Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
3304de7a
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3304de7a
编写于
9月 08, 2016
作者:
Y
Yu Yang
提交者:
GitHub
9月 08, 2016
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #48 from reyoung/master
Merge Baidu Changes into github
上级
c3c76d69
dbaabc94
变更
22
隐藏空白更改
内联
并排
Showing
22 changed file
with
171 addition
and
168 deletion
+171
-168
CMakeLists.txt
CMakeLists.txt
+1
-1
doc/build/docker_install.md
doc/build/docker_install.md
+8
-8
doc/demo/imagenet_model/resnet_model.md
doc/demo/imagenet_model/resnet_model.md
+1
-1
doc/demo/rec/ml_regression.rst
doc/demo/rec/ml_regression.rst
+1
-1
doc/ui/predict/predict_sample.py
doc/ui/predict/predict_sample.py
+4
-4
doc/ui/predict/swig_py_paddle_en.rst
doc/ui/predict/swig_py_paddle_en.rst
+19
-11
paddle/CMakeLists.txt
paddle/CMakeLists.txt
+3
-0
paddle/cuda/src/hl_cuda_matrix.cu
paddle/cuda/src/hl_cuda_matrix.cu
+13
-20
paddle/gserver/layers/CRFLayer.cpp
paddle/gserver/layers/CRFLayer.cpp
+14
-67
paddle/gserver/layers/CRFLayer.h
paddle/gserver/layers/CRFLayer.h
+0
-5
paddle/gserver/tests/sequenceGen.py
paddle/gserver/tests/sequenceGen.py
+18
-12
paddle/gserver/tests/sequence_layer_group.conf
paddle/gserver/tests/sequence_layer_group.conf
+5
-5
paddle/gserver/tests/sequence_nest_layer_group.conf
paddle/gserver/tests/sequence_nest_layer_group.conf
+5
-5
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+3
-4
paddle/math/tests/test_matrixCompare.cpp
paddle/math/tests/test_matrixCompare.cpp
+30
-3
paddle/parameter/Argument.cpp
paddle/parameter/Argument.cpp
+35
-11
paddle/pserver/ParameterClient2.cpp
paddle/pserver/ParameterClient2.cpp
+3
-3
paddle/pserver/ParameterServer2.cpp
paddle/pserver/ParameterServer2.cpp
+1
-1
paddle/pserver/SocketChannel.cpp
paddle/pserver/SocketChannel.cpp
+2
-1
paddle/setup.py.in
paddle/setup.py.in
+2
-2
paddle/trainer/ThreadParameterUpdater.h
paddle/trainer/ThreadParameterUpdater.h
+1
-1
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+2
-2
未找到文件。
CMakeLists.txt
浏览文件 @
3304de7a
...
...
@@ -3,7 +3,7 @@ cmake_minimum_required(VERSION 2.8)
project
(
paddle CXX C
)
set
(
PADDLE_MAJOR_VERSION 0
)
set
(
PADDLE_MINOR_VERSION 8
)
set
(
PADDLE_PATCH_VERSION 0b
)
set
(
PADDLE_PATCH_VERSION 0b
0
)
set
(
PADDLE_VERSION
${
PADDLE_MAJOR_VERSION
}
.
${
PADDLE_MINOR_VERSION
}
.
${
PADDLE_PATCH_VERSION
}
)
set
(
CMAKE_MODULE_PATH
${
CMAKE_MODULE_PATH
}
"
${
CMAKE_SOURCE_DIR
}
/cmake"
)
...
...
doc/build/docker_install.md
浏览文件 @
3304de7a
...
...
@@ -8,12 +8,12 @@ Docker is a tool designed to make it easier to create, deploy, and run applicati
### PaddlePaddle Docker images
There are six Docker images:
-
paddledev/paddle:
latest-cpu
: PaddlePaddle CPU binary image.
-
paddledev/paddle:
latest-gpu
: PaddlePaddle GPU binary image.
-
paddledev/paddle:
latest-cpu-devel
: PaddlePaddle CPU binary image plus source code.
-
paddledev/paddle:
latest-gpu-devel
: PaddlePaddle GPU binary image plus source code.
-
paddledev/paddle:
latest-cpu-demo
: PaddlePaddle CPU binary image plus source code and demo
-
paddledev/paddle:
latest-gpu-demo
: PaddlePaddle GPU binary image plus source code and demo
-
paddledev/paddle:
cpu-latest
: PaddlePaddle CPU binary image.
-
paddledev/paddle:
gpu-latest
: PaddlePaddle GPU binary image.
-
paddledev/paddle:
cpu-devel-latest
: PaddlePaddle CPU binary image plus source code.
-
paddledev/paddle:
gpu-devel-latest
: PaddlePaddle GPU binary image plus source code.
-
paddledev/paddle:
cpu-demo-latest
: PaddlePaddle CPU binary image plus source code and demo
-
paddledev/paddle:
gpu-demo-latest
: PaddlePaddle GPU binary image plus source code and demo
Tags with latest will be replaced by a released version.
