Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
2763f3e3
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2763f3e3
编写于
9月 06, 2017
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Complete smooth_l1_loss_op.
上级
c1feb27f
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
435 addition
and
0 deletion
+435
-0
paddle/operators/smooth_l1_loss_op.cc
paddle/operators/smooth_l1_loss_op.cc
+119
-0
paddle/operators/smooth_l1_loss_op.cu
paddle/operators/smooth_l1_loss_op.cu
+24
-0
paddle/operators/smooth_l1_loss_op.h
paddle/operators/smooth_l1_loss_op.h
+184
-0
paddle/pybind/pybind.cc
paddle/pybind/pybind.cc
+1
-0
python/paddle/v2/framework/tests/CMakeLists.txt
python/paddle/v2/framework/tests/CMakeLists.txt
+1
-0
python/paddle/v2/framework/tests/test_smooth_l1_loss_op.py
python/paddle/v2/framework/tests/test_smooth_l1_loss_op.py
+106
-0
未找到文件。
paddle/operators/smooth_l1_loss_op.cc
0 → 100644
浏览文件 @
2763f3e3
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/smooth_l1_loss_op.h"
namespace
paddle
{
namespace
operators
{
class
SmoothL1LossOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input of SmoothL1LossOp must be initialized."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Y"
),
"Target of SmoothL1LossOp must be initialized."
);
auto
*
x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Y"
);
PADDLE_ENFORCE_EQ
(
x
->
dims
(),
y
->
dims
(),
"Dimensions of SmoothL1LossOp's input and target "
"must be same."
);
PADDLE_ENFORCE_GE
(
framework
::
arity
(
x
->
dims
()),
2
,
"Tensor rank of SmoothL1LossOp's input must be "
"at least 2."
);
auto
*
inside_weight
=
ctx
.
Input
<
framework
::
Tensor
>
(
"InsideWeight"
);
if
(
inside_weight
)
{
auto
*
outside_weight
=
ctx
.
Input
<
framework
::
Tensor
>
(
"OutsideWeight"
);
PADDLE_ENFORCE_NOT_NULL
(
outside_weight
,
"If weights are provided, must specify both "
"inside and outside weights."
);
PADDLE_ENFORCE_EQ
(
inside_weight
->
dims
(),
x
->
dims
(),
"Dimensions of inside weight must be same with input."
);
PADDLE_ENFORCE_EQ
(
outside_weight
->
dims
(),
x
->
dims
(),
"Dimensions of outside weight must be same with input."
);
}
auto
*
diff
=
ctx
.
Output
<
framework
::
Tensor
>
(
"diff"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
diff
->
Resize
(
x
->
dims
());
// loss is a two-rank tensor
out
->
Resize
({
x
->
dims
()[
0
],
1
});
}
};
template
<
typename
AttrType
>
class
SmoothL1LossOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
SmoothL1LossOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of SmoothL1LossOp."
);
AddInput
(
"Y"
,
"Target of SmoothL1LossOp."
);
AddInput
(
"InsideWeight"
,
"Optional input to scale (X-Y)."
);
AddInput
(
"OutsideWeight"
,
"Optinal input to scale smooth l1 loss."
);
AddOutput
(
"diff"
,
"Intermediate variable to cache Win*(X-Y)."
)
.
AsIntermediate
();
AddOutput
(
"Out"
,
"Final smooth l1 loss of inputs."
);
AddComment
(
R"DOC(
Compute SmoothL1Loss for input and target.
The equation is: Out = 0.5 * (sigma * (X - Y)) ^ 2 if abs(X - Y) < 1 / sigma^2
abs(X - Y) - 0.5 / sigma^2 otherwise
)DOC"
);
AddAttr
<
AttrType
>
(
"sigma"
,
"Hyper parameter, default value is 3.0 ."
)
.
SetDefault
(
3.0
);
}
};
class
SmoothL1LossGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
in_dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
dims
();
auto
out_dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
();
auto
*
x_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
PADDLE_ENFORCE_GE
(
framework
::
arity
(
out_dims
),
2
,
"Tensor rank of output gradient should be 2."
);
PADDLE_ENFORCE_EQ
(
out_dims
[
0
],
in_dims
[
0
],
"First dimension of ouptut gradient must be "
"same with input."
);
PADDLE_ENFORCE_EQ
(
out_dims
[
1
],
1
,
"Second dimension of output gradient must be 1."
