Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
25e070ec
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
25e070ec
编写于
11月 07, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'ups/develop' into fea/jit/vadd
上级
cb4083b9
ea8984c9
变更
35
展开全部
隐藏空白更改
内联
并排
Showing
35 changed file
with
800 addition
and
981 deletion
+800
-981
paddle/fluid/framework/threadpool.cc
paddle/fluid/framework/threadpool.cc
+18
-12
paddle/fluid/framework/threadpool.h
paddle/fluid/framework/threadpool.h
+8
-3
paddle/fluid/operators/activation_op.cu
paddle/fluid/operators/activation_op.cu
+3
-1
paddle/fluid/operators/activation_op.h
paddle/fluid/operators/activation_op.h
+2
-3
paddle/fluid/operators/batch_norm_op.cu.cc
paddle/fluid/operators/batch_norm_op.cu.cc
+12
-9
paddle/fluid/operators/conv_cudnn_op.cu.cc
paddle/fluid/operators/conv_cudnn_op.cu.cc
+4
-1
paddle/fluid/operators/cross_entropy_op.cu
paddle/fluid/operators/cross_entropy_op.cu
+9
-4
paddle/fluid/operators/elementwise_add_op.cu
paddle/fluid/operators/elementwise_add_op.cu
+2
-1
paddle/fluid/operators/elementwise_op_function.h
paddle/fluid/operators/elementwise_op_function.h
+2
-2
paddle/fluid/operators/math/cross_entropy.cu
paddle/fluid/operators/math/cross_entropy.cu
+16
-6
paddle/fluid/operators/math/cross_entropy.h
paddle/fluid/operators/math/cross_entropy.h
+21
-0
paddle/fluid/operators/math/selected_rows_functor.cu
paddle/fluid/operators/math/selected_rows_functor.cu
+12
-3
paddle/fluid/operators/math/softmax.cu
paddle/fluid/operators/math/softmax.cu
+3
-0
paddle/fluid/operators/mean_op.cu
paddle/fluid/operators/mean_op.cu
+6
-2
paddle/fluid/operators/mean_op.h
paddle/fluid/operators/mean_op.h
+1
-2
paddle/fluid/operators/mul_op.cu.cc
paddle/fluid/operators/mul_op.cu.cc
+4
-3
paddle/fluid/operators/pool_cudnn_op.cu.cc
paddle/fluid/operators/pool_cudnn_op.cu.cc
+2
-1
paddle/fluid/operators/scale_op.cu
paddle/fluid/operators/scale_op.cu
+5
-1
paddle/fluid/operators/softmax_cudnn_op.cu.cc
paddle/fluid/operators/softmax_cudnn_op.cu.cc
+2
-1
paddle/fluid/operators/softmax_op.cu.cc
paddle/fluid/operators/softmax_op.cu.cc
+2
-1
paddle/fluid/operators/sum_op.cu
paddle/fluid/operators/sum_op.cu
+4
-1
paddle/fluid/operators/sum_op.h
paddle/fluid/operators/sum_op.h
+1
-1
python/paddle/fluid/io.py
python/paddle/fluid/io.py
+7
-2
python/paddle/fluid/recordio_writer.py
python/paddle/fluid/recordio_writer.py
+0
-3
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+9
-8
python/paddle/fluid/tests/unittests/test_activation_op.py
python/paddle/fluid/tests/unittests/test_activation_op.py
+90
-537
python/paddle/fluid/tests/unittests/test_conv2d_op.py
python/paddle/fluid/tests/unittests/test_conv2d_op.py
+63
-88
python/paddle/fluid/tests/unittests/test_cross_entropy_op.py
python/paddle/fluid/tests/unittests/test_cross_entropy_op.py
+201
-137
python/paddle/fluid/tests/unittests/test_mean_op.py
python/paddle/fluid/tests/unittests/test_mean_op.py
+25
-1
python/paddle/fluid/tests/unittests/test_mul_op.py
python/paddle/fluid/tests/unittests/test_mul_op.py
+78
-32
python/paddle/fluid/tests/unittests/test_pool2d_mkldnn_op.py
python/paddle/fluid/tests/unittests/test_pool2d_mkldnn_op.py
+2
-2
python/paddle/fluid/tests/unittests/test_pool2d_op.py
python/paddle/fluid/tests/unittests/test_pool2d_op.py
+74
-100
python/paddle/fluid/tests/unittests/test_scale_op.py
python/paddle/fluid/tests/unittests/test_scale_op.py
+52
-3
python/paddle/fluid/tests/unittests/test_softmax_op.py
python/paddle/fluid/tests/unittests/test_softmax_op.py
+18
-6
python/paddle/fluid/tests/unittests/test_sum_op.py
python/paddle/fluid/tests/unittests/test_sum_op.py
+42
-4
未找到文件。
paddle/fluid/framework/threadpool.cc
浏览文件 @
25e070ec
...
...
@@ -57,10 +57,10 @@ ThreadPool::ThreadPool(int num_threads) : running_(true) {
ThreadPool
::~
ThreadPool
()
{
{
// notify all threads to stop running
std
::
lock_guard
<
std
::
mutex
>
l
(
mutex_
);
std
::
unique_lock
<
std
::
mutex
>
l
(
mutex_
);
running_
=
false
;
scheduled_
.
notify_all
();
}
scheduled_
.
notify_all
();
for
(
auto
&
t
:
threads_
)
{
t
->
join
();
...