...
...
@@ -23,7 +23,7 @@ You have to install Docker in your machine which has linux kernel version 3.10+
You can use
```docker pull ```
to download images first, or just launch a container with
```docker run```
:
```
bash
docker run
-it
paddledev/paddle:
lastest-cpu
docker run
-it
paddledev/paddle:
cpu-latest
```
If you want to launch container with GPU support, you need to set some environment variables at the same time:
...
...
@@ -31,7 +31,7 @@ If you want to launch container with GPU support, you need to set some environme
```
bash
export
CUDA_SO
=
"
$(
\l
s /usr/lib64/libcuda
*
| xargs
-I
{}
echo
'-v {}:{}'
)
$(
\l
s /usr/lib64/libnvidia
*
| xargs
-I
{}
echo
'-v {}:{}"
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '
--device
{}
:
{}
')
docker run -it paddledev/paddle:
latest-gpu
docker run -it paddledev/paddle:
gpu-latest
```
### Notice
...
...
doc/demo/imagenet_model/resnet_model.md
浏览文件 @
3304de7a
...
...
@@ -165,7 +165,7 @@ We provide both C++ and Python interfaces to extract features. The following exa
### C++ Interface
First, specify image data list in
`define_py_data_sources`
in the config, see example
`demo/model_zoo/resnet/resnet.py`
.
First, specify image data list in
`define_py_data_sources
2
`
in the config, see example
`demo/model_zoo/resnet/resnet.py`
.
```
train_list = 'train.list' if not is_test else None
...
...
doc/demo/rec/ml_regression.rst
浏览文件 @
3304de7a
...
...
@@ -257,7 +257,7 @@ In these network, we use several api in `trainer_config_helpers
* Text Convolution Pooling Layer, `text_conv_pool
<../../ui/api/trainer_config_helpers/networks.html
#trainer_config_helpers.networks.text_conv_pool>`_
* Declare Python Data Sources, `define_py_data_sources
* Declare Python Data Sources, `define_py_data_sources
2
<../../ui/api/trainer_config_helpers/data_sources.html>`_
Data Provider
...
...
doc/ui/predict/predict_sample.py
浏览文件 @
3304de7a
...
...
@@ -12,8 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
py_paddle
import
swig_paddle
,
DataProvider
Wrapper
Converter
from
paddle.trainer.PyDataProvider
Wrapper
import
DenseSlot
from
py_paddle
import
swig_paddle
,
DataProviderConverter
from
paddle.trainer.PyDataProvider
2
import
dense_vector
from
paddle.trainer.config_parser
import
parse_config
TEST_DATA
=
[[[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
...
...
@@ -89,12 +89,12 @@ TEST_DATA = [[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
def
main
():
conf
=
parse_config
(
"./mnist_model/trainer_config.
conf.norm
"
,
""
)
conf
=
parse_config
(
"./mnist_model/trainer_config.
py
"
,
""
)
print
conf
.
data_config
.
load_data_args
network
=
swig_paddle
.
GradientMachine
.
createFromConfigProto
(
conf
.
model_config
)
assert
isinstance
(
network
,
swig_paddle
.
GradientMachine
)
# For code hint.
network
.
loadParameters
(
"./mnist_model/"
)
converter
=
DataProvider
WrapperConverter
(
False
,
[
DenseSlot
(
784
)])
converter
=
DataProvider
Converter
([
dense_vector
(
784
)])
inArg
=
converter
(
TEST_DATA
)
print
network
.
forwardTest
(
inArg
)
...
...
doc/ui/predict/swig_py_paddle_en.rst
浏览文件 @
3304de7a
...
...
@@ -10,27 +10,35 @@ SWIG. The main steps of predict values in python are:
* Predict
Here is a sample python script that shows the typical prediction process for the
MNIST classification problem.
MNIST classification problem. A complete sample code could be found at
:code:`src_root/doc/ui/predict/predict_sample.py`.
.. literalinclude:: ./predict_sample.py
:language: python
:line
nos:
:line
s: 15-18,90-100,101-104
The module that does the most of the job is py_paddle.swig_paddle, it's
generated by SWIG and has complete documents, for more details you can use
python's :code:`help()` function. Let's walk through the above python script:
* At the beginning, initialize PaddlePaddle with command line arguments(line 90).
* Parse the configuration file that is used in training(line 93).
* Create a neural network at line 95 according the parsed configuration, then
load the trained parameters from model at line 97.
* A utility class for data transformation is created at line 98.
* At the beginning, use :code:`swig_paddle.initPaddle()` to initialize
PaddlePaddle with command line arguments, for more about command line arguments
see `Command Line Arguments <../cmd_argument/detail_introduction.html>`_.
* Parse the configuration file that is used in training with :code:`parse_config()`.
Because data to predict with always have no label, and output of prediction work
normally is the output layer rather than the cost layer, so you should modify
the configuration file accordingly before using it in the prediction work.
