提交 30a58b51 编写于 作者: D dangqingqing

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into lod_tensor2

...@@ -67,6 +67,9 @@ endif() ...@@ -67,6 +67,9 @@ endif()
if(ANDROID) if(ANDROID)
if(${CMAKE_SYSTEM_VERSION} VERSION_LESS "16") if(${CMAKE_SYSTEM_VERSION} VERSION_LESS "16")
message(FATAL_ERROR "Unsupport standalone toolchains with Android API level lower than 16") message(FATAL_ERROR "Unsupport standalone toolchains with Android API level lower than 16")
elseif(${CMAKE_SYSTEM_VERSION} VERSION_LESS "21")
# TODO: support glog for Android api 16 ~ 19 in the future
message(WARNING "Using the unofficial git repository <https://github.com/Xreki/glog.git> instead")
endif() endif()
set(WITH_GPU OFF CACHE STRING set(WITH_GPU OFF CACHE STRING
......
...@@ -6,13 +6,14 @@ RUN /bin/bash -c 'if [[ -n ${UBUNTU_MIRROR} ]]; then sed -i 's#http://archive.ub ...@@ -6,13 +6,14 @@ RUN /bin/bash -c 'if [[ -n ${UBUNTU_MIRROR} ]]; then sed -i 's#http://archive.ub
# ENV variables # ENV variables
ARG ANDROID_ABI ARG ANDROID_ABI
ARG ANDROID_API
ENV ANDROID_ABI=${ANDROID_ABI:-"armeabi-v7a"} ENV ANDROID_ABI=${ANDROID_ABI:-"armeabi-v7a"}
ENV ANDROID_API=${ANDROID_API:-21}
ENV HOME=/root \ ENV HOME=/root \
ANDROID_NDK_HOME=/opt/android-ndk-linux \ ANDROID_NDK_HOME=/opt/android-ndk-linux \
ANDROID_ARM_STANDALONE_TOOLCHAIN=/opt/arm-toolchain \ ANDROID_TOOLCHAINS_DIR=/opt/toolchains
ANDROID_ARM64_STANDALONE_TOOLCHAIN=/opt/arm64-toolchain
RUN apt-get update && \ RUN apt-get update && \
apt-get install -y \ apt-get install -y \
...@@ -42,14 +43,12 @@ RUN pip install --upgrade pip && \ ...@@ -42,14 +43,12 @@ RUN pip install --upgrade pip && \
pip install pre-commit pip install pre-commit
# Android NDK # Android NDK
RUN mkdir /opt/android-ndk-tmp && \ RUN mkdir -p ${ANDROID_TOOLCHAINS_DIR} && \
mkdir -p /opt/android-ndk-tmp && \
cd /opt/android-ndk-tmp && \ cd /opt/android-ndk-tmp && \
wget -q https://dl.google.com/android/repository/android-ndk-r14b-linux-x86_64.zip && \ wget -q https://dl.google.com/android/repository/android-ndk-r14b-linux-x86_64.zip && \
unzip -q android-ndk-r14b-linux-x86_64.zip && \ unzip -q android-ndk-r14b-linux-x86_64.zip && \
mv android-ndk-r14b ${ANDROID_NDK_HOME} && \ mv android-ndk-r14b ${ANDROID_NDK_HOME} && \
${ANDROID_NDK_HOME}/build/tools/make-standalone-toolchain.sh --arch=arm --platform=android-23 --install-dir=${ANDROID_ARM_STANDALONE_TOOLCHAIN} && \ rm -rf /opt/android-ndk-tmp
${ANDROID_NDK_HOME}/build/tools/make-standalone-toolchain.sh --arch=arm64 --platform=android-23 --install-dir=${ANDROID_ARM64_STANDALONE_TOOLCHAIN} && \
rm -rf /opt/android-ndk-tmp && \
rm -rf ${ANDROID_NDK_HOME}
CMD ["bash", "/paddle/paddle/scripts/docker/build_android.sh"] CMD ["bash", "/paddle/paddle/scripts/docker/build_android.sh"]
...@@ -18,9 +18,9 @@ SET(GFLAGS_SOURCES_DIR ${THIRD_PARTY_PATH}/gflags) ...@@ -18,9 +18,9 @@ SET(GFLAGS_SOURCES_DIR ${THIRD_PARTY_PATH}/gflags)
SET(GFLAGS_INSTALL_DIR ${THIRD_PARTY_PATH}/install/gflags) SET(GFLAGS_INSTALL_DIR ${THIRD_PARTY_PATH}/install/gflags)
SET(GFLAGS_INCLUDE_DIR "${GFLAGS_INSTALL_DIR}/include" CACHE PATH "gflags include directory." FORCE) SET(GFLAGS_INCLUDE_DIR "${GFLAGS_INSTALL_DIR}/include" CACHE PATH "gflags include directory." FORCE)
IF(WIN32) IF(WIN32)
set(GFLAGS_LIBRARIES "${GFLAGS_INSTALL_DIR}/lib/gflags.lib" CACHE FILEPATH "GFLAGS_LIBRARIES" FORCE) set(GFLAGS_LIBRARIES "${GFLAGS_INSTALL_DIR}/lib/gflags.lib" CACHE FILEPATH "GFLAGS_LIBRARIES" FORCE)
ELSE(WIN32) ELSE(WIN32)
set(GFLAGS_LIBRARIES "${GFLAGS_INSTALL_DIR}/lib/libgflags.a" CACHE FILEPATH "GFLAGS_LIBRARIES" FORCE) set(GFLAGS_LIBRARIES "${GFLAGS_INSTALL_DIR}/lib/libgflags.a" CACHE FILEPATH "GFLAGS_LIBRARIES" FORCE)
ENDIF(WIN32) ENDIF(WIN32)
INCLUDE_DIRECTORIES(${GFLAGS_INCLUDE_DIR}) INCLUDE_DIRECTORIES(${GFLAGS_INCLUDE_DIR})