...
@@ -70,19 +70,25 @@ ThreadPool::~ThreadPool() {
void
ThreadPool
::
TaskLoop
()
{
while
(
true
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
)
;
Task
task
;
scheduled_
.
wait
(
lock
,
[
this
]
{
return
!
this
->
tasks_
.
empty
()
||
!
this
->
running_
;
});
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
scheduled_
.
wait
(
lock
,
[
this
]
{
return
!
this
->
tasks_
.
empty
()
||
!
this
->
running_
;
});
if
(
!
running_
||
tasks_
.
empty
())
{
return
;
}
if
(
!
running_
&&
tasks_
.
empty
())
{
return
;
}
if
(
tasks_
.
empty
())
{
PADDLE_THROW
(
"This thread has no task to Run"
);
}
// pop a task from the task queue
auto
task
=
std
::
move
(
tasks_
.
front
());
tasks_
.
pop
();
lock
.
unlock
();
// pop a task from the task queue
task
=
std
::
move
(
tasks_
.
front
());
tasks_
.
pop
();
}
// run the task
task
();
...
...
paddle/fluid/framework/threadpool.h
浏览文件 @
25e070ec
...
...
@@ -58,7 +58,7 @@ class ThreadPool {
~
ThreadPool
();
// Run pushes a function to the task queue and returns a std::future
// object.
To wait for the completion of the task, call
// object. To wait for the completion of the task, call
// std::future::wait().
template
<
typename
Callback
>
std
::
future
<
void
>
Run
(
Callback
fn
)
{
...
...
@@ -69,7 +69,6 @@ class ThreadPool {
template
<
typename
Callback
>
std
::
future
<
std
::
unique_ptr
<
platform
::
EnforceNotMet
>>
RunAndGetException
(
Callback
fn
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
Task
task
([
fn
]()
->
std
::
unique_ptr
<
platform
::
EnforceNotMet
>
{
try
{
fn
();
...
...
@@ -84,7 +83,13 @@ class ThreadPool {
return
nullptr
;
});
std
::
future
<
std
::
unique_ptr
<
platform
::
EnforceNotMet
>>
f
=
task
.
get_future
();
tasks_
.
push
(
std
::
move
(
task
));
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
if
(
!
running_
)
{
PADDLE_THROW
(
"enqueue on stopped ThreadPool"
);
}
tasks_
.
push
(
std
::
move
(
task
));
}
scheduled_
.
notify_one
();
return
f
;
}
...
...
paddle/fluid/operators/activation_op.cu
浏览文件 @
25e070ec
...
...
@@ -26,6 +26,8 @@ namespace plat = paddle::platform;
act_type##_grad, ops::ActivationGradKernel<plat::CUDADeviceContext, \
ops::grad_functor<float>>, \
ops::ActivationGradKernel<plat::CUDADeviceContext, \
ops::grad_functor<double>>);
ops::grad_functor<double>>, \
ops::ActivationGradKernel<plat::CUDADeviceContext, \
ops::grad_functor<plat::float16>>);
FOR_EACH_KERNEL_FUNCTOR
(
REGISTER_ACTIVATION_CUDA_KERNEL
);
paddle/fluid/operators/activation_op.h
浏览文件 @
25e070ec
...
...
@@ -333,8 +333,7 @@ struct SqrtGradFunctor : public BaseActivationFunctor<T> {
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
const
Out
out_conj
=
Eigen
::
numext
::
conj
(
out
);
dx
.
device
(
d
)
=
static_cast
<
T
>
(
0.5
)
*
dout
/
out_conj
;
dx
.
device
(
d
)
=
static_cast
<
T
>
(
0.5
)
*
dout
/
out
;
}
};
...
...
@@ -740,7 +739,7 @@ struct PowGradFunctor : public BaseActivationFunctor<T> {
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
static_cast
<
T
>
(
factor
)
*
x
.
pow
(
static_cast
<
T
>
(
factor
-
static_cast
<
T
>
(
1
)
));
x
.
pow
(
static_cast
<
T
>
(
factor
)
-
static_cast
<
T
>
(
1
));
}
};
...
...
paddle/fluid/operators/batch_norm_op.cu.cc
浏览文件 @
25e070ec
...
...
@@ -219,8 +219,8 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_scale
->
mutable_data
<
BatchNormParamType
<
T
>
>
(
ctx
.
GetPlace
());
d_bias
->
mutable_data
<
BatchNormParamType
<
T
>
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
if
((
N
*
H
*
W
*
D
)
==
1
)
{
...
...
@@ -272,8 +272,10 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
const
auto
*
saved_mean
=
ctx
.
Input
<
Tensor
>
(
"SavedMean"
);
const
auto
*
saved_var
=
ctx
.
Input
<
Tensor
>
(
"SavedVariance"
);
const
void
*
saved_mean_data
=
saved_mean
->
template
data
<
T
>();
const
void
*
saved_var_data
=
saved_var
->
template
data
<
T
>();
const
void
*
saved_mean_data
=
saved_mean
->
template
data
<
BatchNormParamType
<
T
>
>
();
const
void
*
saved_var_data
=
saved_var
->
template
data
<
BatchNormParamType
<
T
>
>
();
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnBatchNormalizationBackward
(
dev_ctx
.
cudnn_handle
(),
mode_
,
CudnnDataType
<
T
>::
kOne
(),
...