);
if
(
x_grad
)
x_grad
->
Resize
(
in_dims
);
if
(
y_grad
)
y_grad
->
Resize
(
in_dims
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
smooth_l1_loss
,
ops
::
SmoothL1LossOp
,
ops
::
SmoothL1LossOpMaker
<
float
>
,
ops
::
SmoothL1LossGradOp
);
REGISTER_OP_CPU_KERNEL
(
smooth_l1_loss
,
ops
::
SmoothL1LossKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
smooth_l1_loss_grad
,
ops
::
SmoothL1LossGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/smooth_l1_loss_op.cu
0 → 100644
浏览文件 @
2763f3e3
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/smooth_l1_loss_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
smooth_l1_loss
,
ops
::
SmoothL1LossKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
smooth_l1_loss_grad
,
ops
::
SmoothL1LossGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/smooth_l1_loss_op.h
0 → 100644
浏览文件 @
2763f3e3
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
>
struct
SmoothL1LossFoward
{
__host__
__device__
SmoothL1LossFoward
(
const
T
&
sigma2
)
:
sigma2
(
sigma2
)
{}
__host__
__device__
T
operator
()(
const
T
&
val
)
const
{
T
abs_val
=
std
::
abs
(
val
);
if
(
abs_val
<
1.0
/
sigma2
)
{
return
0.5
*
val
*
val
*
sigma2
;
}
else
{
return
abs_val
-
0.5
/
sigma2
;
}
}
T
sigma2
;
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
class
SmoothL1LossKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in0
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
in1
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
in2
=
context
.
Input
<
Tensor
>
(
"InsideWeight"
);
auto
*
in3
=
context
.
Input
<
Tensor
>
(
"OutsideWeight"
);
auto
*
out0
=
context
.
Output
<
Tensor
>
(
"diff"
);
auto
*
out1
=
context
.
Output
<
Tensor
>
(
"Out"
);
out0
->
mutable_data
<
T
>
(
context
.
GetPlace
());
out1
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
auto
sigma
=
static_cast
<
T
>
(
context
.
op_
.
GetAttr
<
AttrType
>
(
"sigma"
));
T
sigma2
=
sigma
*
sigma
;
bool
has_weight
=
(
in2
!=
nullptr
)
&&
(
in3
!=
nullptr
);
auto
x
=
EigenVector
<
T
>::
Flatten
(
*
in0
);
auto
y
=
EigenVector
<
T
>::
Flatten
(
*
in1
);
auto
diff
=
EigenVector
<
T
>::
Flatten
(
*
out0
);
diff
.
device
(
place
)
=
x
-
y
;
// multiply inside weight
if
(
has_weight
)
{
auto
inside_weight
=
EigenVector
<
T
>::
Flatten
(
*
in2
);
// cache diff, reused in bp
diff
.
device
(
place
)
=
diff
*
inside_weight
;
}
auto
in_counts
=
framework
::
product
(
in0
->
dims
());
Tensor
paddle_errors
;
paddle_errors
.
mutable_data
<
T
>
({
static_cast
<
int
>
(
in_counts
)},
context
.
GetPlace
());
auto
errors
=
EigenVector
<
T
>::
Flatten
(
paddle_errors
);
// apply smooth l1 forward
errors
.
device
(
place
)
=
diff
.
unaryExpr
(
SmoothL1LossFoward
<
T
>
(
sigma2
));
// multiply outside weight
if
(
has_weight
)
{
auto
outside_weight
=
EigenVector
<
T
>::
Flatten
(
*
in3
);
errors
.
device
(
place
)
=
errors
*
outside_weight
;
}
auto
loss
=
EigenMatrix
<
T
>::
From
(
*
out1
,
{
in0
->
dims
()[
0
],
1
});
// first dimension of 'X' is the number of samples
auto
errors_mat_view
=
EigenMatrix
<
T
>::
From
(
paddle_errors
,
in0
->
dims
());
loss
.
device
(
place
)
=
errors_mat_view
.
sum
(
Eigen
::
array
<
int
,
1
>
({
1
}));
}
};
template
<
typename
T
>
struct
SmoothL1LossBackward
{
__host__
__device__
SmoothL1LossBackward
(
const
T
&
sigma2
)
:
sigma2
(
sigma2
)
{}
__host__
__device__
T
operator
()(
const
T
&
val
)
const
{
T
abs_val
=
std
::
abs
(
val
);
if
(
abs_val
<
1.0
/
sigma2
)
{
return
sigma2
*
val
;
}
else
{
return
(
0
<
val
)
-
(
val
<
0
);
}
}
T
sigma2
;
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
class
SmoothL1LossGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in0
=
context
.