...@@ -56,3 +56,12 @@ SET_PROPERTY(TARGET gflags PROPERTY IMPORTED_LOCATION ${GFLAGS_LIBRARIES}) ...@@ -56,3 +56,12 @@ SET_PROPERTY(TARGET gflags PROPERTY IMPORTED_LOCATION ${GFLAGS_LIBRARIES})
ADD_DEPENDENCIES(gflags extern_gflags) ADD_DEPENDENCIES(gflags extern_gflags)
LIST(APPEND external_project_dependencies gflags) LIST(APPEND external_project_dependencies gflags)
IF(WITH_C_API)
INSTALL(DIRECTORY ${GFLAGS_INCLUDE_DIR} DESTINATION third_party/gflags)
IF(ANDROID)
INSTALL(FILES ${GFLAGS_LIBRARIES} DESTINATION third_party/gflags/lib/${ANDROID_ABI})
ELSE()
INSTALL(FILES ${GFLAGS_LIBRARIES} DESTINATION third_party/gflags/lib)
ENDIF()
ENDIF()
...@@ -19,9 +19,9 @@ SET(GLOG_INSTALL_DIR ${THIRD_PARTY_PATH}/install/glog) ...@@ -19,9 +19,9 @@ SET(GLOG_INSTALL_DIR ${THIRD_PARTY_PATH}/install/glog)
SET(GLOG_INCLUDE_DIR "${GLOG_INSTALL_DIR}/include" CACHE PATH "glog include directory." FORCE) SET(GLOG_INCLUDE_DIR "${GLOG_INSTALL_DIR}/include" CACHE PATH "glog include directory." FORCE)
IF(WIN32) IF(WIN32)
SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.lib" CACHE FILEPATH "glog library." FORCE) SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.lib" CACHE FILEPATH "glog library." FORCE)
ELSE(WIN32) ELSE(WIN32)
SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.a" CACHE FILEPATH "glog library." FORCE) SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.a" CACHE FILEPATH "glog library." FORCE)
ENDIF(WIN32) ENDIF(WIN32)
INCLUDE_DIRECTORIES(${GLOG_INCLUDE_DIR}) INCLUDE_DIRECTORIES(${GLOG_INCLUDE_DIR})
...@@ -56,3 +56,12 @@ ADD_DEPENDENCIES(glog extern_glog gflags) ...@@ -56,3 +56,12 @@ ADD_DEPENDENCIES(glog extern_glog gflags)
LINK_LIBRARIES(glog gflags) LINK_LIBRARIES(glog gflags)
LIST(APPEND external_project_dependencies glog) LIST(APPEND external_project_dependencies glog)
IF(WITH_C_API)
INSTALL(DIRECTORY ${GLOG_INCLUDE_DIR} DESTINATION third_party/glog)
IF(ANDROID)
INSTALL(FILES ${GLOG_LIBRARIES} DESTINATION third_party/glog/lib/${ANDROID_ABI})
ELSE()
INSTALL(FILES ${GLOG_LIBRARIES} DESTINATION third_party/glog/lib)
ENDIF()
ENDIF()
...@@ -73,6 +73,26 @@ IF(NOT ${CBLAS_FOUND}) ...@@ -73,6 +73,26 @@ IF(NOT ${CBLAS_FOUND})
UPDATE_COMMAND "" UPDATE_COMMAND ""
CONFIGURE_COMMAND "" CONFIGURE_COMMAND ""
) )
IF(WITH_C_API)
INSTALL(DIRECTORY ${CBLAS_INC_DIR} DESTINATION third_party/openblas)
# Because libopenblas.a is a symbolic link of another library, thus need to
# install the whole directory.
IF(ANDROID)
SET(TMP_INSTALL_DIR third_party/openblas/lib/${ANDROID_ABI})
ELSE()
SET(TMP_INSTALL_DIR third_party/openblas/lib)
ENDIF()
INSTALL(CODE "execute_process(
COMMAND ${CMAKE_COMMAND} -E copy_directory ${CBLAS_INSTALL_DIR}/lib
destination ${CMAKE_INSTALL_PREFIX}/${TMP_INSTALL_DIR}
)"
)
INSTALL(CODE "MESSAGE(STATUS \"Installing: \"
\"${CBLAS_INSTALL_DIR}/lib -> ${CMAKE_INSTALL_PREFIX}/${TMP_INSTALL_DIR}\"
)"
)
ENDIF()
ENDIF(NOT ${CBLAS_FOUND}) ENDIF(NOT ${CBLAS_FOUND})
MESSAGE(STATUS "BLAS library: ${CBLAS_LIBRARIES}") MESSAGE(STATUS "BLAS library: ${CBLAS_LIBRARIES}")
......
...@@ -223,6 +223,15 @@ IF(NOT PROTOBUF_FOUND) ...@@ -223,6 +223,15 @@ IF(NOT PROTOBUF_FOUND)
SET(PROTOBUF_PROTOC_LIBRARY ${extern_protobuf_PROTOC_LIBRARY} SET(PROTOBUF_PROTOC_LIBRARY ${extern_protobuf_PROTOC_LIBRARY}
CACHE FILEPATH "protoc library." FORCE) CACHE FILEPATH "protoc library." FORCE)
IF(WITH_C_API)
INSTALL(DIRECTORY ${PROTOBUF_INCLUDE_DIR} DESTINATION third_party/protobuf)
IF(ANDROID)
INSTALL(FILES ${PROTOBUF_LIBRARY} DESTINATION third_party/protobuf/lib/${ANDROID_ABI})
ELSE()
INSTALL(FILES ${PROTOBUF_LIBRARY} DESTINATION third_party/protobuf/lib)
ENDIF()
ENDIF()
IF(CMAKE_CROSSCOMPILING) IF(CMAKE_CROSSCOMPILING)
PROMPT_PROTOBUF_LIB(protobuf_host extern_protobuf) PROMPT_PROTOBUF_LIB(protobuf_host extern_protobuf)
ELSE() ELSE()
......