* Create a neural network with
:code:`swig_paddle.GradientMachine.createFromConfigproto()`, which takes the
parsed configuration :code:`conf.model_config` as argument. Then load the
trained parameters from the model with :code:`network.loadParameters()`.
* Create a data converter object of utility class :code:`DataProviderConverter`.
- Note: As swig_paddle can only accept C++ matrices, we offer a utility
class DataProvider
Wraaper
Converter that can accept the same input data with
PyDataProvider
Wrapper
, for more information please refer to document
class DataProviderConverter that can accept the same input data with
PyDataProvider
2
, for more information please refer to document
of `PyDataProvider2 <../data_provider/pydataprovider2.html>`_.
* Do the prediction
and output the result at line 100, forwardTest is another
utility class that directly take
s the activations of the output layer.
* Do the prediction
with :code:`forwardTest()`, which takes the converted
input data and output
s the activations of the output layer.
Here is a typical output:
...
...
paddle/CMakeLists.txt
浏览文件 @
3304de7a
...
...
@@ -7,6 +7,9 @@ add_subdirectory(pserver)
add_subdirectory
(
trainer
)
add_subdirectory
(
scripts
)
configure_file
(
${
CMAKE_CURRENT_SOURCE_DIR
}
/setup.py.in
${
CMAKE_CURRENT_SOURCE_DIR
}
/setup.py
)
if
(
WITH_PREDICT_SDK
)
add_subdirectory
(
predict
)
endif
()
...
...
paddle/cuda/src/hl_cuda_matrix.cu
浏览文件 @
3304de7a
...
...
@@ -266,25 +266,21 @@ template<int blockSize>
__global__
void
KeMatrixClassificationError
(
real
*
in_A
,
int
*
in_B
,
real
*
out_C
,
int
dimM
,
int
dimN
)
{
__shared__
real
max_s
[
blockSize
];
__shared__
int
max_l
[
blockSize
];
int
cnt
=
(
dimN
+
blockSize
-
1
)
/
blockSize
;
int
tid
=
threadIdx
.
x
;
int
lmt
=
tid
;
int
index
=
0
;
real
t
;
const
int
tid
=
threadIdx
.
x
;
const
int
rowId
=
blockIdx
.
x
;
max_s
[
tid
]
=
-
1e30
f
;
for
(
int
ii
=
0
;
ii
<
cnt
&&
lmt
<
dimN
;
ii
++
)
{
index
=
blockIdx
.
y
*
dimN
+
lmt
;
t
=
in_A
[
index
];
if
(
max_s
[
tid
]
<
t
)
{
max_s
[
tid
]
=
t
;
max_l
[
tid
]
=
lmt
;
in_A
+=
rowId
*
dimN
;
real
tmp
;
for
(
int
colId
=
tid
;
colId
<
dimN
;
colId
+=
blockSize
)
{
tmp
=
in_A
[
colId
];
if
(
max_s
[
tid
]
<
tmp
)
{
max_s
[
tid
]
=
tmp
;
max_l
[
tid
]
=
colId
;
}
lmt
+=
blockSize
;
}
__syncthreads
();
...
...
@@ -300,7 +296,7 @@ __global__ void KeMatrixClassificationError(real* in_A,
__syncthreads
();
if
(
tid
==
0
)
{
out_C
[
blockIdx
.
y
]
=
(
max_l
[
0
]
==
in_B
[
blockIdx
.
y
]
?
0
:
1.0
f
);
out_C
[
rowId
]
=
(
max_l
[
0
]
==
in_B
[
rowId
]
?
0
:
1.0
f
);
}
}
...
...
@@ -313,12 +309,9 @@ void hl_matrix_classification_error(real* A_d,
CHECK_NOTNULL
(
B_d
);
CHECK_NOTNULL
(
C_d
);
int
blocksX
=
1
;
int
blocksY
=
dimM
;
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocksX
,
blocksY
);
KeMatrixClassificationError
<
1024
><<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
A_d
,
B_d
,
C_d
,
dimM
,
dimN
);
// each sample is calculated by one block
KeMatrixClassificationError
<
1024
><<<
dimM
,
1024
,
0
,
STREAM_DEFAULT
>>>
(
A_d
,
B_d
,
C_d
,
dimN
);
CHECK_SYNC
(
"hl_matrix_classification_error"
);
}
...
...
paddle/gserver/layers/CRFLayer.cpp
浏览文件 @
3304de7a
...
...