...
@@ -281,10 +283,10 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
CudnnDataType
<
T
>::
kZero
(),
data_desc_
,
x
->
template
data
<
T
>(),
data_desc_
,
d_y
->
template
data
<
T
>(),
data_desc_
,
d_x
->
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
bn_param_desc_
,
scale
->
template
data
<
T
>(),
d_scale
->
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
d_bias
->
template
mutable_data
<
T
>(
ctx
.
GetPlace
()),
epsilon
,
saved_mean_data
,
saved_var_data
));
scale
->
template
data
<
BatchNormParamType
<
T
>
>
(),
d_scale
->
template
mutable_data
<
BatchNormParamType
<
T
>
>
(
ctx
.
GetPlace
()),
d_bias
->
template
mutable_data
<
BatchNormParamType
<
T
>
>
(
ctx
.
GetPlace
())
,
epsilon
,
saved_mean_data
,
saved_var_data
));
// clean when exit.
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnDestroyTensorDescriptor
(
data_desc_
));
...
...
@@ -304,4 +306,5 @@ REGISTER_OP_CUDA_KERNEL(
ops
::
BatchNormKernel
<
plat
::
CUDADeviceContext
,
plat
::
float16
>
);
REGISTER_OP_CUDA_KERNEL
(
batch_norm_grad
,
ops
::
BatchNormGradKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
BatchNormGradKernel
<
plat
::
CUDADeviceContext
,
double
>
);
ops
::
BatchNormGradKernel
<
plat
::
CUDADeviceContext
,
double
>
,
ops
::
BatchNormGradKernel
<
plat
::
CUDADeviceContext
,
plat
::
float16
>
);
paddle/fluid/operators/conv_cudnn_op.cu.cc
浏览文件 @
25e070ec
...
...
@@ -143,9 +143,11 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
cudnn_conv_desc
,
CUDNN_TENSOR_OP_MATH
));
// Currently tensor core is only enabled using this algo
algo
=
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
;
VLOG
(
5
)
<<
"use cudnn_tensor_op_math"
;
}
else
{
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetConvolutionMathType
(
cudnn_conv_desc
,
CUDNN_DEFAULT_MATH
));
VLOG
(
5
)
<<
"NOT use cudnn_tensor_op_math"
;
}
#endif
...
...
@@ -361,7 +363,8 @@ REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
paddle
::
operators
::
CUDNNConvOpKernel
<
plat
::
float16
>
);
REGISTER_OP_KERNEL
(
conv2d_grad
,
CUDNN
,
plat
::
CUDAPlace
,
paddle
::
operators
::
CUDNNConvGradOpKernel
<
float
>
,
paddle
::
operators
::
CUDNNConvGradOpKernel
<
double
>
);
paddle
::
operators
::
CUDNNConvGradOpKernel
<
double
>
,
paddle
::
operators
::
CUDNNConvGradOpKernel
<
plat
::
float16
>
);
REGISTER_OP_KERNEL
(
conv3d
,
CUDNN
,
plat
::
CUDAPlace
,
paddle
::
operators
::
CUDNNConvOpKernel
<
float
>
,
...
...
paddle/fluid/operators/cross_entropy_op.cu
浏览文件 @
25e070ec
...
...
@@ -13,12 +13,17 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/cross_entropy_op.h"
#include "paddle/fluid/platform/float16.h"
namespace
plat
=
paddle
::
platform
;
namespace
ops
=
paddle
::
operators
;
using
CUDACtx
=
paddle
::
platform
::
CUDADeviceContext
;
REGISTER_OP_CUDA_KERNEL
(
cross_entropy
,
ops
::
CrossEntropyOpKernel
<
CUDACtx
,
float
>
,
ops
::
CrossEntropyOpKernel
<
CUDACtx
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
cross_entropy_grad
,
ops
::
CrossEntropyGradientOpKernel
<
CUDACtx
,
float
>
,
ops
::
CrossEntropyGradientOpKernel
<
CUDACtx
,
double
>
);
ops
::
CrossEntropyOpKernel
<
CUDACtx
,
double
>
,
ops
::
CrossEntropyOpKernel
<
CUDACtx
,
plat
::
float16
>
);
REGISTER_OP_CUDA_KERNEL
(
cross_entropy_grad
,
ops
::
CrossEntropyGradientOpKernel
<
CUDACtx
,
float
>
,
ops
::
CrossEntropyGradientOpKernel
<
CUDACtx
,
double
>
,
ops
::
CrossEntropyGradientOpKernel
<
CUDACtx
,
plat
::
float16
>
);
paddle/fluid/operators/elementwise_add_op.cu
浏览文件 @
25e070ec
...
...
@@ -30,4 +30,5 @@ REGISTER_OP_CUDA_KERNEL(
ops
::
ElementwiseAddGradKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
ElementwiseAddGradKernel
<
plat
::
CUDADeviceContext
,
double
>
,
ops
::
ElementwiseAddGradKernel
<
plat
::
CUDADeviceContext
,
int
>
,
ops
::
ElementwiseAddGradKernel
<
plat
::
CUDADeviceContext
,
int64_t
>
);
ops
::
ElementwiseAddGradKernel
<
plat
::
CUDADeviceContext
,
int64_t
>
,
ops
::
ElementwiseAddGradKernel
<
plat
::
CUDADeviceContext
,
plat
::
float16
>
);
paddle/fluid/operators/elementwise_op_function.h
浏览文件 @
25e070ec
...