...@@ -49,3 +49,12 @@ ExternalProject_Add( ...@@ -49,3 +49,12 @@ ExternalProject_Add(
) )
LIST(APPEND external_project_dependencies zlib) LIST(APPEND external_project_dependencies zlib)
IF(WITH_C_API)
INSTALL(DIRECTORY ${ZLIB_INCLUDE_DIR} DESTINATION third_party/zlib)
IF(ANDROID)
INSTALL(FILES ${ZLIB_LIBRARIES} DESTINATION third_party/zlib/lib/${ANDROID_ABI})
ELSE()
INSTALL(FILES ${ZLIB_LIBRARIES} DESTINATION third_party/zlib/lib)
ENDIF()
ENDIF()
...@@ -64,9 +64,29 @@ link_paddle_exe(paddle_capi_shared) ...@@ -64,9 +64,29 @@ link_paddle_exe(paddle_capi_shared)
install(FILES ${CAPI_HEADERS} DESTINATION include/paddle) install(FILES ${CAPI_HEADERS} DESTINATION include/paddle)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/config.h DESTINATION include/paddle) install(FILES ${CMAKE_CURRENT_BINARY_DIR}/config.h DESTINATION include/paddle)
if(ANDROID) if(ANDROID)
execute_process(
COMMAND ${GIT_EXECUTABLE} log --pretty=oneline -1
OUTPUT_VARIABLE GIT_COMMITS_LIST
RESULT_VARIABLE GIT_COMMITS_LIST_RESULT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
if(${GIT_COMMITS_LIST_RESULT})
set(GIT_COMMITS_LIST "No commits.")
endif()
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${capi_whole_library} install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${capi_whole_library}
DESTINATION lib/${ANDROID_ABI}) DESTINATION lib/${ANDROID_ABI})
install(TARGETS paddle_capi_shared DESTINATION lib/${ANDROID_ABI}) install(TARGETS paddle_capi_shared DESTINATION lib/${ANDROID_ABI})
install(CODE "FILE(WRITE ${CMAKE_INSTALL_PREFIX}/lib/${ANDROID_ABI}/BUILD.txt
\"Compiler:\n\"
\"\\t${CMAKE_C_COMPILER}\\n\"
\"\\t${CMAKE_CXX_COMPILER}\\n\"
\"Compiler Flags:\\n\"
\"\\t${CMAKE_F_FLAGS}\\n\"
\"\\t${CMAKE_CXX_FLAGS}\\n\"
\"Android API: ${CMAKE_SYSTEM_VERSION}\\n\"
\"Lastest commit:\\n\"
\"\\t${GIT_COMMITS_LIST}\\n\"
)"
)
else(ANDROID) else(ANDROID)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${capi_whole_library} DESTINATION lib) install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${capi_whole_library} DESTINATION lib)
install(TARGETS paddle_capi_shared DESTINATION lib) install(TARGETS paddle_capi_shared DESTINATION lib)
......
...@@ -2,11 +2,22 @@ ...@@ -2,11 +2,22 @@
## Motivation ## Motivation
In Neural Network, the backpropagation algorithm follows the chain rule, so we need to compound the gradient operators/expressions together with the chain rule. Every forward network needs a backward network to construct the full computation graph, the operator/expression's backward pass will be generated respect to forward pass. In Neural Network, many model is solved by the the backpropagation algorithm(known as BP) at present. Technically it caculates the gradient of the loss function, then distributed back through the networks. Follows the chain rule, so we need a module chains the gradient operators/expressions together with to construct the backward pass. Every forward network needs a backward network to construct the full computation graph, the operator/expression's backward pass will be generated respect to forward pass.
## Backward Operator Registry ## Implementation
A backward network is built up with several backward operators. Backward operators take forward operators' inputs outputs, and output gradients and then calculate its input gradients. In this design doc, we exported only one API for generating the backward pass.
```c++
std::unique_ptr<OperatorBase> Backward(const OperatorBase& forwardOp,
const std::unordered_set<std::string>& no_grad_vars);
```
The implementation behind it can be divided into two parts, **Backward Operator Creating** and **Backward Operator Building**.
### Backward Operator Registry
A backward network is built up with several backward operators. Backward operators take forward operators' inputs, outputs, and output gradients and then calculate its input gradients.
| | forward operator | backward operator | | forward operator | backward operator
| ---------------------- | ---------------- |------------------------- | | ---------------------- | ---------------- |------------------------- |
...@@ -25,7 +36,7 @@ REGISTER_OP(mul, MulOp, MulOpMaker, mul_grad, MulOpGrad); ...@@ -25,7 +36,7 @@ REGISTER_OP(mul, MulOp, MulOpMaker, mul_grad, MulOpGrad);
`mul_grad` is the type of backward operator, and `MulOpGrad` is its class name. `mul_grad` is the type of backward operator, and `MulOpGrad` is its class name.
## Backward Opeartor Creating ### Backward Opeartor Creating
Given a certain forward operator, we can get its corresponding backward operator by calling: Given a certain forward operator, we can get its corresponding backward operator by calling:
...@@ -43,40 +54,47 @@ The function `BuildGradOp` will sequentially execute following processes: ...@@ -43,40 +54,47 @@ The function `BuildGradOp` will sequentially execute following processes:
4. Building backward operator with `inputs`, `outputs` and forward operator's attributes. 4. Building backward operator with `inputs`, `outputs` and forward operator's attributes.
## Backward Network Building ### Backward Network Building
A backward network is a series of backward operators. The main idea of building a backward network is creating backward operators in the inverted sequence and put them together.