@@ -47,81 +47,40 @@ bool CRFLayer::init(const LayerMap& layerMap,
// We don't need sequenceStartPositions because each sample of output_ is
// for the cost of one sequence.
setNeedSequenceInfo
(
false
);
if
(
useGpu_
)
{
tmpCpuInput_
.
reserve
(
inputLayers_
.
size
());
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
tmpCpuInput_
.
push_back
(
Argument
());
}
}
return
true
;
}
void
CRFLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
if
(
useGpu_
)
{
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
tmpCpuInput_
[
i
].
resizeAndCopyFrom
(
getInput
(
i
),
false
,
HPPL_STREAM_1
);
}
VectorPtr
cpuParameterValue
;
VectorPtr
cpuParameterGradient
;
cpuParameterValue
=
Vector
::
create
(
parameter_
->
getBuf
(
PARAMETER_VALUE
)
->
getSize
(),
false
);
cpuParameterValue
->
copyFrom
(
*
parameter_
->
getBuf
(
PARAMETER_VALUE
),
HPPL_STREAM_1
);
if
(
parameter_
->
getBuf
(
PARAMETER_GRADIENT
))
{
cpuParameterGradient
=
Vector
::
create
(
parameter_
->
getBuf
(
PARAMETER_GRADIENT
)
->
getSize
(),
false
);
cpuParameterGradient
->
copyFrom
(
*
parameter_
->
getBuf
(
PARAMETER_GRADIENT
),
HPPL_STREAM_1
);
}
else
{
cpuParameterGradient
=
nullptr
;
}
forwardImp
(
tmpCpuInput_
[
0
],
tmpCpuInput_
[
1
],
cpuParameterValue
,
cpuParameterGradient
);
parameter_
->
getBuf
(
PARAMETER_VALUE
)
->
copyFrom
(
*
cpuParameterValue
,
HPPL_STREAM_1
);
if
(
parameter_
->
getBuf
(
PARAMETER_GRADIENT
))
{
parameter_
->
getBuf
(
PARAMETER_GRADIENT
)
->
copyFrom
(
*
cpuParameterGradient
,
HPPL_STREAM_1
);
}
}
else
{
forwardImp
(
getInput
(
0
),
getInput
(
1
),
parameter_
->
getBuf
(
PARAMETER_VALUE
),
parameter_
->
getBuf
(
PARAMETER_GRADIENT
));
}
}
void
CRFLayer
::
forwardImp
(
const
Argument
&
output
,
const
Argument
&
label
,
VectorPtr
parameterValue
,
VectorPtr
parameterGradient
)
{
CHECK
(
!
useGpu_
)
<<
"GPU is not supported"
;
const
Argument
&
output
=
getInput
(
0
);
const
Argument
&
label
=
getInput
(
1
);
CHECK
(
label
.
sequenceStartPositions
);
CHECK
(
label
.
ids
);
int
batchSize
=
output
.
getBatchSize
();
size_t
numSequences
=
label
.
sequenceStartPositions
->
getSize
()
-
1
;
resizeOutput
(
numSequences
,
1
);
std
::
vector
<
real
>
out
(
numSequences
);
const
int
*
starts
=
label
.
sequenceStartPositions
->
getData
(
false
);
CHECK_EQ
(
starts
[
numSequences
],
batchSize
);
VectorPtr
cpuParameterValue
;
VectorPtr
cpuParameterGradient
;
for
(
size_t
i
=
0
;
i
<
numSequences
;
++
i
)
{
if
(
i
>=
crfs_
.
size
())
{
crfs_
.
emplace_back
(
numClasses_
,
parameter
Value
->
getData
(),
parameter
Gradient
?
parameter
Gradient
->
getData
()
parameter
_
->
getBuf
(
PARAMETER_VALUE
)
->
getData
(),
parameter
_
->
getBuf
(
PARAMETER_GRADIENT
)
?
parameter
_
->
getBuf
(
PARAMETER_GRADIENT
)
->
getData
()
:
nullptr
);
}
out
[
i
]
=
crfs_
[
i
].
forward
(
out
put_
.
value
->
getData
()
[
i
]
=
crfs_
[
i
].
forward
(
output
.
value
->
getData
()
+
numClasses_
*
starts
[
i
],
label
.
ids
->
getData
()
+
starts
[
i
],
starts
[
i
+
1
]
-
starts
[
i
]);
}
output_
.
value
->
copyFrom
(
out
.
data
(),
numSequences
);
if
(
weightLayer_
)
{
const
MatrixPtr
&
weight
=
getInputValue
(
*
weightLayer_
);
getOutputValue
()
->
dotMul
(
*
getOutputValue
(),
*
weight
);
...
...
@@ -129,22 +88,8 @@ void CRFLayer::forwardImp(const Argument&output,
}
void
CRFLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
(
void
)
callback
;
if
(
useGpu_
)
{
backwardImp
(
callback
,
tmpCpuInput_
[
0
],
tmpCpuInput_
[
1
]);
const_cast
<
Argument
&>
(
getInput
(
0
)).
resizeAndCopyFrom
(
tmpCpuInput_
[
0
],
true
,
HPPL_STREAM_1
);
const_cast
<
Argument
&>
(
getInput
(
1
)).
resizeAndCopyFrom
(
tmpCpuInput_
[
1
],
true
,
HPPL_STREAM_1
);
}
else
{
backwardImp
(
callback
,
getInput
(
0
),
getInput
(
1
));
}
}
void
CRFLayer
::
backwardImp
(
const
UpdateCallback
&
callback
,
const
Argument
&
output
,
const
Argument
&
label
)
{
const
Argument
&
output
=
getInput
(
0
);
const
Argument
&
label
=
getInput
(
1
);
const
int
*
starts
=
label
.
sequenceStartPositions
->
getData
(
false
);
int
numSequences
=
label
.
sequenceStartPositions
->
getSize
()
-
1
;
...