...
@@ -365,7 +365,7 @@ static __global__ void ElemwiseGradBroadcast1CUDAKernel(
int
j
=
blockIdx
.
x
;
int
i
=
threadIdx
.
x
;
int
tid
=
threadIdx
.
x
;
T
val
=
0
;
T
val
(
0
)
;
do
{
int
x_offset
=
i
*
w
+
j
;
...
...
@@ -433,7 +433,7 @@ static __global__ void ElemwiseGradBroadcast2CUDAKernel(
int
tid
=
threadIdx
.
x
;
int
j
=
blockIdx
.
x
;
T
val
=
0
;
T
val
(
0
)
;
int
ttid
=
tid
;
while
(
true
)
{
...
...
paddle/fluid/operators/math/cross_entropy.cu
浏览文件 @
25e070ec
...
...
@@ -21,6 +21,16 @@ namespace operators {
namespace
math
{
namespace
{
__device__
__forceinline__
float
real_log
(
float
x
)
{
return
logf
(
x
);
}
__device__
__forceinline__
double
real_log
(
double
x
)
{
return
log
(
x
);
}
__device__
__forceinline__
platform
::
float16
real_log
(
const
platform
::
float16
&
val
)
{
return
static_cast
<
platform
::
float16
>
(
hlog
(
static_cast
<
half
>
(
val
)));
}
template
<
typename
T
>
__global__
void
CrossEntropyKernel
(
T
*
Y
,
const
T
*
X
,
const
int64_t
*
label
,
const
int
N
,
const
int
D
,
...
...
@@ -29,8 +39,8 @@ __global__ void CrossEntropyKernel(T* Y, const T* X, const int64_t* label,
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
PADDLE_ASSERT
(
label
[
i
]
>=
0
&&
label
[
i
]
<
D
||
label
[
i
]
==
ignore_index
);
Y
[
i
]
=
ignore_index
==
label
[
i
]
?
0
:
-
math
::
TolerableValue
<
T
>
()(
log
(
X
[
i
*
D
+
label
[
i
]]));
?
static_cast
<
T
>
(
0
)
:
-
math
::
TolerableValue
<
T
>
()(
real_
log
(
X
[
i
*
D
+
label
[
i
]]));
}
}
...
...
@@ -38,12 +48,12 @@ template <typename T>
__global__
void
SoftCrossEntropyKernel
(
T
*
Y
,
const
T
*
X
,
const
T
*
label
,
const
int
class_num
)
{
int
tid
=
threadIdx
.
x
;
T
val
=
0
;
T
val
(
0
)
;
int
idx
=
blockIdx
.
x
*
class_num
+
tid
;
int
end
=
blockIdx
.
x
*
class_num
+
class_num
;
for
(;
idx
<
end
;
idx
+=
blockDim
.
x
)
{
val
+=
math
::
TolerableValue
<
T
>
()(
std
::
log
(
X
[
idx
]))
*
label
[
idx
];
val
+=
math
::
TolerableValue
<
T
>
()(
real_
log
(
X
[
idx
]))
*
label
[
idx
];
}
val
=
paddle
::
platform
::
reduceSum
(
val
,
tid
,
blockDim
.
x
);
...
...
@@ -53,8 +63,6 @@ __global__ void SoftCrossEntropyKernel(T* Y, const T* X, const T* label,
}
}
// namespace
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
CrossEntropyFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
public:
...
...
@@ -89,6 +97,8 @@ class CrossEntropyFunctor<platform::CUDADeviceContext, T> {
template
class
CrossEntropyFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
class
CrossEntropyFunctor
<
platform
::
CUDADeviceContext
,
double
>;
template
class
CrossEntropyFunctor
<
platform
::
CUDADeviceContext
,
platform
::
float16
>;
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/math/cross_entropy.h
浏览文件 @
25e070ec
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <limits>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/hostdevice.h"
...
...
@@ -33,6 +34,26 @@ struct TolerableValue {
}
};
// NOTE(dzh): float16 value clip behave different.
// 1. Our ValueClipping has a hardcore threshold 1e20
// for float number. 1e20 will resulting in overflow in float16.
// 2. float16 should expose the the real number overflow to python.
// because mixed-training depends the inf/nan value to determine
// if the scale value will be adjusted.
// Also. In standard implementation of cross entropy, other
// framework not has the ValueClipping.
template
<
>
struct
TolerableValue
<
platform
::
float16
>
{
HOSTDEVICE
platform
::
float16
operator
()(
const
platform
::
float16
&
x
)
const
{
if
(
platform
::
isfinite
(
x
))
return
x
;
else
if
(
x
>
static_cast
<
platform
::
float16
>
(
0
))
return
std
::
numeric_limits
<
platform
::
float16
>::
max
();
else
return
std
::
numeric_limits
<
platform
::
float16
>::
min
();
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
CrossEntropyFunctor
{
public:
...
...
paddle/fluid/operators/math/selected_rows_functor.cu
浏览文件 @
25e070ec
...
...