Input
<
Tensor
>
(
"InsideWeight"
);
auto
*
in1
=
context
.
Input
<
Tensor
>
(
"OutsideWeight"
);
auto
*
in2
=
context
.
Input
<
Tensor
>
(
"diff"
);
auto
*
og
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
sigma
=
static_cast
<
T
>
(
context
.
op_
.
GetAttr
<
AttrType
>
(
"sigma"
));
T
sigma2
=
sigma
*
sigma
;
bool
has_weight
=
(
in0
!=
nullptr
)
&&
(
in1
!=
nullptr
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
auto
in_dims
=
in2
->
dims
();
auto
counts
=
framework
::
product
(
in_dims
);
auto
cols
=
counts
/
in_dims
[
0
];
auto
mat_dims
=
framework
::
make_ddim
(
{
static_cast
<
int
>
(
in_dims
[
0
]),
static_cast
<
int
>
(
cols
)});
Tensor
paddle_diff
;
paddle_diff
.
mutable_data
<
T
>
({
static_cast
<
int
>
(
counts
)},
context
.
GetPlace
());
auto
diff
=
EigenVector
<
T
>::
Flatten
(
paddle_diff
);
// apply smooth l1 backwoard
diff
.
device
(
place
)
=
EigenVector
<
T
>::
Flatten
(
*
in2
).
unaryExpr
(
SmoothL1LossBackward
<
T
>
(
sigma2
));
auto
*
out0
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
out1
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
// compute weights
Tensor
paddle_weights
;
paddle_weights
.
mutable_data
<
T
>
(
mat_dims
,
context
.
GetPlace
());
auto
weights
=
EigenMatrix
<
T
>::
From
(
paddle_weights
);
// initialize to 1.0
if
(
platform
::
is_cpu_place
(
context
.
GetPlace
()))
{
weights
.
setConstant
(
static_cast
<
T
>
(
1.0
));
}
else
{
Tensor
paddle_cpu_weights
;
paddle_cpu_weights
.
mutable_data
<
T
>
(
mat_dims
,
platform
::
CPUPlace
());
EigenMatrix
<
T
>::
From
(
paddle_cpu_weights
).
setConstant
(
static_cast
<
T
>
(
1.0
));
paddle_weights
.
CopyFrom
<
T
>
(
paddle_cpu_weights
,
context
.
GetPlace
());
}
if
(
has_weight
)
{
auto
inside_weight
=
EigenMatrix
<
T
>::
From
(
*
in0
,
mat_dims
);
auto
outside_weight
=
EigenMatrix
<
T
>::
From
(
*
in1
,
mat_dims
);
weights
.
device
(
place
)
=
inside_weight
*
outside_weight
;
}
// compute gradients
auto
out_grad
=
EigenMatrix
<
T
>::
From
(
*
og
);
auto
diff_mat_view
=
EigenMatrix
<
T
>::
From
(
paddle_diff
,
mat_dims
);
auto
gradients
=
out_grad
.
broadcast
(
Eigen
::
array
<
int
,
2
>
({
1
,
static_cast
<
int
>
(
cols
)}))
*
weights
*
diff_mat_view
;
if
(
out0
)
{
out0
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x_grad
=
EigenMatrix
<
T
>::
From
(
*
out0
,
mat_dims
);
x_grad
.
device
(
place
)
=
gradients
;
}
if
(
out1
)
{
out1
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
y_grad
=
EigenMatrix
<
T
>::
From
(
*
out1
,
mat_dims
);
y_grad
.
device
(
place
)
=
-
1
*
gradients
;
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/pybind/pybind.cc
浏览文件 @
2763f3e3
...
...
@@ -48,6 +48,7 @@ USE_OP_ITSELF(identity);
USE_OP
(
minus
);
USE_CPU_ONLY_OP
(
gather
);
USE_CPU_ONLY_OP
(
scatter
);
USE_OP
(
smooth_l1_loss
);
namespace
paddle
{
namespace
framework
{
...
...
python/paddle/v2/framework/tests/CMakeLists.txt
浏览文件 @
2763f3e3
...
...
