [New data augmentations](docs/advanced_tutorials/READER_en.md) - [New data augmentations](docs/advanced_tutorials/READER_en.md)
- [New detection algorithms](docs/advanced_tutorials/MODEL_TECHNICAL.md) - [New detection algorithms](docs/advanced_tutorials/MODEL_TECHNICAL.md)
......
docs/images/fps_map.png

376.4 KB | W: | H:

docs/images/fps_map.png

428.6 KB | W: | H:

docs/images/fps_map.png
docs/images/fps_map.png
docs/images/fps_map.png
docs/images/fps_map.png
  • 2-up
  • Swipe
  • Onion skin
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册