@@ -18,6 +18,7 @@ limitations under the License. */
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/float16.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -118,7 +119,7 @@ struct SelectedRowsAddTensor<platform::CUDADeviceContext, T> {
auto
*
out_data
=
output
->
data
<
T
>
();
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
functor
;
functor
(
context
,
output
,
0.0
);
functor
(
context
,
output
,
static_cast
<
T
>
(
0
)
);
const
int
block_size
=
256
;
dim3
threads
(
block_size
,
1
);
...
...
@@ -136,6 +137,9 @@ struct SelectedRowsAddTensor<platform::CUDADeviceContext, T> {
template
struct
SelectedRowsAddTensor
<
platform
::
CUDADeviceContext
,
float
>;
template
struct
SelectedRowsAddTensor
<
platform
::
CUDADeviceContext
,
double
>;
template
struct
SelectedRowsAdd
<
platform
::
CUDADeviceContext
,
platform
::
float16
>;
template
struct
SelectedRowsAddTensor
<
platform
::
CUDADeviceContext
,
platform
::
float16
>;
template
<
typename
T
>
struct
SelectedRowsAddTo
<
platform
::
CUDADeviceContext
,
T
>
{
...
...
@@ -175,6 +179,8 @@ template struct SelectedRowsAddTo<platform::CUDADeviceContext, float>;
template
struct
SelectedRowsAddTo
<
platform
::
CUDADeviceContext
,
double
>;
template
struct
SelectedRowsAddTo
<
platform
::
CUDADeviceContext
,
int
>;
template
struct
SelectedRowsAddTo
<
platform
::
CUDADeviceContext
,
int64_t
>;
template
struct
SelectedRowsAddTo
<
platform
::
CUDADeviceContext
,
platform
::
float16
>;
namespace
{
template
<
typename
T
,
int
block_size
>
...
...
@@ -227,6 +233,8 @@ template struct SelectedRowsAddToTensor<platform::CUDADeviceContext, float>;
template
struct
SelectedRowsAddToTensor
<
platform
::
CUDADeviceContext
,
double
>;
template
struct
SelectedRowsAddToTensor
<
platform
::
CUDADeviceContext
,
int
>;
template
struct
SelectedRowsAddToTensor
<
platform
::
CUDADeviceContext
,
int64_t
>;
template
struct
SelectedRowsAddToTensor
<
platform
::
CUDADeviceContext
,
platform
::
float16
>;
namespace
scatter
{
...
...
@@ -287,7 +295,7 @@ struct MergeAdd<platform::CUDADeviceContext, T> {
context
.
GetPlace
());
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
constant_functor
;
constant_functor
(
context
,
out
.
mutable_value
(),
0.0
);
constant_functor
(
context
,
out
.
mutable_value
(),
static_cast
<
T
>
(
0
)
);
auto
*
out_data
=
out
.
mutable_value
()
->
data
<
T
>
();
auto
*
input_data
=
input
.
value
().
data
<
T
>
();
...
...
@@ -347,7 +355,7 @@ struct MergeAdd<platform::CUDADeviceContext, T> {
context
.
GetPlace
());
math
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
constant_functor
;
constant_functor
(
context
,
out
.
mutable_value
(),
0.0
);
constant_functor
(
context
,
out
.
mutable_value
(),
static_cast
<
T
>
(
0
)
);
auto
*
out_data
=
out
.
mutable_value
()
->
data
<
T
>
();
...
...
@@ -374,6 +382,7 @@ template struct MergeAdd<platform::CUDADeviceContext, float>;
template
struct
MergeAdd
<
platform
::
CUDADeviceContext
,
double
>;
template
struct
MergeAdd
<
platform
::
CUDADeviceContext
,
int
>;
template
struct
MergeAdd
<
platform
::
CUDADeviceContext
,
int64_t
>;
template
struct
MergeAdd
<
platform
::
CUDADeviceContext
,
platform
::
float16
>;
template
<
typename
T
,
int
block_size
>
__global__
void
UpdateToTensorKernel
(
const
T
*
selected_rows
,
...
...
paddle/fluid/operators/math/softmax.cu
浏览文件 @
25e070ec
...
...
@@ -96,12 +96,15 @@ template class SoftmaxCUDNNFunctor<float>;
template
class
SoftmaxCUDNNFunctor
<
double
>;
template
class
SoftmaxGradCUDNNFunctor
<
float
>;
template
class
SoftmaxGradCUDNNFunctor
<
double
>;
template
class
SoftmaxGradCUDNNFunctor
<
platform
::
float16
>;
template
class
SoftmaxFunctor
<
platform
::
CUDADeviceContext
,
platform
::
float16
>;
template
class
SoftmaxFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
class
SoftmaxFunctor
<
platform
::
CUDADeviceContext
,
double
>;
template
class
SoftmaxGradFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
class
SoftmaxGradFunctor
<
platform
::
CUDADeviceContext
,
double
>;
template
class
SoftmaxGradFunctor
<
platform
::
CUDADeviceContext
,
platform
::
float16
>;
}
// namespace math
}
// namespace operators
...
...
paddle/fluid/operators/mean_op.cu
浏览文件 @
25e070ec
...
...
@@ -15,11 +15,15 @@ limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/fluid/operators/mean_op.h"
#include "paddle/fluid/platform/float16.h"
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
mean
,
ops
::
MeanKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
MeanKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
ops
::
MeanKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
MeanKernel
<
paddle
::
platform
::
CUDADeviceContext
,
plat
::
float16
>
);
REGISTER_OP_CUDA_KERNEL
(
mean_grad
,
ops
::
MeanGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
MeanGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
ops
::
MeanGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
MeanGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
plat
::
float16
>
);
paddle/fluid/operators/mean_op.h
浏览文件 @
25e070ec
...