In our design, the network itself is also a kind of operator. So the operators contained by a big network may be some small network. A backward network is a series of backward operators. The main idea of building a backward network is creating backward operators in the inverted sequence and append them together one by one. There is some corner case need to process specially.
given a forward network, it generates the backward network. We only care about the Gradients—`OutputGradients`, `InputGradients`.
1. Op 1. Op
when the input forward network is an Op, return its gradient Operator Immediately. When the input forward network is an Op, return its gradient Operator Immediately. If all of its outputs are in no gradient set, then return a special `NOP`.
2. NetOp 2. NetOp
when the input forward network is a NetOp, it needs to call the sub NetOp/Operators backward function recursively. During the process, we need to collect the `OutputGradients` name according to the forward NetOp. In our design, the network itself is also a kind of operator(**NetOp**). So the operators contained by a big network may be some small network. When the input forward network is a NetOp, it needs to call the sub NetOp/Operators backward function recursively. During the process, we need to collect the `OutputGradients` name according to the forward NetOp.
3. RnnOp
RnnOp is a nested stepnet operator. Backward module need to recusively call `Backward` for every stepnet.
4. Sharing Variables
**sharing variables**. As illustrated in the pictures, two operator's share the same variable name of W@GRAD, which will overwrite their sharing input variable.
<p align="center">
<img src="./images/duplicate_op.png" width="50%" ><br/>
**shared variable**. As illustrated in the pictures, two operator's `Output` `Gradient` will overwrite their shared input variable. ​ pic 1. Sharing variables in operators.
<p align="center"> </p>
<img src="./images/duplicate_op.png" width="50%" ><br/>
1. Shared variable in operators. ​ Sharing variable between operators or same input variable used in multiple operators leads to a duplicate gradient variable. As demo show above, we need to rename gradient name recursively and add a generic add operator to replace the overwrite links.
</p> <p align="center">
<img src="images/duplicate_op2.png" width="40%" ><br/>
Share variable between operators or same input variable used in multiple operators leads to a duplicate gradient variable. As demo show above, we need to rename gradient name recursively and add a generic add operator replace the overwrite links. ​ pic 2. Replace sharing variable's gradient with `Add` operator.
<p align="center"> </p>
<img src="images/duplicate_op2.png" width="50%" ><br/>
2. Replace shared variable's gradient with `Add` operator. ​ Because our framework finds variables accord to their names, we need to rename the output links. We add a suffix of number to represent its position in clockwise.
</p> 5. Part of Gradient is Zero.
In the whole graph, there is some case of that one operator's gradient is not needed, but its input's gradient is a dependency link of other operator, we need to fill a same shape gradient matrix in the position. In our implement, we insert a special `fillZeroLike` operator.
​ Then collect the sub graph `OutputGradients`/`InputGradients` as the NetOp's and return it. Follow these rules above, then collect the sub graph `OutputGradients`/`InputGradients` as the NetOp's and return it.
...@@ -594,7 +594,7 @@ struct StridePadding { ...@@ -594,7 +594,7 @@ struct StridePadding {
float32x4_t s1 = vdupq_n_f32(0.f); float32x4_t s1 = vdupq_n_f32(0.f);
for (int s = 0; s < step; s++) { for (int s = 0; s < step; s++) {
float32x4_t s0 = vld1q_f32(input); float32x4_t s0 = vld1q_f32(input);
float32x4x2_t v = {s0, s1}; float32x4x2_t v = {{s0, s1}};
vst2q_f32(inputPadding, v); vst2q_f32(inputPadding, v);
input += 4; input += 4;
inputPadding += 8; inputPadding += 8;
......
...@@ -83,8 +83,7 @@ void SwitchOrderLayer::forward(PassType passType) { ...@@ -83,8 +83,7 @@ void SwitchOrderLayer::forward(PassType passType) {
setOutDims(); setOutDims();
resetOutput(outDims_[0], outDims_[1] * outDims_[2] * outDims_[3]); resetOutput(outDims_[0], outDims_[1] * outDims_[2] * outDims_[3]);
if (heightAxis_.size() > 0) { if (heightAxis_.size() > 0) {
getOutputValue()->reshape(reshapeHeight_, reshapeWidth_); resetOutput(reshapeHeight_, reshapeWidth_);
getOutputGrad()->reshape(reshapeHeight_, reshapeWidth_);
} }
// switch NCHW to NHWC // switch NCHW to NHWC
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/elementwise_mul_op.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
class ElementWiseMulOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) should not be null");
auto x_dim = ctx.Input<Tensor>("X")->dims();
auto y_dim = ctx.Input<Tensor>("Y")->dims();
PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
"Rank of first input must >= rank of second input.")
ctx.Output<Tensor>("Out")->Resize(x_dim);
}
};
class ElementWiseMulOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ElementWiseMulOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The first input of elementwise mul op");
AddInput("Y", "The second input of elementwise mul op");
AddAttr<int>("axis",
R"DOC(
When shape(Y) does not equal shape(X),Y will be broadcasted
to match the shape of X and axis should be dimension index Y in X
)DOC")
.SetDefault(-1)
.EqualGreaterThan(-1);
AddOutput("Out", "The output of elementwise mul op");
AddComment(R"DOC(
Limited elementwise multiple operator.The equation is: Out = X ⊙ Y.
