Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
26492210
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
26492210
编写于
10月 31, 2017
作者:
D
dzhwinter
提交者:
GitHub
10月 31, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix/sequence op (#5264)
* "replace enum with string" * "fix layers"
上级
bcdedecb
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
68 addition
and
113 deletion
+68
-113
paddle/operators/sequence_pool_op.cc
paddle/operators/sequence_pool_op.cc
+6
-7
paddle/operators/sequence_pool_op.h
paddle/operators/sequence_pool_op.h
+45
-69
python/paddle/v2/framework/layers.py
python/paddle/v2/framework/layers.py
+5
-16
python/paddle/v2/framework/tests/test_seq_pool.py
python/paddle/v2/framework/tests/test_seq_pool.py
+12
-21
未找到文件。
paddle/operators/sequence_pool_op.cc
浏览文件 @
26492210
...
...
@@ -39,15 +39,14 @@ class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"(Tensor), output of SequencePoolOp, which does not contain LoD "
"infomation."
);
AddAttr
<
int
>
(
"strategy"
,
"(int, default AVERAGE) the pooling strategy of SequencePoolOp."
)
.
SetDefault
(
AVERAGE
)
.
InEnum
({
AVERAGE
,
SUM
,
SQRT
,
MAX
,
LAST
,
FIRST
});
AddAttr
<
std
::
string
>
(
"pooltype"
,
"(int, default AVERAGE) the pooling pooltype of SequencePoolOp."
)
.
SetDefault
(
"AVERAGE"
);
AddComment
(
R"DOC(
SequencePoolOp pools features of all time-steps of each instance.
It supports six pooling
strategy
:
It supports six pooling
pooltype
:
- AVERAGE: Out[i] = average_{for each instance in i-th sequence}{X[i]}
- SUM: Out[i] = sum_{for each instance in i-th sequence}{X[i]}
- SQRT: Out[i] = sum_{for each instance in i-th sequence}{X[i]}
...
...
@@ -63,7 +62,7 @@ class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
and the value of X = [[1, 3], [2, 4, 6], [5, 1]].
Thus, Out is a [3,1,1] Tensor without LoD infomation.
And for different
strategy
, the value of Out is as follows:
And for different
pooltype
, the value of Out is as follows:
- AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
- SUM: [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
...
...
paddle/operators/sequence_pool_op.h
浏览文件 @
26492210
...
...
@@ -29,22 +29,13 @@ template <typename T, int MajorType = Eigen::RowMajor,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
enum
SeqPoolType
{
AVERAGE
=
0
,
SUM
=
1
,
SQRT
=
2
,
// square_root_n
MAX
=
3
,
LAST
=
4
,
FIRST
=
5
};
template
<
typename
Place
,
typename
T
>
class
SequencePoolKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
int
strategy
=
context
.
Attr
<
int
>
(
"strategy
"
);
std
::
string
pooltype
=
context
.
Attr
<
std
::
string
>
(
"pooltype
"
);
auto
dims
=
in
->
dims
();
auto
lod
=
in
->
lod
();
...
...
@@ -71,28 +62,21 @@ class SequencePoolKernel : public framework::OpKernel<T> {
auto
in_e
=
EigenMatrix
<
T
>::
From
(
in_t
,
framework
::
make_ddim
({
h
,
w
}));
auto
out_e
=
EigenVector
<
T
>::
Flatten
(
out_t
);
switch
(
strategy
)
{
case
AVERAGE
:
out_e
.
device
(
place
)
=
in_e
.
mean
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
break
;
case
SUM
:
out_e
.
device
(
place
)
=
in_e
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
break
;
case
SQRT
:
out_e
.
device
(
place
)
=
in_e
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}))
/
std
::
sqrt
(
static_cast
<
T
>
(
h
));
break
;
case
MAX
:
out_e
.
device
(
place
)
=
in_e
.
maximum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
break
;
case
LAST
:
out_e
.
device
(
place
)
=
in_e
.
chip
(
h
-
1
,
0
);
break
;
case
FIRST
:
out_e
.
device
(
place
)
=
in_e
.
chip
(
0
,
0
);
break
;
default:
PADDLE_THROW
(
"unsupported pooling strategy"
);
if
(
pooltype
==
"AVERAGE"
)
{
out_e
.