...
@@ -55,8 +55,7 @@ class MeanGradKernel : public framework::OpKernel<T> {
IG
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
ig_size
=
static_cast
<
T
>
(
IG
->
numel
());
Eigen
::
DSizes
<
int
,
1
>
bcast
(
ig_size
);
Eigen
::
DSizes
<
int
,
1
>
bcast
(
static_cast
<
int
>
(
ig_size
));
EigenVector
<
T
>::
Flatten
(
*
IG
).
device
(
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
())
=
(
EigenVector
<
T
>::
From
(
*
OG
)
/
ig_size
).
broadcast
(
bcast
);
...
...
paddle/fluid/operators/mul_op.cu.cc
浏览文件 @
25e070ec
...
...
@@ -20,6 +20,7 @@ namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL
(
mul
,
ops
::
MulKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
MulKernel
<
plat
::
CUDADeviceContext
,
double
>
,
ops
::
MulKernel
<
plat
::
CUDADeviceContext
,
plat
::
float16
>
);
REGISTER_OP_CUDA_KERNEL
(
mul_grad
,
ops
::
MulGradKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
MulGradKernel
<
plat
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
mul_grad
,
ops
::
MulGradKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
MulGradKernel
<
plat
::
CUDADeviceContext
,
double
>
,
ops
::
MulGradKernel
<
plat
::
CUDADeviceContext
,
plat
::
float16
>
);
paddle/fluid/operators/pool_cudnn_op.cu.cc
浏览文件 @
25e070ec
...
...
@@ -178,7 +178,8 @@ REGISTER_OP_KERNEL(pool2d, CUDNN, plat::CUDAPlace,
ops
::
PoolCUDNNOpKernel
<
plat
::
float16
>
);
REGISTER_OP_KERNEL
(
pool2d_grad
,
CUDNN
,
plat
::
CUDAPlace
,
ops
::
PoolCUDNNGradOpKernel
<
float
>
,
ops
::
PoolCUDNNGradOpKernel
<
double
>
);
ops
::
PoolCUDNNGradOpKernel
<
double
>
,
ops
::
PoolCUDNNGradOpKernel
<
plat
::
float16
>
);
REGISTER_OP_KERNEL
(
pool3d
,
CUDNN
,
plat
::
CUDAPlace
,
ops
::
PoolCUDNNOpKernel
<
float
>
,
...
...
paddle/fluid/operators/scale_op.cu
浏览文件 @
25e070ec
...
...
@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/scale_op.h"
#include "paddle/fluid/platform/float16.h"
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
scale
,
...
...
@@ -20,4 +22,6 @@ REGISTER_OP_CUDA_KERNEL(
paddle
::
operators
::
ScaleKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
paddle
::
operators
::
ScaleKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
paddle
::
operators
::
ScaleKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
int64_t
>
,
paddle
::
operators
::
ScaleKernel
<
paddle
::
platform
::
CUDADeviceContext
,
plat
::
float16
>
);
paddle/fluid/operators/softmax_cudnn_op.cu.cc
浏览文件 @
25e070ec
...
...
@@ -80,4 +80,5 @@ REGISTER_OP_KERNEL(softmax, CUDNN, plat::CUDAPlace,
ops
::
SoftmaxCUDNNKernel
<
plat
::
float16
>
);
REGISTER_OP_KERNEL
(
softmax_grad
,
CUDNN
,
plat
::
CUDAPlace
,
ops
::
SoftmaxGradCUDNNKernel
<
float
>
,
ops
::
SoftmaxGradCUDNNKernel
<
double
>
);
ops
::
SoftmaxGradCUDNNKernel
<
double
>
,
ops
::
SoftmaxGradCUDNNKernel
<
plat
::
float16
>
);
paddle/fluid/operators/softmax_op.cu.cc
浏览文件 @
25e070ec
...
...
@@ -23,4 +23,5 @@ REGISTER_OP_CUDA_KERNEL(
ops
::
SoftmaxKernel
<
plat
::
CUDADeviceContext
,
plat
::
float16
>
);
REGISTER_OP_CUDA_KERNEL
(
softmax_grad
,
ops
::
SoftmaxGradKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
SoftmaxGradKernel
<
plat
::
CUDADeviceContext
,
double
>
);
ops
::
SoftmaxGradKernel
<
plat
::
CUDADeviceContext
,
double
>
,
ops
::
SoftmaxGradKernel
<
plat
::
CUDADeviceContext
,
plat
::
float16
>
);
paddle/fluid/operators/sum_op.cu
浏览文件 @
25e070ec
...
...
@@ -11,10 +11,13 @@ limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/fluid/operators/sum_op.h"
#include "paddle/fluid/platform/float16.h"
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
sum
,
ops
::
SumKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
SumKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
SumKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
SumKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
ops
::
SumKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
,
ops
::
SumKernel
<
paddle
::
platform
::
CUDADeviceContext
,
plat
::
float16
>
);
paddle/fluid/operators/sum_op.h
浏览文件 @
25e070ec
...
...