@@ -32,3 +32,4 @@ py_test(test_gradient_checker SRCS test_gradient_checker.py)
py_test
(
test_lookup_table SRCS test_lookup_table.py
)
py_test
(
test_scale_and_identity_op SRCS test_scale_and_identity_op.py
)
py_test
(
mnist SRCS mnist.py
)
py_test
(
test_smooth_l1_loss_op SRCS test_smooth_l1_loss_op.py
)
python/paddle/v2/framework/tests/test_smooth_l1_loss_op.py
0 → 100644
浏览文件 @
2763f3e3
import
unittest
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
import
functools
import
numpy
as
np
from
paddle.v2.framework.op
import
Operator
def
smooth_l1_loss_forward
(
val
,
sigma2
):
abs_val
=
abs
(
val
)
if
abs_val
<
1.0
/
sigma2
:
return
0.5
*
val
*
val
*
sigma2
else
:
return
abs_val
-
0.5
/
sigma2
class
TestSmoothL1LossOp_f0
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
setUp
(
self
):
self
.
type
=
"smooth_l1_loss"
dims
=
(
32
,
64
)
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
dims
).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
(
dims
).
astype
(
"float32"
)
}
sigma
=
3.0
self
.
attrs
=
{
'sigma'
:
sigma
}
sigma2
=
sigma
*
sigma
diff
=
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]
loss
=
np
.
vectorize
(
smooth_l1_loss_forward
)(
diff
,
sigma2
).
sum
(
1
)
loss
=
loss
.
reshape
((
dims
[
0
],
1
))
self
.
outputs
=
{
'diff'
:
diff
,
'Out'
:
loss
}
class
TestSmoothL1LossOp_f1
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
setUp
(
self
):
self
.
type
=
"smooth_l1_loss"
dims
=
(
32
,
64
)
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
dims
).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
(
dims
).
astype
(
"float32"
),
'InsideWeight'
:
np
.
random
.
random
(
dims
).
astype
(
"float32"
),
'OutsideWeight'
:
np
.
random
.
random
(
dims
).
astype
(
"float32"
)
}
sigma
=
3.0
self
.
attrs
=
{
'sigma'
:
sigma
}
sigma2
=
sigma
*
sigma
diff
=
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]
diff
=
diff
*
self
.
inputs
[
'InsideWeight'
]
loss
=
np
.
vectorize
(
smooth_l1_loss_forward
)(
diff
,
sigma2
)
loss
=
loss
*
self
.
inputs
[
'OutsideWeight'
]
loss
=
loss
.
sum
(
1
).
reshape
((
dims
[
0
],
1
))
self
.
outputs
=
{
'diff'
:
diff
,
'Out'
:
loss
}
class
SmoothL1LossGradOpTest
(
GradientChecker
):
def
test_smooth_l1_loss_b0
(
self
):
dims
=
(
5
,
7
)
X
=
np
.
random
.
random
(
dims
).
astype
(
"float32"
)
Y
=
np
.
random
.
random
(
dims
).
astype
(
"float32"
)
InsideWeight
=
np
.
random
.
random
(
dims
).
astype
(
"float32"
)
OutsideWeight
=
np
.
random
.
random
(
dims
).
astype
(
"float32"
)
inputs
=
{
'X'
:
X
,
'Y'
:
Y
,
'InsideWeight'
:
InsideWeight
,
'OutsideWeight'
:
OutsideWeight
}
op
=
Operator
(
"smooth_l1_loss"
,
X
=
'X'
,
Y
=
'Y'
,
InsideWeight
=
'InsideWeight'
,
OutsideWeight
=
'OutsideWeight'
,
diff
=
"diff"
,
Out
=
"Out"
,
sigma
=
3.0
)
self
.
compare_grad
(
op
,
inputs
,
no_grad_set
=
set
([
'InsideWeight'
,
'OutsideWeight'
]))
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
,
"Y"
]),
"Out"
,
max_relative_error
=
0.08
)
def
test_smooth_l1_loss_b1
(
self
):
dims
=
(
5
,
7
)
X
=
np
.
random
.
random
(
dims
).
astype
(
"float32"
)
Y
=
np
.
random
.
random
(
dims
).
astype
(
"float32"
)
inputs
=
{
'X'
:
X
,
'Y'
:
Y
}
op
=
Operator
(
"smooth_l1_loss"
,
X
=
'X'
,
Y
=
'Y'
,
InsideWeight
=
'InsideWeight'
,
OutsideWeight
=
'OutsideWeight'
,
diff
=
"diff"
,
Out
=
"Out"
,
sigma
=
3.0
)
self
.
compare_grad
(
op
,
inputs
,
no_grad_set
=
set
([
'InsideWeight'
,
'OutsideWeight'
]))
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
,
"Y"
]),
"Out"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录