device
(
place
)
=
in_e
.
mean
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
}
else
if
(
pooltype
==
"SUM"
)
{
out_e
.
device
(
place
)
=
in_e
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
}
else
if
(
pooltype
==
"SQRT"
)
{
out_e
.
device
(
place
)
=
in_e
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}))
/
std
::
sqrt
(
static_cast
<
T
>
(
h
));
}
else
if
(
pooltype
==
"MAX"
)
{
out_e
.
device
(
place
)
=
in_e
.
maximum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
}
else
if
(
pooltype
==
"LAST"
)
{
out_e
.
device
(
place
)
=
in_e
.
chip
(
h
-
1
,
0
);
}
else
if
(
pooltype
==
"FIRST"
)
{
out_e
.
device
(
place
)
=
in_e
.
chip
(
0
,
0
);
}
else
{
PADDLE_THROW
(
"unsupported pooling pooltype"
);
}
}
}
...
...
@@ -105,15 +89,15 @@ class SequencePoolGradKernel : public framework::OpKernel<T> {
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
in_g
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
out_g
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
int
strategy
=
context
.
Attr
<
int
>
(
"strategy
"
);
std
::
string
pooltype
=
context
.
Attr
<
std
::
string
>
(
"pooltype
"
);
auto
dims
=
in
->
dims
();
auto
lod
=
in
->
lod
()[
0
];
int64_t
w
=
in
->
numel
()
/
dims
[
0
];
in_g
->
mutable_data
<
T
>
(
context
.
GetPlace
());
if
(
strategy
==
LAST
||
strategy
==
FIRST
)
{
// set X@Grad be zero at first when
strategy
is LAST/FIRST
if
(
pooltype
==
"LAST"
||
pooltype
==
"FIRST"
)
{
// set X@Grad be zero at first when
pooltype
is LAST/FIRST
math
::
SetConstant
<
Place
,
T
>
functor
;
functor
(
context
.
device_context
(),
in_g
,
0
);
}
...
...
@@ -127,41 +111,33 @@ class SequencePoolGradKernel : public framework::OpKernel<T> {
auto
out_g_e
=
EigenMatrix
<
T
>::
From
(
out_g_t
,
{
1
,
w
});
Eigen
::
DSizes
<
int
,
2
>
bcast
(
h
,
1
);
switch
(
strategy
)
{
case
AVERAGE
:
in_g_e
.
device
(
place
)
=
(
out_g_e
/
static_cast
<
T
>
(
h
)).
broadcast
(
bcast
);
break
;
case
SUM
:
in_g_e
.
device
(
place
)
=
(
out_g_e
).
broadcast
(
bcast
);
break
;
case
SQRT
:
in_g_e
.
device
(
place
)
=
(
out_g_e
/
std
::
sqrt
(
static_cast
<
T
>
(
h
))).
broadcast
(
bcast
);
break
;
case
MAX
:
{
auto
in_t
=
in
->
Slice
(
static_cast
<
int
>
(
lod
[
i
]),
static_cast
<
int
>
(
lod
[
i
+
1
]));
Eigen
::
Map
<
const
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
>>
in_t_map
(
in_t
.
data
<
T
>
(),
h
,
w
);
int
row_id
;
Eigen
::
array
<
int
,
2
>
extents
{{
1
,
1
}};
for
(
int
col_id
=
0
;
col_id
<
w
;
col_id
++
)
{
in_t_map
.
col
(
col_id
).
maxCoeff
(
&
row_id
);
Eigen
::
array
<
int
,
2
>
in_offsets
{{
row_id
,
col_id
}};
Eigen
::
array
<
int
,
2
>
out_offsets
{{
0
,
col_id
}};
in_g_e
.
slice
(
in_offsets
,
extents
).
device
(
place
)
=
out_g_e
.
slice
(
out_offsets
,
extents
);
}
break
;
if
(
pooltype
==
"AVERAGE"
)
{
in_g_e
.
device
(
place
)
=
(
out_g_e
/
static_cast
<
T
>
(
h
)).
broadcast
(
bcast
);
}
else
if
(
pooltype
==
"SUM"
)
{
in_g_e
.
device
(
place
)
=
(
out_g_e
).
broadcast
(
bcast
);
}
else
if
(
pooltype
==
"SQRT"
)
{
in_g_e
.
