Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
2d21d907
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2d21d907
编写于
7月 30, 2021
作者:
C
cnn
提交者:
GitHub
7月 30, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[dev] rbox update2 (#3828)
* set lr for 4 card as default, and update
上级
25d4a853
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
60 addition
and
63 deletion
+60
-63
configs/dota/_base_/s2anet_optimizer_1x.yml
configs/dota/_base_/s2anet_optimizer_1x.yml
+1
-1
configs/dota/s2anet_1x_spine.yml
configs/dota/s2anet_1x_spine.yml
+3
-4
configs/dota/s2anet_alignconv_2x_dota.yml
configs/dota/s2anet_alignconv_2x_dota.yml
+1
-1
ppdet/engine/export_utils.py
ppdet/engine/export_utils.py
+0
-5
ppdet/modeling/heads/s2anet_head.py
ppdet/modeling/heads/s2anet_head.py
+54
-51
ppdet/modeling/post_process.py
ppdet/modeling/post_process.py
+1
-1
未找到文件。
configs/dota/_base_/s2anet_optimizer_1x.yml
浏览文件 @
2d21d907
epoch
:
12
LearningRate
:
base_lr
:
0.0
1
base_lr
:
0.0
05
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
...
...
configs/dota/s2anet_1x_spine.yml
浏览文件 @
2d21d907
...
...
@@ -8,9 +8,9 @@ _BASE_: [
weights
:
output/s2anet_1x_spine/model_final
# for
8
card
# for
4
card
LearningRate
:
base_lr
:
0.0
1
base_lr
:
0.0
05
S2ANetHead
:
anchor_strides
:
[
8
,
16
,
32
,
64
,
128
]
...
...
@@ -26,5 +26,4 @@ S2ANetHead:
use_sigmoid_cls
:
True
reg_loss_weight
:
[
1.0
,
1.0
,
1.0
,
1.0
,
1.05
]
cls_loss_weight
:
[
1.05
,
1.0
]
reg_loss_type
:
gwd
use_paddle_anchor
:
False
reg_loss_type
:
'
l1'
configs/dota/s2anet_alignconv_2x_dota.yml
浏览文件 @
2d21d907
...
...
@@ -23,4 +23,4 @@ S2ANetHead:
use_sigmoid_cls
:
True
reg_loss_weight
:
[
1.0
,
1.0
,
1.0
,
1.0
,
1.05
]
cls_loss_weight
:
[
1.05
,
1.0
]
#reg_loss_type: 'l1' # 'l1' 'gwd
'
reg_loss_type
:
'
l1
'
ppdet/engine/export_utils.py
浏览文件 @
2d21d907
...
...
@@ -139,10 +139,5 @@ def _dump_infer_config(config, path, image_shape, model):
infer_cfg
[
'Preprocess'
],
infer_cfg
[
'label_list'
]
=
_parse_reader
(
reader_cfg
,
dataset_cfg
,
config
[
'metric'
],
label_arch
,
image_shape
)
if
infer_arch
==
'S2ANet'
:
# TODO: move background to num_classes
if
infer_cfg
[
'label_list'
][
0
]
!=
'background'
:
infer_cfg
[
'label_list'
].
insert
(
0
,
'background'
)
yaml
.
dump
(
infer_cfg
,
open
(
path
,
'w'
))
logger
.
info
(
"Export inference config file to {}"
.
format
(
os
.
path
.
join
(
path
)))
ppdet/modeling/heads/s2anet_head.py
浏览文件 @
2d21d907
...
...
@@ -69,7 +69,7 @@ class S2ANetAnchorGenerator(nn.Layer):
return
base_anchors
def
_meshgrid
(
self
,
x
,
y
,
row_major
=
True
):
yy
,
xx
=
paddle
.
meshgrid
(
x
,
y
)
yy
,
xx
=
paddle
.
meshgrid
(
y
,
x
)
yy
=
yy
.
reshape
([
-
1
])
xx
=
xx
.
reshape
([
-
1
])
if
row_major
:
...
...
@@ -264,7 +264,7 @@ class S2ANetHead(nn.Layer):
for
anchor_base
in
self
.
anchor_base_sizes
:
self
.
anchor_generators
.
append
(
S2ANetAnchorGenerator
(
anchor_base
,
anchor_scales
,
anchor_ratios
))
anchor_ratios
))
self
.
anchor_generators
=
nn
.