...
@@ -159,9 +104,11 @@ void CRFLayer::backwardImp(const UpdateCallback& callback,
grad
->
mulScalar
(
weight
);
}
}
if
(
coeff_
!=
real
(
1.0
f
))
{
output
.
grad
->
mulScalar
(
coeff_
);
}
parameter_
->
incUpdate
(
callback
);
}
...
...
paddle/gserver/layers/CRFLayer.h
浏览文件 @
3304de7a
...
...
@@ -32,11 +32,7 @@ public:
explicit
CRFLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
virtual
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
);
virtual
void
forward
(
PassType
passType
);
void
forwardImp
(
const
Argument
&
output
,
const
Argument
&
label
,
VectorPtr
parameterValue
,
VectorPtr
parameterGradient
);
virtual
void
backward
(
const
UpdateCallback
&
callback
);
void
backwardImp
(
const
UpdateCallback
&
callback
,
const
Argument
&
output
,
const
Argument
&
label
);
protected:
size_t
numClasses_
;
...
...
@@ -44,7 +40,6 @@ protected:
std
::
vector
<
LinearChainCRF
>
crfs_
;
LayerPtr
weightLayer_
;
// weight for each sequence
real
coeff_
;
// weight for the layer
std
::
vector
<
Argument
>
tmpCpuInput_
;
};
}
// namespace paddle
paddle/gserver/tests/sequenceGen.py
浏览文件 @
3304de7a
...
...
@@ -18,27 +18,33 @@
import
os
import
sys
from
paddle.trainer.PyDataProvider
Wrapper
import
*
from
paddle.trainer.PyDataProvider
2
import
*
@
init_hook_wrapper
def
hook
(
obj
,
dict_file
,
**
kwargs
):
obj
.
word_dict
=
dict_file
obj
.
slots
=
[
IndexSlot
(
len
(
obj
.
word_dict
)),
IndexSlot
(
3
)]
obj
.
logger
.
info
(
'dict len : %d'
%
(
len
(
obj
.
word_dict
)))
def
hook
(
settings
,
dict_file
,
**
kwargs
):
settings
.
word_dict
=
dict_file
settings
.
input_types
=
[
integer_value_sequence
(
len
(
settings
.
word_dict
)),
integer_value_sequence
(
3
)]
settings
.
logger
.
info
(
'dict len : %d'
%
(
len
(
settings
.
word_dict
)))
@
provider
(
use_seq
=
True
,
init_hook
=
hook
)
def
process
(
obj
,
file_name
):
@
provider
(
init_hook
=
hook
)
def
process
(
settings
,
file_name
):
with
open
(
file_name
,
'r'
)
as
fdata
:
for
line
in
fdata
:
label
,
comment
=
line
.
strip
().
split
(
'
\t
'
)
label
=
int
(
''
.
join
(
label
.
split
()))
words
=
comment
.
split
()
word_slot
=
[
obj
.
word_dict
[
w
]
for
w
in
words
if
w
in
obj
.
word_dict
]
word_slot
=
[
settings
.
word_dict
[
w
]
for
w
in
words
if
w
in
settings
.
word_dict
]
yield
word_slot
,
[
label
]
## for hierarchical sequence network
@
provider
(
use_seq
=
True
,
init_hook
=
hook
)
def
process2
(
obj
,
file_name
):
def
hook2
(
settings
,
dict_file
,
**
kwargs
):
settings
.
word_dict
=
dict_file
settings
.
input_types
=
[
integer_value_sub_sequence
(
len
(
settings
.
word_dict
)),
integer_value_sub_sequence
(
3
)]
settings
.
logger
.
info
(
'dict len : %d'
%
(
len
(
settings
.
word_dict
)))
@
provider
(
init_hook
=
hook2
)
def
process2
(
settings
,
file_name
):
with
open
(
file_name
)
as
fdata
:
label_list
=
[]
word_slot_list
=
[]
...
...
@@ -47,7 +53,7 @@ def process2(obj, file_name):
label
,
comment
=
line
.
strip
().
split
(
'
\t
'
)
label
=
int
(
''
.
join
(
label
.
split
()))
words
=
comment
.
split
()
word_slot
=
[
obj
.
word_dict
[
w
]
for
w
in
words
if
w
in
obj
.
word_dict
]
word_slot
=
[
settings
.
word_dict
[
w
]
for
w
in
words
if
w
in
settings
.
word_dict
]
label_list
.
append
([
label
])
word_slot_list
.
append
(
word_slot
)
else
:
...