1. The shape of Y should be same with X or
2. Y's shape is a subset of X.
Y will be broadcasted to match the shape of X and axis should be dimension index Y in X.
example:
shape(X) = (2, 3, 4, 5), shape(Y) = (,)
shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
)DOC");
}
};
class ElementWiseMulOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto y_dims = ctx.Input<Tensor>("Y")->dims();
auto out_dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *y_grad = ctx.Output<Tensor>(framework::GradVarName("Y"));
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
"Rank of first input must >= rank of second input.")
if (x_grad) {
x_grad->Resize(x_dims);
}
if (y_grad) {
y_grad->Resize(y_dims);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(elementwise_mul, ops::ElementWiseMulOp, ops::ElementWiseMulOpMaker,
elementwise_mul_grad, ops::ElementWiseMulOpGrad);
REGISTER_OP_CPU_KERNEL(
elementwise_mul,
ops::ElementWiseMulKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
elementwise_mul_grad,
ops::ElementWiseMulGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/elementwise_mul_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
elementwise_mul,
ops::ElementWiseMulKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
elementwise_mul_grad,
ops::ElementWiseMulGradKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <iostream>
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
namespace paddle {
namespace operators {
/*
* Out = X ⊙ Y
* 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
* pre=2, n=3*4, post=5
* 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
* pre=2*3, n=4*5, post=1
*/
inline void get_mid_dims(const framework::DDim& x_dims,
const framework::DDim& y_dims, const int axis,
int& pre, int& n, int& post) {
pre = 1;
n = 1;
post = 1;
for (int i = 0; i < axis; ++i) {
pre *= x_dims[i];
}
for (int i = 0; i < y_dims.size(); ++i) {
PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
"Broadcast dimension mismatch.");
n *= y_dims[i];
}
for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
post *= x_dims[i];
}
}
template <typename Place, typename T>
class ElementWiseMulKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
using Tensor = framework::Tensor;
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* z = ctx.Output<Tensor>("Out");
z->mutable_data<T>(ctx.GetPlace());
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto z_e = framework::EigenVector<T>::Flatten(*z);
auto x_dims = x->dims();
auto y_dims = y->dims();
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
"Rank of first input must >= rank of second input.")
if (x_dims == y_dims || product(y_dims) == 1) {
z_e.device(ctx.GetEigenDevice<Place>()) = x_e * y_e;
return;
}
int axis = ctx.Attr<int>("axis");
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
"Axis should be in range [0, x_dims)");
int pre, n, post;
get_mid_dims(x_dims, y_dims, axis, pre, n, post);
if (post == 1) {
auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
.broadcast(Eigen::DSizes<int, 2>(pre, 1))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
z_e.device(ctx.GetEigenDevice<Place>()) = x_e * y_bcast;
return;
} else {
auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
z_e.device(ctx.GetEigenDevice<Place>()) = x_e * y_bcast;
return;
}
}
};
template <typename Place, typename T>
class ElementWiseMulGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
using Tensor = framework::Tensor;
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dout_e = framework::EigenVector<T>::Flatten(*dout);
auto x_dims = x->dims();
auto y_dims = y->dims();
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
if (dx) {
dx->mutable_data<T>(ctx.GetPlace());
}
if (dy) {
dy->mutable_data<T>(ctx.GetPlace());
}
if (x_dims == y_dims || product(y_dims) == 1) {
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(ctx.GetEigenDevice<Place>()) = dout_e * y_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(ctx.GetEigenDevice<Place>()) = x_e * dout_e;
}
return;
}
int axis = ctx.Attr<int>("axis");
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
int pre, n, post;
get_mid_dims(x_dims, y_dims, axis, pre, n, post);
// TODO(gongweibao): wrap reshape to a function.
if (post == 1) {
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
.broadcast(Eigen::DSizes<int, 2>(pre, 1))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(ctx.GetEigenDevice<Place>()) = dout_e * y_e_bcast;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(ctx.GetEigenDevice<Place>()) =
(x_e * dout_e)
.reshape(Eigen::DSizes<int, 2>(pre, n))
.sum(Eigen::array<int, 1>{{0}});
}
return;
} else {
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(ctx.GetEigenDevice<Place>()) = dout_e * y_e_bcast;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(ctx.GetEigenDevice<Place>()) =
(x_e * dout_e)
.reshape(Eigen::DSizes<int, 3>(pre, n, post))
.sum(Eigen::array<int, 2>{{0, 2}});
}
return;
}
}
};
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/pad_op.h"
namespace paddle {
namespace operators {
using framework::Tensor;
class PadOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto x_dim = ctx.Input<Tensor>("X")->dims();
auto paddings = Attr<std::vector<int>>("paddings");
PADDLE_ENFORCE_EQ(x_dim.size() * 2, int64_t(paddings.size()),
"Size of paddings should be equal to 2 * dimension size "
"of input tensor.");
std::vector<int64_t> out_dims(x_dim.size());
for (int i = 0; i < x_dim.size(); ++i) {
out_dims[i] = x_dim[i] + paddings[i * 2] + paddings[i * 2 + 1];
}
ctx.Output<Tensor>("Out")->Resize(framework::make_ddim(out_dims));
}
};
class PadOpMaker : public framework::OpProtoAndCheckerMaker {
public:
PadOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"The input of pad op. "
"The input should be a k-D tensor(k > 0 and k < 7)");
AddOutput("Out",
"The output of pad op."
"A tensor with the same shape as X.")
.NotInGradient();
AddComment(R"DOC(
Pad input into output, as specified by paddings and pad_value. The input should be a k-D tensor(k > 0 and k < 7). As an example:
Given:
X = [[1, 2],
[3, 4]]
and
paddings = [0, 1, 1, 2]
and
pad_value = 0
then we get
Out = [[0, 1, 2, 0, 0]
[0, 3, 4, 0, 0]
[0, 0, 0, 0, 0]]
)DOC");
AddAttr<std::vector<int>>(
"paddings",
"A list<int> to describes padding rules for each dimension."
" For 2-D image tensor, paddings=[0, 1, 2, 3] means"
" padding 0 row to top, 1 row to bottom, 2 columns to left"
" and 3 columns to right.Size of paddings should be equal to"
" 2 * dimension size of input tensor.");
AddAttr<float>("pad_value",
"(float) default to 0; "
"The value to fill padded areas.")