LayerList
(
self
.
anchor_generators
)
self
.
fam_cls_convs
=
nn
.
Sequential
()
...
...
@@ -551,33 +551,35 @@ class S2ANetHead(nn.Layer):
fam_cls_score1
=
fam_cls_score
feat_labels
=
paddle
.
to_tensor
(
feat_labels
)
feat_labels_one_hot
=
paddle
.
nn
.
functional
.
one_hot
(
feat_labels
,
self
.
cls_out_channels
+
1
)
feat_labels_one_hot
=
feat_labels_one_hot
[:,
1
:]
feat_labels_one_hot
.
stop_gradient
=
True
num_total_samples
=
paddle
.
to_tensor
(
num_total_samples
,
dtype
=
'float32'
,
stop_gradient
=
True
)
fam_cls
=
F
.
sigmoid_focal_loss
(
fam_cls_score1
,
feat_labels_one_hot
,
normalizer
=
num_total_samples
,
reduction
=
'none'
)
feat_label_weights
=
feat_label_weights
.
reshape
(
feat_label_weights
.
shape
[
0
],
1
)
feat_label_weights
=
np
.
repeat
(
feat_label_weights
,
self
.
cls_out_channels
,
axis
=
1
)
feat_label_weights
=
paddle
.
to_tensor
(
feat_label_weights
,
stop_gradient
=
True
)
fam_cls
=
fam_cls
*
feat_label_weights
fam_cls_total
=
paddle
.
sum
(
fam_cls
)
if
(
feat_labels
>=
0
).
astype
(
paddle
.
int32
).
sum
()
>
0
:
feat_labels_one_hot
=
paddle
.
nn
.
functional
.
one_hot
(
feat_labels
,
self
.
cls_out_channels
+
1
)
feat_labels_one_hot
=
feat_labels_one_hot
[:,
1
:]
feat_labels_one_hot
.
stop_gradient
=
True
num_total_samples
=
paddle
.
to_tensor
(
num_total_samples
,
dtype
=
'float32'
,
stop_gradient
=
True
)
fam_cls
=
F
.
sigmoid_focal_loss
(
fam_cls_score1
,
feat_labels_one_hot
,
normalizer
=
num_total_samples
,
reduction
=
'none'
)
feat_label_weights
=
feat_label_weights
.
reshape
(
feat_label_weights
.
shape
[
0
],
1
)
feat_label_weights
=
np
.
repeat
(
feat_label_weights
,
self
.
cls_out_channels
,
axis
=
1
)
feat_label_weights
=
paddle
.
to_tensor
(
feat_label_weights
,
stop_gradient
=
True
)
fam_cls
=
fam_cls
*
feat_label_weights
fam_cls_total
=
paddle
.
sum
(
fam_cls
)
else
:
fam_cls_total
=
paddle
.
zeros
([
0
],
dtype
=
fam_cls_score1
.
dtype
)
fam_cls_losses
.
append
(
fam_cls_total
)
# step3: regression loss
fam_bbox_pred
=
fam_reg_branch_list
[
idx
]
feat_bbox_targets
=
paddle
.
to_tensor
(
feat_bbox_targets
,
dtype
=
'float32'
,
stop_gradient
=
True
)
feat_bbox_targets
=
paddle
.
reshape
(
feat_bbox_targets
,
[
-
1
,
5
])
...
...
@@ -585,8 +587,6 @@ class S2ANetHead(nn.Layer):
fam_bbox_pred
=
fam_reg_branch_list
[
idx
]
fam_bbox_pred
=
paddle
.
squeeze
(
fam_bbox_pred
,
axis
=
0
)
fam_bbox_pred
=
paddle
.
reshape
(
fam_bbox_pred
,
[
-
1
,
5
])
fam_bbox
=
self
.
smooth_l1_loss
(
fam_bbox_pred
,
feat_bbox_targets
)
fam_bbox
=
self
.
smooth_l1_loss
(
fam_bbox_pred
,
feat_bbox_targets
)
loss_weight
=
paddle
.
to_tensor
(
self
.
reg_loss_weight
,
dtype
=
'float32'
,
stop_gradient
=
True
)
...