...
paddle/gserver/tests/sequence_layer_group.conf
浏览文件 @
3304de7a
...
...
@@ -21,11 +21,11 @@ dict_file = dict()
for
line_count
,
line
in
enumerate
(
open
(
dict_path
,
"r"
)):
dict_file
[
line
.
strip
()] =
line_count
define_py_data_sources
(
train_list
=
'gserver/tests/Sequence/train.list'
,
test_list
=
None
,
module
=
'sequenceGen'
,
obj
=
'process'
,
args
={
"dict_file"
:
dict_file
})
define_py_data_sources
2
(
train_list
=
'gserver/tests/Sequence/train.list'
,
test_list
=
None
,
module
=
'sequenceGen'
,
obj
=
'process'
,
args
={
"dict_file"
:
dict_file
})
settings
(
batch_size
=
5
)
######################## network configure ################################
...
...
paddle/gserver/tests/sequence_nest_layer_group.conf
浏览文件 @
3304de7a
...
...
@@ -21,11 +21,11 @@ dict_file = dict()
for
line_count
,
line
in
enumerate
(
open
(
dict_path
,
"r"
)):
dict_file
[
line
.
strip
()] =
line_count
define_py_data_sources
(
train_list
=
'gserver/tests/Sequence/train.list.nest'
,
test_list
=
None
,
module
=
'sequenceGen'
,
obj
=
'process2'
,
args
={
"dict_file"
:
dict_file
})
define_py_data_sources
2
(
train_list
=
'gserver/tests/Sequence/train.list.nest'
,
test_list
=
None
,
module
=
'sequenceGen'
,
obj
=
'process2'
,
args
={
"dict_file"
:
dict_file
})
settings
(
batch_size
=
2
)
######################## network configure ################################
...
...
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
3304de7a
...
...
@@ -179,10 +179,9 @@ TEST(Layer, CRFLayer) {
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"crf"
,
100
,
/* trans */
false
,
/* useGpu */
useGpu
,
false
/*useWeight*/
,
0.03
/*epsilon*/
);
}
// Not support GPU now
testLayerGrad
(
config
,
"crf"
,
100
,
/* trans */
false
,
/* useGpu */
false
,
false
/*useWeight*/
,
0.03
/*epsilon*/
);
}
TEST
(
Layer
,
CTCLayer
)
{
...
...
paddle/math/tests/test_matrixCompare.cpp
浏览文件 @
3304de7a
...
...
@@ -1697,7 +1697,6 @@ TEST(Matrix, cosSimDerivate) {
}
}
void
testParamReluForward
(
int
height
,
int
width
,
int
w_height
,
int
w_width
)
{
MatrixPtr
output
=
CpuMatrix
::
create
(
height
,
width
,
false
,
false
);
...
...
@@ -1736,7 +1735,6 @@ TEST(Matrix, paramReluForward) {
}
}
void
testParamReluBackwardW
(
int
height
,
int
width
,
int
w_height
,
int
w_width
)
{
MatrixPtr
oGrad
=
CpuMatrix
::
create
(
height
,
width
,
false
,
false
);
...
...
@@ -1775,7 +1773,6 @@ TEST(Matrix, paramReluBackwardW) {
}
}
void
testParamReluBackwardDiff
(
int
height
,
int
width
,
int
w_height
,
int
w_width
)
{
MatrixPtr
oGrad
=
CpuMatrix
::
create
(
height
,
width
,
false
,
false
);
...
...
@@ -1819,6 +1816,36 @@ TEST(Matrix, paramReluBackwardDiff) {
}
}
void
testClassificationError
(
int
numSamples
,
int
dim
)
{
MatrixPtr
cpuError
=
std
::
make_shared
<
CpuMatrix
>
(
numSamples
,
1
);
MatrixPtr
gpuError
=
std
::
make_shared
<
GpuMatrix
>
(
numSamples
,
1
);
MatrixPtr
cpuOutput
=
std
::
make_shared
<
CpuMatrix
>
(
numSamples
,
dim
);
MatrixPtr
gpuOutput
=
std
::
make_shared
<
GpuMatrix
>
(
numSamples
,
dim
);
IVectorPtr
cpuLabel
=
std
::
make_shared
<
CpuIVector
>
(
numSamples
);
IVectorPtr
gpuLabel
=
std
::
make_shared
<
GpuIVector
>
(
numSamples
);
cpuOutput
->
randomizeUniform
();
cpuLabel
->
rand
(
dim
);
gpuOutput
->
copyFrom
(
*
cpuOutput
);
gpuLabel
->
copyFrom
(
*
cpuLabel
);
cpuError
->
classificationError
(
cpuOutput
,
cpuLabel
);
gpuError
->
classificationError
(
gpuOutput
,
gpuLabel
);
MatrixPtr
check
=
std
::
make_shared
<
CpuMatrix
>
(
numSamples
,
1
);
check
->
copyFrom
(
*
gpuError
);
MatrixCheckEqual
(
*
cpuError
,
*
check
);
}
TEST
(
Matrix
,
classificationError
)
{
for
(
auto
numSamples
:
{
1
,
10
,
100
,
1000
,
70000
})
{
for
(
auto
dim
:
{
1
,
10
,
100
,
1000
})
{
VLOG
(
3
)
<<
" numSamples="
<<
numSamples
<<
" dim="
<<
dim
;
testClassificationError
(
numSamples
,
dim
);
}
}
}
int
main
(
int
argc
,
char
**
argv
)
{
testing
::
InitGoogleTest
(
&
argc
,
argv
);
initMain
(
argc
,
argv
);
...