.SetDefault(0.0f);
}
};
class PadOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
if (x_grad != nullptr) {
x_grad->Resize(x_dims);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(pad, ops::PadOp, ops::PadOpMaker, pad_grad, ops::PadOpGrad);
REGISTER_OP_CPU_KERNEL(pad, ops::PadKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pad_grad,
ops::PadGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/pad_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(pad, ops::PadKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(pad_grad,
ops::PadGradKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename Place, typename T, size_t D>
void PadFunction(const framework::ExecutionContext& context) {
auto pads = context.Attr<std::vector<int>>("paddings");
Eigen::array<std::pair<int, int>, D> paddings;
for (size_t i = 0; i < paddings.size(); ++i) {
paddings[i].first = pads[i * 2];
paddings[i].second = pads[i * 2 + 1];
}
T pad_value = context.Attr<T>("pad_value");
auto* x = context.Input<Tensor>("X");
auto* out = context.Output<Tensor>("Out");
out->mutable_data<T>(context.GetPlace());
auto x_tensor = EigenTensor<T, D>::From(*x);
auto out_tensor = EigenTensor<T, D>::From(*out);
auto place = context.GetEigenDevice<Place>();
out_tensor.device(place) = x_tensor.pad(paddings, pad_value);
}
template <typename Place, typename T>
class PadKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
int rank = context.Input<Tensor>("X")->dims().size();
switch (rank) {
case 1:
PadFunction<Place, T, 1>(context);
break;
case 2:
PadFunction<Place, T, 2>(context);
break;
case 3:
PadFunction<Place, T, 3>(context);
break;
case 4:
PadFunction<Place, T, 4>(context);
break;
case 5:
PadFunction<Place, T, 5>(context);
break;
case 6:
PadFunction<Place, T, 6>(context);
break;
default:
PADDLE_THROW(
"PadOp only support tensors with no more than 6 dimensions.");
}
}
};
template <typename Place, typename T, size_t D>
void PadGradFunction(const framework::ExecutionContext& context) {
auto pads = context.Attr<std::vector<int>>("paddings");
Eigen::array<std::pair<int, int>, D> paddings;
for (size_t i = 0; i < paddings.size(); ++i) {
paddings[i].first = -pads[i * 2];
paddings[i].second = -pads[i * 2 + 1];
}
auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
if (d_x != nullptr) {
d_x->mutable_data<T>(context.GetPlace());
auto d_x_tensor = EigenTensor<T, D>::From(*d_x);
auto d_out_tensor = EigenTensor<T, D>::From(*d_out);
auto place = context.GetEigenDevice<Place>();
d_x_tensor.device(place) = d_out_tensor.pad(paddings, 0);
}
}
template <typename Place, typename T>
class PadGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
size_t rank =
context.Input<Tensor>(framework::GradVarName("Out"))->dims().size();
switch (rank) {
case 1:
PadGradFunction<Place, T, 1>(context);
break;
case 2:
PadGradFunction<Place, T, 2>(context);
break;
case 3:
PadGradFunction<Place, T, 3>(context);
break;
case 4:
PadGradFunction<Place, T, 4>(context);
break;
case 5:
PadGradFunction<Place, T, 5>(context);
break;
case 6:
PadGradFunction<Place, T, 6>(context);
break;
default:
PADDLE_THROW(
"PadOp only support tensors with no more than 6 dimensions.");
}
}
};
} // namespace operators
} // namespace paddle
...@@ -35,6 +35,7 @@ USE_OP(add); ...@@ -35,6 +35,7 @@ USE_OP(add);
USE_OP(onehot_cross_entropy); USE_OP(onehot_cross_entropy);
USE_OP(sgd); USE_OP(sgd);
USE_OP(mul); USE_OP(mul);
USE_OP(elementwise_mul);
USE_OP(mean); USE_OP(mean);
USE_OP(sigmoid); USE_OP(sigmoid);
USE_OP(softmax); USE_OP(softmax);
...@@ -49,6 +50,7 @@ USE_NO_KERNEL_OP(identity); ...@@ -49,6 +50,7 @@ USE_NO_KERNEL_OP(identity);
USE_OP(minus); USE_OP(minus);
USE_OP(cos_sim); USE_OP(cos_sim);
USE_CPU_ONLY_OP(gather); USE_CPU_ONLY_OP(gather);
USE_OP(pad);
USE_CPU_ONLY_OP(scatter); USE_CPU_ONLY_OP(scatter);
USE_CPU_ONLY_OP(concat); USE_CPU_ONLY_OP(concat);
USE_OP(top_k); USE_OP(top_k);
......
...@@ -2,8 +2,30 @@ ...@@ -2,8 +2,30 @@
set -xe set -xe
if [ $ANDROID_ABI == "arm64-v8a" ]; then
ANDROID_ARCH=arm64
else # armeabi, armeabi-v7a
ANDROID_ARCH=arm
fi
ANDROID_STANDALONE_TOOLCHAIN=$ANDROID_TOOLCHAINS_DIR/$ANDROID_ARCH-android-$ANDROID_API
cat <<EOF
============================================
Generating the standalone toolchain ...