device
(
place
)
=
(
out_g_e
/
std
::
sqrt
(
static_cast
<
T
>
(
h
))).
broadcast
(
bcast
);
}
else
if
(
pooltype
==
"MAX"
)
{
auto
in_t
=
in
->
Slice
(
static_cast
<
int
>
(
lod
[
i
]),
static_cast
<
int
>
(
lod
[
i
+
1
]));
Eigen
::
Map
<
const
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
>>
in_t_map
(
in_t
.
data
<
T
>
(),
h
,
w
);
int
row_id
;
Eigen
::
array
<
int
,
2
>
extents
{{
1
,
1
}};
for
(
int
col_id
=
0
;
col_id
<
w
;
col_id
++
)
{
in_t_map
.
col
(
col_id
).
maxCoeff
(
&
row_id
);
Eigen
::
array
<
int
,
2
>
in_offsets
{{
row_id
,
col_id
}};
Eigen
::
array
<
int
,
2
>
out_offsets
{{
0
,
col_id
}};
in_g_e
.
slice
(
in_offsets
,
extents
).
device
(
place
)
=
out_g_e
.
slice
(
out_offsets
,
extents
);
}
case
LAST
:
in_g_e
.
chip
(
h
-
1
,
0
).
device
(
place
)
=
out_g_e
;
break
;
case
FIRST
:
in_g_e
.
chip
(
0
,
0
).
device
(
place
)
=
out_g_e
;
break
;
default:
PADDLE_THROW
(
"unsupported pooling strategy"
);
}
else
if
(
pooltype
==
"LAST"
)
{
in_g_e
.
chip
(
h
-
1
,
0
).
device
(
place
)
=
out_g_e
;
}
else
if
(
pooltype
==
"FIRST"
)
{
in_g_e
.
chip
(
0
,
0
).
device
(
place
)
=
out_g_e
;
}
else
{
PADDLE_THROW
(
"unsupported pooling pooltype"
);
}
}
}
...
...
python/paddle/v2/framework/layers.py
浏览文件 @
26492210
...
...
@@ -351,32 +351,21 @@ def conv2d(input,
return
helper
.
append_activation
(
pre_act
)
def
sequence_pool
(
input
,
pool_type
,
program
=
None
,
init_program
=
None
):
# FIXME(dzh) : want to unify the argument of python layer
# function. So we ignore some unecessary attributes
ENUM_POOL_TYPE
=
dict
({
"AVERAGE"
:
0
,
"SUM"
:
1
,
"SQRT"
:
2
,
"MAX"
:
3
,
"LAST"
:
4
,
"FIRST"
:
5
})
def
sequence_pool
(
input
,
pool_type
,
**
kwargs
):
ENUM_POOL_TYPE
=
set
([
"MAX"
,
"AVG"
,
"SQRT"
,
"LAST"
,
"FIRST"
])
if
pool_type
.
upper
()
not
in
ENUM_POOL_TYPE
:
raise
ValueError
(
"Unknown pool_type: '%s'. It can only be %s."
,
str
(
pool_type
),
" "
.
join
(
ENUM_POOL_TYPE
.
keys
()
))
str
(
pool_type
),
" "
.
join
(
ENUM_POOL_TYPE
))
helper
=
LayerHelper
(
'sequence_pool'
,
**
locals
()
)
helper
=
LayerHelper
(
'sequence_pool'
,
**
kwargs
)
dtype
=
helper
.
input_dtype
()
pool_out
=
helper
.
create_tmp_variable
(
dtype
)
# FIXME(dzh): strategy
helper
.
append_op
(
type
=
"sequence_pool"
,
inputs
=
{
"X"
:
[
input
]},
outputs
=
{
"Out"
:
[
pool_out
]},
attrs
=
{
"
strategy"
:
ENUM_POOL_TYPE
[
pool_type
.
upper
()]
})
attrs
=
{
"
pooltype"
:
pool_type
.
upper
()
})
return
pool_out
...
...
python/paddle/v2/framework/tests/test_seq_pool.py
浏览文件 @
26492210
...
...