...
@@ -673,28 +673,31 @@ class S2ANetHead(nn.Layer):
odm_cls_score1
=
odm_cls_score
feat_labels
=
paddle
.
to_tensor
(
feat_labels
)
feat_labels_one_hot
=
paddle
.
nn
.
functional
.
one_hot
(
feat_labels
,
self
.
cls_out_channels
+
1
)
feat_labels_one_hot
=
feat_labels_one_hot
[:,
1
:]
feat_labels_one_hot
.
stop_gradient
=
True
num_total_samples
=
paddle
.
to_tensor
(
num_total_samples
,
dtype
=
'float32'
,
stop_gradient
=
True
)
odm_cls
=
F
.
sigmoid_focal_loss
(
odm_cls_score1
,
feat_labels_one_hot
,
normalizer
=
num_total_samples
,
reduction
=
'none'
)
feat_label_weights
=
feat_label_weights
.
reshape
(
feat_label_weights
.
shape
[
0
],
1
)
feat_label_weights
=
np
.
repeat
(
feat_label_weights
,
self
.
cls_out_channels
,
axis
=
1
)
feat_label_weights
=
paddle
.
to_tensor
(
feat_label_weights
)
feat_label_weights
.
stop_gradient
=
True
odm_cls
=
odm_cls
*
feat_label_weights
odm_cls_total
=
paddle
.
sum
(
odm_cls
)
if
(
feat_labels
>=
0
).
astype
(
paddle
.
int32
).
sum
()
>
0
:
feat_labels_one_hot
=
paddle
.
nn
.
functional
.
one_hot
(
feat_labels
,
self
.
cls_out_channels
+
1
)
feat_labels_one_hot
=
feat_labels_one_hot
[:,
1
:]
feat_labels_one_hot
.
stop_gradient
=
True
num_total_samples
=
paddle
.
to_tensor
(
num_total_samples
,
dtype
=
'float32'
,
stop_gradient
=
True
)
odm_cls
=
F
.
sigmoid_focal_loss
(
odm_cls_score1
,
feat_labels_one_hot
,
normalizer
=
num_total_samples
,
reduction
=
'none'
)
feat_label_weights
=
feat_label_weights
.
reshape
(
feat_label_weights
.
shape
[
0
],
1
)
feat_label_weights
=
np
.
repeat
(
feat_label_weights
,
self
.
cls_out_channels
,
axis
=
1
)
feat_label_weights
=
paddle
.
to_tensor
(
feat_label_weights
)
feat_label_weights
.
stop_gradient
=
True
odm_cls
=
odm_cls
*
feat_label_weights
odm_cls_total
=
paddle
.
sum
(
odm_cls
)
else
:
odm_cls_total
=
paddle
.
zeros
([
0
],
dtype
=
odm_cls_score1
.
dtype
)
odm_cls_losses
.
append
(
odm_cls_total
)
# # step3: regression loss
...
...
@@ -846,7 +849,7 @@ class S2ANetHead(nn.Layer):
bbox_pred
=
paddle
.
reshape
(
bbox_pred
,
[
-
1
,
5
])
anchors
=
paddle
.
reshape
(
anchors
,
[
-
1
,
5
])
if
nms_pre
>
0
and
scores
.
shape
[
0
]
>
nms_pre
:
if
scores
.
shape
[
0
]
>
nms_pre
:
# Get maximum scores for foreground classes.
if
use_sigmoid_cls
:
max_scores
=
paddle
.
max
(
scores
,
axis
=
1
)
...
...
ppdet/modeling/post_process.py
浏览文件 @
2d21d907
...
...
@@ -230,7 +230,7 @@ class S2ANetBBoxPostProcess(nn.Layer):
def
__init__
(
self
,
num_classes
=
15
,
nms_pre
=
2000
,
min_bbox_size
=
0
,
nms
=
None
):
super
(
S2ANetBBoxPostProcess
,
self
).
__init__
()
self
.
num_classes
=
num_classes
self
.
nms_pre
=
nms_pre
self
.
nms_pre
=
paddle
.
to_tensor
(
nms_pre
)
self
.
min_bbox_size
=
min_bbox_size
self
.
nms
=
nms
self
.
origin_shape_list
=
[]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录