${ANDROID_NDK_HOME}/build/tools/make-standalone-toolchain.sh
--arch=$ANDROID_ARCH
--platform=android-$ANDROID_API
--install-dir=${ANDROID_STANDALONE_TOOLCHAIN}
============================================
EOF
${ANDROID_NDK_HOME}/build/tools/make-standalone-toolchain.sh \
--arch=$ANDROID_ARCH \
--platform=android-$ANDROID_API \
--install-dir=$ANDROID_STANDALONE_TOOLCHAIN
BUILD_ROOT=/paddle/build_android BUILD_ROOT=/paddle/build_android
DEST_ROOT=/paddle/install DEST_ROOT=/paddle/install_android
rm -rf $BUILD_ROOT 2>/dev/null || true rm -rf $BUILD_ROOT 2>/dev/null || true
mkdir -p $BUILD_ROOT mkdir -p $BUILD_ROOT
...@@ -11,7 +33,7 @@ cd $BUILD_ROOT ...@@ -11,7 +33,7 @@ cd $BUILD_ROOT
if [ $ANDROID_ABI == "armeabi-v7a" ]; then if [ $ANDROID_ABI == "armeabi-v7a" ]; then
cmake -DCMAKE_SYSTEM_NAME=Android \ cmake -DCMAKE_SYSTEM_NAME=Android \
-DANDROID_STANDALONE_TOOLCHAIN=$ANDROID_ARM_STANDALONE_TOOLCHAIN \ -DANDROID_STANDALONE_TOOLCHAIN=$ANDROID_STANDALONE_TOOLCHAIN \
-DANDROID_ABI=$ANDROID_ABI \ -DANDROID_ABI=$ANDROID_ABI \
-DANDROID_ARM_NEON=ON \ -DANDROID_ARM_NEON=ON \
-DANDROID_ARM_MODE=ON \ -DANDROID_ARM_MODE=ON \
...@@ -26,7 +48,7 @@ if [ $ANDROID_ABI == "armeabi-v7a" ]; then ...@@ -26,7 +48,7 @@ if [ $ANDROID_ABI == "armeabi-v7a" ]; then
.. ..
elif [ $ANDROID_ABI == "arm64-v8a" ]; then elif [ $ANDROID_ABI == "arm64-v8a" ]; then
cmake -DCMAKE_SYSTEM_NAME=Android \ cmake -DCMAKE_SYSTEM_NAME=Android \
-DANDROID_STANDALONE_TOOLCHAIN=$ANDROID_ARM64_STANDALONE_TOOLCHAIN \ -DANDROID_STANDALONE_TOOLCHAIN=$ANDROID_STANDALONE_TOOLCHAIN \
-DANDROID_ABI=$ANDROID_ABI \ -DANDROID_ABI=$ANDROID_ABI \
-DANDROID_ARM_MODE=ON \ -DANDROID_ARM_MODE=ON \
-DHOST_C_COMPILER=/usr/bin/gcc \ -DHOST_C_COMPILER=/usr/bin/gcc \
...@@ -40,12 +62,12 @@ elif [ $ANDROID_ABI == "arm64-v8a" ]; then ...@@ -40,12 +62,12 @@ elif [ $ANDROID_ABI == "arm64-v8a" ]; then
.. ..
elif [ $ANDROID_ABI == "armeabi" ]; then elif [ $ANDROID_ABI == "armeabi" ]; then
cmake -DCMAKE_SYSTEM_NAME=Android \ cmake -DCMAKE_SYSTEM_NAME=Android \
-DANDROID_STANDALONE_TOOLCHAIN=$ANDROID_ARM_STANDALONE_TOOLCHAIN \ -DANDROID_STANDALONE_TOOLCHAIN=$ANDROID_STANDALONE_TOOLCHAIN \
-DANDROID_ABI=$ANDROID_ABI \ -DANDROID_ABI=$ANDROID_ABI \
-DANDROID_ARM_MODE=ON \ -DANDROID_ARM_MODE=ON \
-DHOST_C_COMPILER=/usr/bin/gcc \ -DHOST_C_COMPILER=/usr/bin/gcc \
-DHOST_CXX_COMPILER=/usr/bin/g++ \ -DHOST_CXX_COMPILER=/usr/bin/g++ \
-DCMAKE_INSTALL_PREFIX=/paddle/install \ -DCMAKE_INSTALL_PREFIX=$DEST_ROOT \
-DCMAKE_BUILD_TYPE=Release \ -DCMAKE_BUILD_TYPE=Release \
-DWITH_C_API=ON \ -DWITH_C_API=ON \
-DWITH_SWIG_PY=OFF \ -DWITH_SWIG_PY=OFF \
...@@ -55,5 +77,10 @@ else ...@@ -55,5 +77,10 @@ else
echo "Invalid ANDROID_ABI: $ANDROID_ABI" echo "Invalid ANDROID_ABI: $ANDROID_ABI"
fi fi
cat <<EOF
============================================
Building in $BUILD_ROOT ...
============================================
EOF
make -j `nproc` make -j `nproc`
make install -j `nproc` make install -j `nproc`
...@@ -169,6 +169,7 @@ class LayerType(object): ...@@ -169,6 +169,7 @@ class LayerType(object):
EXCONV_LAYER = 'exconv' EXCONV_LAYER = 'exconv'
EXCONVTRANS_LAYER = 'exconvt' EXCONVTRANS_LAYER = 'exconvt'
CUDNNCONV_LAYER = 'cudnn_conv' CUDNNCONV_LAYER = 'cudnn_conv'
CUDNNCONVTRANS_LAYER = 'cudnn_convt'
POOL_LAYER = 'pool' POOL_LAYER = 'pool'
POOL3D_LAYER = 'pool3d' POOL3D_LAYER = 'pool3d'
BATCH_NORM_LAYER = 'batch_norm' BATCH_NORM_LAYER = 'batch_norm'
......
...@@ -97,7 +97,7 @@ class OpDescCreationMethod(object): ...@@ -97,7 +97,7 @@ class OpDescCreationMethod(object):
new_attr.strings.extend(user_defined_attr) new_attr.strings.extend(user_defined_attr)
elif attr.type == framework_pb2.INT_PAIRS: elif attr.type == framework_pb2.INT_PAIRS:
for p in user_defined_attr: for p in user_defined_attr:
pair = new_attr.pairs.add() pair = new_attr.int_pairs.add()
pair.first = p[0] pair.first = p[0]
pair.second = p[1] pair.second = p[1]
else: else:
......