...
paddle/parameter/Argument.cpp
浏览文件 @
3304de7a
...
...
@@ -269,6 +269,9 @@ void Argument::concat(const std::vector<Argument>& args,
const
std
::
vector
<
int
>&
selectRows
,
const
std
::
vector
<
int
>&
seqStartPos
,
bool
useGpu
,
hl_stream_t
stream
,
PassType
passType
)
{
CHECK
(
!
subSequenceStartPositions
)
<<
"undefined behavior for subsequence positions"
;
size_t
batchSize
=
selectRows
.
size
();
auto
copyArg
=
[
batchSize
,
stream
](
MatrixPtr
&
dst
,
MatrixPtr
src
,
int
startRow
,
int
pos
,
int
size
,
...
...
@@ -347,9 +350,11 @@ void Argument::concat(const std::vector<Argument>& args, bool useGpu,
hl_stream_t
stream
,
PassType
passType
)
{
int32_t
batchSize
=
0
;
int64_t
numSequences
=
0
;
int64_t
numSubSequences
=
0
;
for
(
auto
&
arg
:
args
)
{
batchSize
+=
arg
.
getBatchSize
();
numSequences
+=
arg
.
getNumSequences
();
numSubSequences
+=
arg
.
getNumSubSequences
();
}
auto
copyArg
=
[
batchSize
,
stream
](
MatrixPtr
&
dst
,
MatrixPtr
src
,
...
...
@@ -393,8 +398,26 @@ void Argument::concat(const std::vector<Argument>& args, bool useGpu,
std
::
copy
(
src
->
begin
(),
src
->
end
(),
dst
->
begin
()
+
startRow
);
};
auto
copySequencePos
=
[]
(
ICpuGpuVectorPtr
&
dstSeq
,
const
ICpuGpuVectorPtr
&
srcSeq
,
int
dstNumSequences
,
int
srcNumSequences
,
int
&
startSequences
,
int
startRow
)
{
if
(
srcSeq
)
{
ICpuGpuVector
::
resizeOrCreate
(
dstSeq
,
dstNumSequences
+
1
,
false
);
const
int
*
src
=
srcSeq
->
getData
(
false
);
int
*
dest
=
dstSeq
->
getMutableData
(
false
);
for
(
int
i
=
0
;
i
<
srcNumSequences
+
1
;
++
i
)
{
dest
[
i
+
startSequences
]
=
src
[
i
]
+
startRow
;
}
startSequences
+=
srcNumSequences
;
}
else
{
dstSeq
.
reset
();
}
};
int
startRow
=
0
;
int
startSequences
=
0
;
int
startSubSequences
=
0
;
dataId
=
args
[
0
].
dataId
;
for
(
auto
&
arg
:
args
)
{
CHECK_EQ
(
arg
.
dataId
,
dataId
)
<<
"Arguments in concat should have"
...
...
@@ -403,17 +426,18 @@ void Argument::concat(const std::vector<Argument>& args, bool useGpu,
copyArg
(
value
,
arg
.
value
,
startRow
,
useGpu
);
if
(
passType
!=
PASS_TEST
)
copyArg
(
grad
,
arg
.
grad
,
startRow
,
useGpu
);
copyIds
(
ids
,
arg
.
ids
,
startRow
,
useGpu
);
if
(
arg
.
sequenceStartPositions
)
{
ICpuGpuVector
::
resizeOrCreate
(
sequenceStartPositions
,
numSequences
+
1
,
false
);
const
int
*
src
=
arg
.
sequenceStartPositions
->
getData
(
false
);
int
*
dest
=
sequenceStartPositions
->
getMutableData
(
false
);
for
(
int
i
=
0
;
i
<
arg
.
getNumSequences
()
+
1
;
++
i
)
{
dest
[
i
+
startSequences
]
=
src
[
i
]
+
startRow
;
}
startSequences
+=
arg
.
getNumSequences
();
}
copySequencePos
(
sequenceStartPositions
,
arg
.
sequenceStartPositions
,
numSequences
,
arg
.
getNumSequences
(),
startSequences
,
startRow
);
copySequencePos
(
subSequenceStartPositions
,
arg
.
subSequenceStartPositions
,
numSubSequences
,
arg
.
getNumSubSequences
(),
startSubSequences
,
startRow
);
copyStrs
(
strs
,
arg
.
strs
,
startRow
,
useGpu
);
startRow
+=
arg
.
getBatchSize
();
}
...