@@ -3,15 +3,6 @@ import numpy as np
from
op_test
import
OpTest
class
SeqPoolType
(
OpTest
):
AVERAGE
=
0
SUM
=
1
SQRT
=
2
MAX
=
3
LAST
=
4
FIRST
=
5
class
TestSeqAvgPool
(
OpTest
):
def
set_data
(
self
):
self
.
op_type
=
'sequence_pool'
...
...
@@ -25,7 +16,7 @@ class TestSeqAvgPool(OpTest):
return
x
,
lod
,
out
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
AVERAGE
}
self
.
attrs
=
{
'
pooltype'
:
"AVERAGE"
}
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
.
mean
(
axis
=
0
)
...
...
@@ -54,7 +45,7 @@ class TestSeqAvgPool2D(TestSeqAvgPool):
return
x
,
lod
,
out
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
AVERAGE
}
self
.
attrs
=
{
'
pooltype'
:
"AVERAGE"
}
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
sub_x
.
mean
(
axis
=
0
),
(
3
,
17
))
...
...
@@ -62,7 +53,7 @@ class TestSeqAvgPool2D(TestSeqAvgPool):
class
TestSeqSumPool
(
TestSeqAvgPool
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
SUM
}
self
.
attrs
=
{
'
pooltype'
:
"SUM"
}
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
.
sum
(
axis
=
0
)
...
...
@@ -70,7 +61,7 @@ class TestSeqSumPool(TestSeqAvgPool):
class
TestSeqSumPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
SUM
}
self
.
attrs
=
{
'
pooltype'
:
"SUM"
}
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
sub_x
.
sum
(
axis
=
0
),
(
3
,
17
))
...
...
@@ -78,7 +69,7 @@ class TestSeqSumPool2D(TestSeqAvgPool2D):
class
TestSeqSqrtPool
(
TestSeqAvgPool
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
SQRT
}
self
.
attrs
=
{
'
pooltype'
:
"SQRT"
}
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
len
=
lod
[
0
][
i
+
1
]
-
lod
[
0
][
i
]
...
...
@@ -87,7 +78,7 @@ class TestSeqSqrtPool(TestSeqAvgPool):
class
TestSeqSqrtPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
SQRT
}
self
.
attrs
=
{
'
pooltype'
:
"SQRT"
}
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
len
=
lod
[
0
][
i
+
1
]
-
lod
[
0
][
i
]
...
...
@@ -99,7 +90,7 @@ class TestSeqSqrtPool2D(TestSeqAvgPool2D):
class
TestSeqMaxPool
(
TestSeqAvgPool
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
MAX
}
self
.
attrs
=
{
'
pooltype'
:
"MAX"
}
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
np
.
amax
(
sub_x
,
axis
=
0
)
...
...
@@ -111,7 +102,7 @@ class TestSeqMaxPool(TestSeqAvgPool):
class
TestSeqMaxPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
MAX
}
self
.
attrs
=
{
'
pooltype'
:
"MAX"
}
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
np
.
amax
(
sub_x
,
axis
=
0
),
(
3
,
17
))
...
...
@@ -123,7 +114,7 @@ class TestSeqMaxPool2D(TestSeqAvgPool2D):
class
TestSeqLastPool
(
TestSeqAvgPool
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
LAST
}
self
.
attrs
=
{
'
pooltype'
:
"LAST"
}
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
[
-
1
,
:]
...
...
@@ -131,7 +122,7 @@ class TestSeqLastPool(TestSeqAvgPool):
class
TestSeqLastPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
LAST
}
self
.
attrs
=
{
'
pooltype'
:
"LAST"
}
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
sub_x
[
-
1
,
:],
(
3
,
17
))
...
...
@@ -139,7 +130,7 @@ class TestSeqLastPool2D(TestSeqAvgPool2D):
class
TestSeqFirstPool
(
TestSeqAvgPool
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
FIRST
}
self
.
attrs
=
{
'
pooltype'
:
"FIRST"
}
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
[
0
,
:]
...
...
@@ -147,7 +138,7 @@ class TestSeqFirstPool(TestSeqAvgPool):
class
TestSeqFirstPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
,
x
,
lod
,
out
):
self
.
attrs
=
{
'
strategy'
:
SeqPoolType
.
FIRST
}
self
.
attrs
=
{
'
pooltype'
:
"FIRST"
}
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
sub_x
[
0
,
:],
(
3
,
17
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录