...@@ -85,7 +85,7 @@ def get_numeric_gradient(scope, ...@@ -85,7 +85,7 @@ def get_numeric_gradient(scope,
op, op,
inputs, inputs,
input_to_check, input_to_check,
output_name, output_names,
delta=0.005, delta=0.005,
in_place=False): in_place=False):
...@@ -100,8 +100,11 @@ def get_numeric_gradient(scope, ...@@ -100,8 +100,11 @@ def get_numeric_gradient(scope,
ctx = core.DeviceContext.create(core.CPUPlace()) ctx = core.DeviceContext.create(core.CPUPlace())
def get_output(): def get_output():
op.run(scope, ctx) sum = 0.0
return np.array(scope.find_var(output_name).get_tensor()).sum() for output_name in output_names:
op.run(scope, ctx)
sum += np.array(scope.find_var(output_name).get_tensor()).sum()
return sum
tensor_to_check = scope.find_var(input_to_check).get_tensor() tensor_to_check = scope.find_var(input_to_check).get_tensor()
tensor_size = product(tensor_to_check.get_dims()) tensor_size = product(tensor_to_check.get_dims())
...@@ -225,7 +228,7 @@ class OpTest(unittest.TestCase): ...@@ -225,7 +228,7 @@ class OpTest(unittest.TestCase):
def check_grad(self, def check_grad(self,
inputs_to_check, inputs_to_check,
output_name, output_names,
no_grad_set=None, no_grad_set=None,
in_place=False, in_place=False,
max_relative_error=0.005): max_relative_error=0.005):
...@@ -237,13 +240,16 @@ class OpTest(unittest.TestCase): ...@@ -237,13 +240,16 @@ class OpTest(unittest.TestCase):
if no_grad_set is None: if no_grad_set is None:
no_grad_set = set() no_grad_set = set()
if not type(output_names) is list:
output_names = [output_names]
numeric_grads = [ numeric_grads = [
get_numeric_gradient( get_numeric_gradient(
self.scope, self.scope,
self.op, self.op,
self.inputs, self.inputs,
input_to_check, input_to_check,
output_name, output_names,
in_place=in_place) for input_to_check in inputs_to_check in_place=in_place) for input_to_check in inputs_to_check
] ]
grad_names = [ grad_names = [
......
import unittest
import numpy as np
from op_test import OpTest
class TestElementwiseMulOp_Matrix(OpTest):
def setUp(self):
self.op_type = "elementwise_mul"
""" Warning
CPU gradient check error!
'X': np.random.random((32,84)).astype("float32"),
'Y': np.random.random((32,84)).astype("float32")
"""
self.inputs = {
'X': np.random.uniform(0.1, 1, [13, 17]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [13, 17]).astype("float32")
}
self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y'))
class TestElementwiseMulOp_Vector(OpTest):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.random((32, )).astype("float32"),
'Y': np.random.random((32, )).astype("float32")
}
self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y'))
class TestElementwiseMulOp_broadcast_0(OpTest):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(2, 3, 4).astype(np.float32),
'Y': np.random.rand(2).astype(np.float32)
}
self.attrs = {'axis': 0}
self.outputs = {
'Out': self.inputs['X'] * self.inputs['Y'].reshape(2, 1, 1)
}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y'))
class TestElementwiseMulOp_broadcast_1(OpTest):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(2, 3, 4).astype(np.float32),
'Y': np.random.rand(3).astype(np.float32)
}
self.attrs = {'axis': 1}
self.outputs = {
'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 1)
}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y'))
class TestElementwiseMulOp_broadcast_2(OpTest):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(2, 3, 4).astype(np.float32),
'Y': np.random.rand(4).astype(np.float32)
}
self.outputs = {
'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 1, 4)
}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y'))
class TestElementwiseMulOp_broadcast_3(OpTest):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(2, 3, 4, 5).astype(np.float32),
'Y': np.random.rand(3, 4).astype(np.float32)
}
self.attrs = {'axis': 1}
self.outputs = {
'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 4, 1)
}
if __name__ == '__main__':
unittest.main()
...@@ -12,7 +12,8 @@ class GetNumericGradientTest(unittest.TestCase): ...@@ -12,7 +12,8 @@ class GetNumericGradientTest(unittest.TestCase):
z = x + y z = x + y
scope = core.Scope() scope = core.Scope()
add_op = create_op(scope, "add", {'X': x, 'Y': y}, {'Out': z}, dict()) add_op = create_op(scope, "add", {'X': x, 'Y': y}, {'Out': z}, dict())
arr = get_numeric_gradient(scope, add_op, {'X': x, 'Y': y}, 'X', 'Out') arr = get_numeric_gradient(scope, add_op, {'X': x,
'Y': y}, 'X', ['Out'])
self.assertAlmostEqual(arr.mean(), 1.0, delta=1e-4) self.assertAlmostEqual(arr.mean(), 1.0, delta=1e-4)
def test_softmax_op(self): def test_softmax_op(self):
......
import unittest
import numpy as np
from op_test import OpTest
class TestPadOp(OpTest):
def setUp(self):
self.initTestCase()
self.op_type = "pad"
self.inputs = {'X': np.random.random(self.shape).astype("float32"), }
self.attrs = {}
self.attrs['paddings'] = np.array(self.paddings).flatten()
self.attrs['pad_value'] = self.pad_value
self.outputs = {
'Out': np.pad(self.inputs['X'],
self.paddings,
mode='constant',
constant_values=self.pad_value)
}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X'], 'Out')
def initTestCase(self):
self.shape = (16, 16)
self.paddings = [(0, 1), (2, 3)]
self.pad_value = 0
class TestCase1(TestPadOp):
def initTestCase(self):
self.shape = (2, 3, 4, 4)
self.paddings = [(0, 1), (2, 3), (2, 1), (1, 1)]
self.pad_value = 0.5
class TestCase2(TestPadOp):
def initTestCase(self):
self.shape = (2, 2, 2)
self.paddings = [(0, 0), (0, 0), (1, 2)]
self.pad_value = 1
class TestCase3(TestPadOp):
def initTestCase(self):
self.shape = (8)
self.paddings = [(0, 1)]
self.pad_value = 0.9
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册