...
paddle/pserver/ParameterClient2.cpp
浏览文件 @
3304de7a
...
...
@@ -278,7 +278,7 @@ void ParameterClient2::prepareSendData(
if
(
sendingPara
)
{
sendJob
->
parallelInputIovs
[
serverId
].
push_back
(
{
sendMat
->
getLocalRow
(
row
),
sizeof
(
real
)
*
blockSize
});
{
sendMat
->
getLocalRow
(
row
),
sizeof
(
real
)
*
(
size_t
)
blockSize
});
/// detect sparse parameter distribution
sparseDistribution_
->
probeDistribution
(
serverId
,
sizeof
(
real
)
*
blockSize
);
...
...
@@ -302,8 +302,8 @@ void ParameterClient2::prepareSendData(
block
->
set_begin_pos
(
beginDim
);
block
->
set_block_size
(
endDim
-
beginDim
);
if
(
buf
)
{
sendJob
->
parallelInputIovs
[
serverId
].
push_back
(
{
buf
+
beginDim
,
sizeof
(
real
)
*
(
endDim
-
beginDim
)});
sendJob
->
parallelInputIovs
[
serverId
].
push_back
(
{
buf
+
beginDim
,
sizeof
(
real
)
*
((
size_t
)
(
endDim
-
beginDim
)
)});
}
}
}
...
...
paddle/pserver/ParameterServer2.cpp
浏览文件 @
3304de7a
...
...
@@ -724,7 +724,7 @@ void ParameterServer2::sendBackParameter(const ParameterBlock& block,
<<
" id="
<<
block
.
para_id
()
<<
" block id="
<<
block
.
block_id
();
real
*
valueBuffer
=
vectors_
[
parameterType
]
->
getPoint
(
offset
);
outputBuffers
->
push_back
({
valueBuffer
,
block
.
block_size
()});
outputBuffers
->
push_back
({
valueBuffer
,
(
size_t
)
block
.
block_size
()});
}
void
ParameterServer2
::
sendBackParameter
(
const
ParameterBlock
&
block
,
...
...
paddle/pserver/SocketChannel.cpp
浏览文件 @
3304de7a
...
...
@@ -148,7 +148,8 @@ void SocketChannel::writeMessage(const std::vector<struct iovec>& userIovs) {
std
::
vector
<
iovec
>
iovs
;
iovs
.
reserve
(
userIovs
.
size
()
+
2
);
iovs
.
push_back
({
&
header
,
sizeof
(
header
)});
iovs
.
push_back
({
&
iovLengths
[
0
],
sizeof
(
iovLengths
[
0
])
*
header
.
numIovs
});
iovs
.
push_back
({
&
iovLengths
[
0
],
sizeof
(
iovLengths
[
0
])
*
(
size_t
)
header
.
numIovs
});
iovs
.
insert
(
iovs
.
end
(),
userIovs
.
begin
(),
userIovs
.
end
());
header
.
totalLength
=
0
;
...
...
paddle/setup.py
→
paddle/setup.py
.in
浏览文件 @
3304de7a
...
...
@@ -35,11 +35,11 @@ except:
pass
setup(name="py_paddle",
version
=
"
0.8.0b"
,
# TODO(yuyang18): Make this version same as CMake
version="
@PADDLE_VERSION@",
ext_modules=[
Extension('py_paddle._swig_paddle', # Build SWIG Extension.
['Paddle_wrap.cxx'],
extra_link_args
=
[
"-Xlinker"
,
'-start-group'
]
+
extra_link_args=["-Xlinker", '-start-group'] +
extra_links + ["-Xlinker", "-end-group"]
)
],
...
...
paddle/trainer/ThreadParameterUpdater.h
浏览文件 @
3304de7a
...
...
@@ -79,7 +79,7 @@ protected:
// The update function for after update operations, such as averager.
void
threadTraverse
(
const
ParameterOptimizer
::
TraverseCallback
&
callback
,
int
tid
,
size_t
numThreads
,
Parameter
*
para
);
typedef
std
::
function
<
const
ParameterOptimizer
::
TraverseCallback
&
(
Parameter
*
)
>
typedef
std
::
function
<
const
ParameterOptimizer
::
TraverseCallback
(
Parameter
*
)
>
GetTraverseCallback
;
void
traverse
(
GetTraverseCallback
getTraverseCallback
);
};
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
3304de7a
...
...
@@ -262,8 +262,8 @@ def SubModelEnd(name = None):
def
MakeLayerNameInParentSubmodel
(
name
):
suffix
=
""
for
submodel
in
g_submodel_stack
[
1
:]
:
suffix
=
"@"
+
submodel
.
name
+
suffix
if
len
(
g_submodel_stack
)
>
1
:
suffix
=
"@"
+
g_submodel_stack
[
-
1
].
name
return
name
+
suffix
def
GetLayerBaseName
(
name
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录