@@ -61,7 +61,7 @@ class SumKernel : public framework::OpKernel<T> {
if
(
start
!=
2
)
{
math
::
SetConstant
<
DeviceContext
,
T
>
constant_functor
;
constant_functor
(
context
.
template
device_context
<
DeviceContext
>(),
out
,
0.0
);
out
,
static_cast
<
T
>
(
0
)
);
}
}
...
...
python/paddle/fluid/io.py
浏览文件 @
25e070ec
...
...
@@ -65,7 +65,7 @@ def is_persistable(var):
Examples:
.. code-block:: python
param = fluid.default_main_program().global_block().var('fc.
w
')
param = fluid.default_main_program().global_block().var('fc.
b
')
res = fluid.io.is_persistable(param)
"""
if
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
FEED_MINIBATCH
or
\
...
...
@@ -625,8 +625,13 @@ def save_inference_model(dirname,
main_program
.
_distributed_lookup_table
,
main_program
.
_endpoints
)
if
not
os
.
path
.
isdir
(
dirname
):
# when a pserver and a trainer running on the same machine, mkdir may conflict
try
:
os
.
makedirs
(
dirname
)
except
OSError
as
e
:
if
e
.
errno
!=
errno
.
EEXIST
:
raise
if
model_filename
is
not
None
:
model_basename
=
os
.
path
.
basename
(
model_filename
)
else
:
...
...
python/paddle/fluid/recordio_writer.py
浏览文件 @
25e070ec
...
...
@@ -41,9 +41,6 @@ def convert_reader_to_recordio_file(
"""
Convert a Python Reader to a recordio file.
Please see :ref:`api_guide_python_reader` and :ref:`api_guide_reader_op` for
details.
Examples:
>>> import paddle.fluid as fluid
...
...
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
25e070ec
...
...
@@ -54,14 +54,6 @@ def get_numeric_gradient(place,
def
product
(
dim
):
return
six
.
moves
.
reduce
(
lambda
a
,
b
:
a
*
b
,
dim
,
1
)
def
get_output
():
sum
=
[]
op
.
run
(
scope
,
place
)
for
output_name
in
output_names
:
sum
.
append
(
np
.
array
(
scope
.
find_var
(
output_name
).
get_tensor
()).
mean
())
return
np
.
array
(
sum
).
sum
()
/
len
(
output_names
)
tensor_to_check
=
scope
.
find_var
(
input_to_check
).
get_tensor
()
tensor_size
=
product
(
tensor_to_check
.
shape
())
tensor_to_check_dtype
=
tensor_to_check
.
_dtype
()
...
...
@@ -77,6 +69,15 @@ def get_numeric_gradient(place,
raise
ValueError
(
"Not supported data type "
+
str
(
tensor_to_check_dtype
))
def
get_output
():
sum
=
[]
op
.
run
(
scope
,
place
)
for
output_name
in
output_names
:
sum
.
append
(
np
.
array
(
scope
.
find_var
(
output_name
).
get_tensor
()).
astype
(
tensor_to_check_dtype
).
mean
())
return
tensor_to_check_dtype
(
np
.
array
(
sum
).
sum
()
/
len
(
output_names
))
gradient_flat
=
np
.
zeros
(
shape
=
(
tensor_size
,
),
dtype
=
tensor_to_check_dtype
)
def
__get_elem__
(
tensor
,
i
):
...
...
python/paddle/fluid/tests/unittests/test_activation_op.py
浏览文件 @
25e070ec
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/test_conv2d_op.py
浏览文件 @
25e070ec
...
...
@@ -223,106 +223,81 @@ class TestWithInput1x1Filter1x1(TestConv2dOp):
#----------------Conv2dCUDNN----------------
class
TestCUDNN
(
TestConv2dOp
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
class
TestFP16CUDNN
(
TestConv2dOp
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
2e-2
)
def
create_test_cudnn_class
(
parent
,
cls_name
):
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestCUDNNCase
(
parent
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
cls_name
=
"{0}"
.
format
(
cls_name
)
TestCUDNNCase
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestCUDNNCase
class
TestCUDNNWithPad
(
TestWithPad
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
class
TestFP16CUDNNWithPad
(
TestWithPad
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
2e-2
)
class
TestCUDNNWithStride
(
TestWithStride
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
class
TestFP16CUDNNWithStride
(
TestWithStride
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
2e-2
)
create_test_cudnn_class
(
TestConv2dOp
,
"TestPool2DCUDNNOp"
)
create_test_cudnn_class
(
TestWithPad
,
"TestPool2DCUDNNOpCase1"
)
create_test_cudnn_class
(
TestWithStride
,
"TestPool2DCUDNNOpCase2"
)
create_test_cudnn_class
(
TestWithGroup
,
"TestPool2DCUDNNOpCase3"
)
create_test_cudnn_class
(
TestWith1x1
,
"TestPool2DCUDNNOpCase4"
)
create_test_cudnn_class
(
TestWithInput1x1Filter1x1
,
"TestPool2DCUDNNOpCase4"
)
class
TestCUDNNWithGroup
(
TestWithGroup
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
class
TestFP16CUDNNWithGroup
(
TestWithGroup
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
2e-2
)
#----------------Conv2dCUDNN----------------
class
TestCUDNNWith1x1
(
TestWith1x1
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
def
create_test_cudnn_fp16_class
(
parent
,
cls_name
,
grad_check
=
True
):
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestConv2DCUDNNFp16
(
parent
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
class
TestFP16CUDNNWith1x1
(
TestWith1x1
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
2e-2
)
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
def
test_check_grad_no_filter
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
2e-2
)
class
TestCUDNNWithInput1x1Filter1x1
(
TestWithInput1x1Filter1x1
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
class
TestFP16CUDNNWithInput1x1Filter1x1
(
TestWithInput1x1Filter1x1
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
if
core
.
