未验证 提交 366eb59c 编写于 作者: K Kaipeng Deng 提交者: GitHub

add prune export_model (#378)

上级 cc84b7ab
...@@ -67,3 +67,15 @@ python ../../prune/eval.py \ ...@@ -67,3 +67,15 @@ python ../../prune/eval.py \
--pruned_ratios="0.2,0.3,0.4" \ --pruned_ratios="0.2,0.3,0.4" \
-o weights=output/yolov3_mobilenet_v1_voc/model_final -o weights=output/yolov3_mobilenet_v1_voc/model_final
``` ```
## 6. 模型导出
如果想要将剪裁模型接入到C++预测库或者Serving服务,可通过`../../prune/export_model.py`导出该模型。
```
python ../../prune/export_model.py \
-c ../../../configs/yolov3_mobilenet_v1_voc.yml \
--pruned_params "yolo_block.0.0.0.conv.weights,yolo_block.0.0.1.conv.weights,yolo_block.0.1.0.conv.weights" \
--pruned_ratios="0.2,0.3,0.4" \
-o weights=output/yolov3_mobilenet_v1_voc/model_final
```
...@@ -74,7 +74,19 @@ python eval.py \ ...@@ -74,7 +74,19 @@ python eval.py \
-o weights=output/yolov3_mobilenet_v1_voc/model_final -o weights=output/yolov3_mobilenet_v1_voc/model_final
``` ```
## 7. 扩展模型 ## 7. 模型导出
如果想要将剪裁模型接入到C++预测库或者Serving服务,可通过`export_model.py`导出该模型。
```
python export_model.py \
-c ../../configs/yolov3_mobilenet_v1_voc.yml \
--pruned_params "yolo_block.0.0.0.conv.weights,yolo_block.0.0.1.conv.weights,yolo_block.0.1.0.conv.weights" \
--pruned_ratios="0.2,0.3,0.4" \
-o weights=output/yolov3_mobilenet_v1_voc/model_final
```
## 8. 扩展模型
如果需要对自己的模型进行修改,可以参考`prune.py`中对`paddleslim.prune.Pruner`接口的调用方式,基于自己的模型训练脚本进行修改。 如果需要对自己的模型进行修改,可以参考`prune.py`中对`paddleslim.prune.Pruner`接口的调用方式,基于自己的模型训练脚本进行修改。
本节我们介绍的剪裁示例,需要用户根据先验知识指定每层的剪裁率,除此之外,PaddleSlim还提供了敏感度分析等功能,协助用户选择合适的剪裁率。更多详情请参考:[PaddleSlim使用文档](https://paddlepaddle.github.io/PaddleSlim/) 本节我们介绍的剪裁示例,需要用户根据先验知识指定每层的剪裁率,除此之外,PaddleSlim还提供了敏感度分析等功能,协助用户选择合适的剪裁率。更多详情请参考:[PaddleSlim使用文档](https://paddlepaddle.github.io/PaddleSlim/)
...@@ -176,7 +176,7 @@ def main(): ...@@ -176,7 +176,7 @@ def main():
# load model # load model
exe.run(startup_prog) exe.run(startup_prog)
if 'weights' in cfg: if 'weights' in cfg:
checkpoint.load_params(exe, eval_prog, cfg.weights) checkpoint.load_checkpoint(exe, eval_prog, cfg.weights)
results = eval_run(exe, compile_program, loader, keys, values, cls, cfg, results = eval_run(exe, compile_program, loader, keys, values, cls, cfg,
sub_eval_prog, sub_keys, sub_values) sub_eval_prog, sub_keys, sub_values)
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from paddle import fluid
from ppdet.core.workspace import load_config, merge_config, create
from ppdet.utils.cli import ArgsParser
import ppdet.utils.checkpoint as checkpoint
from paddleslim.prune import Pruner
from paddleslim.analysis import flops
import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
def prune_feed_vars(feeded_var_names, target_vars, prog):
"""
Filter out feed variables which are not in program,
pruned feed variables are only used in post processing
on model output, which are not used in program, such
as im_id to identify image order, im_shape to clip bbox
in image.
"""
exist_var_names = []
prog = prog.clone()
prog = prog._prune(targets=target_vars)
global_block = prog.global_block()
for name in feeded_var_names:
try:
v = global_block.var(name)
exist_var_names.append(str(v.name))
except Exception:
logger.info('save_inference_model pruned unused feed '
'variables {}'.format(name))
pass
return exist_var_names
def save_infer_model(FLAGS, exe, feed_vars, test_fetches, infer_prog):
cfg_name = os.path.basename(FLAGS.config).split('.')[0]
save_dir = os.path.join(FLAGS.output_dir, cfg_name)
feed_var_names = [var.name for var in feed_vars.values()]
target_vars = list(test_fetches.values())
feed_var_names = prune_feed_vars(feed_var_names, target_vars, infer_prog)
logger.info("Export inference model to {}, input: {}, output: "
"{}...".format(save_dir, feed_var_names,
[str(var.name) for var in target_vars]))
fluid.io.save_inference_model(
save_dir,
feeded_var_names=feed_var_names,
target_vars=target_vars,
executor=exe,
main_program=infer_prog,
params_filename="__params__")
def main():
cfg = load_config(FLAGS.config)
if 'architecture' in cfg:
main_arch = cfg.architecture
else:
raise ValueError("'architecture' not specified in config file.")
merge_config(FLAGS.opt)
# Use CPU for exporting inference model instead of GPU
place = fluid.CPUPlace()
exe = fluid.Executor(place)
model = create(main_arch)
startup_prog = fluid.Program()
infer_prog = fluid.Program()
with fluid.program_guard(infer_prog, startup_prog):
with fluid.unique_name.guard():
inputs_def = cfg['TestReader']['inputs_def']
inputs_def['use_dataloader'] = False
feed_vars, _ = model.build_inputs(**inputs_def)
test_fetches = model.test(feed_vars)
infer_prog = infer_prog.clone(True)
pruned_params = FLAGS.pruned_params
assert (
FLAGS.pruned_params is not None
), "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option."
pruned_params = FLAGS.pruned_params.strip().split(",")
logger.info("pruned params: {}".format(pruned_params))
pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(",")]
logger.info("pruned ratios: {}".format(pruned_ratios))
assert (len(pruned_params) == len(pruned_ratios)
), "The length of pruned params and pruned ratios should be equal."
assert (pruned_ratios > [0] * len(pruned_ratios) and
pruned_ratios < [1] * len(pruned_ratios)
), "The elements of pruned ratios should be in range (0, 1)."
base_flops = flops(infer_prog)
pruner = Pruner()
infer_prog, _, _ = pruner.prune(
infer_prog,
fluid.global_scope(),
params=pruned_params,
ratios=pruned_ratios,
place=place,
only_graph=True)
pruned_flops = flops(infer_prog)
logger.info("pruned FLOPS: {}".format(
float(base_flops - pruned_flops) / base_flops))
exe.run(startup_prog)
checkpoint.load_checkpoint(exe, infer_prog, cfg.weights)
save_infer_model(FLAGS, exe, feed_vars, test_fetches, infer_prog)
if __name__ == '__main__':
parser = ArgsParser()
parser.add_argument(
"--output_dir",
type=str,
default="output",
help="Directory for storing the output model files.")
parser.add_argument(
"-p",
"--pruned_params",
default=None,
type=str,
help="The parameters to be pruned when calculating sensitivities.")
parser.add_argument(
"--pruned_ratios",
default=None,
type=str,
help="The ratios pruned iteratively for each parameter when calculating sensitivities."
)
FLAGS = parser.parse_args()
main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册