is_float16_supported
(
place
)
and
grad_check
:
self
.
check_grad_with_place
(
place
,
[
'Input'
],
'Output'
,
max_relative_error
=
0.02
,
no_grad_set
=
set
([
'Filter'
]))
def
test_check_grad_no_input
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
2e-2
)
if
core
.
is_float16_supported
(
place
)
and
grad_check
:
self
.
check_grad_with_place
(
place
,
[
'Filter'
],
'Output'
,
max_relative_error
=
0.02
,
no_grad_set
=
set
([
'Input'
]))
cls_name
=
"{0}"
.
format
(
cls_name
)
TestConv2DCUDNNFp16
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestConv2DCUDNNFp16
create_test_cudnn_fp16_class
(
TestConv2dOp
,
"TestPool2DCUDNNFp16Op"
,
grad_check
=
False
)
create_test_cudnn_fp16_class
(
TestWithPad
,
"TestPool2DCUDNNFp16OpCase1"
,
grad_check
=
False
)
create_test_cudnn_fp16_class
(
TestWithStride
,
"TestPool2DCUDNNFp16OpCase2"
,
grad_check
=
False
)
create_test_cudnn_fp16_class
(
TestWithGroup
,
"TestPool2DCUDNNFp16OpCase3"
,
grad_check
=
False
)
create_test_cudnn_fp16_class
(
TestWith1x1
,
"TestPool2DCUDNNFp16OpCase4"
,
grad_check
=
False
)
create_test_cudnn_fp16_class
(
TestWithInput1x1Filter1x1
,
"TestPool2DCUDNNFp16OpCase4"
,
grad_check
=
False
)
# -------TestDepthwiseConv
class
TestDepthwiseConv
(
TestConv2dOp
):
...
...
python/paddle/fluid/tests/unittests/test_cross_entropy_op.py
浏览文件 @
25e070ec
...
...
@@ -16,28 +16,58 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
,
randomize_probability
class
TestCrossEntropyOp
1
(
OpTest
):
class
TestCrossEntropyOp
(
OpTest
):
"""Test cross-entropy with discrete one-hot labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
batch_size
=
30
class_num
=
10
self
.
soft_label
=
False
self
.
ignore_index
=
-
100
self
.
dtype
=
np
.
float64
self
.
batch_size
=
30
self
.
class_num
=
10
self
.
init_dtype_type
()
self
.
init_attr_type
()
self
.
init_bs_class_num
()
self
.
init_x
()
self
.
init_label
()
self
.
get_cross_entropy
()
self
.
inputs
=
{
"X"
:
self
.
x
,
"Label"
:
self
.
label
}
self
.
outputs
=
{
"Y"
:
self
.
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
self
.
soft_label
,
"ignore_index"
:
self
.
ignore_index
}
def
init_x
(
self
):
self
.
x
=
randomize_probability
(
self
.
batch_size
,
self
.
class_num
,
dtype
=
self
.
dtype
)
def
init_label
(
self
):
self
.
label
=
np
.
random
.
randint
(
0
,
self
.
class_num
,
(
self
.
batch_size
,
1
),
dtype
=
"int64"
)
def
get_cross_entropy
(
self
):
self
.
cross_entropy
=
np
.
asmatrix
(
[[
-
np
.
log
(
self
.
x
[
i
][
self
.
label
[
i
][
0
]])]
for
i
in
range
(
self
.
x
.
shape
[
0
])],
dtype
=
"float64"
)
X
=
randomize_probability
(
batch_size
,
class_num
,
dtype
=
'float64'
)
def
init_attr_type
(
self
):
pass
label
=
np
.
random
.
randint
(
0
,
class_num
,
(
batch_size
,
1
),
dtype
=
"int64"
)
cross_entropy
=
np
.
asmatrix
(
[[
-
np
.
log
(
X
[
i
][
label
[
i
][
0
]])]
for
i
in
range
(
X
.
shape
[
0
])],
dtype
=
"float64"
)
def
init_dtype_type
(
self
):
pass
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
False
}
def
init_bs_class_num
(
self
):
pass
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -46,197 +76,231 @@ class TestCrossEntropyOp1(OpTest):
self
.
check_grad
([
"X"
],
"Y"
,
numeric_grad_delta
=
0.001
)
class
TestCrossEntropyOp2
(
OpTest
):
class
TestCrossEntropyOp2
(
TestCrossEntropyOp
):
"""Test cross-entropy with vectorized soft labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
batch_size
=
5
class_num
=
37
def
init_label
(
self
):
self
.
label
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
self
.
batch_size
,
self
.
class_num
]).
astype
(
self
.
dtype
)
self
.
label
/=
self
.
label
.
sum
(
axis
=
1
,
keepdims
=
True
)
X
=
randomize_probability
(
batch_size
,
class_num
)
label
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
label
/=
label
.
sum
(
axis
=
1
,
keepdims
=
True
)
cross_entropy
=
(
-
label
*
np
.
log
(
X
)).
sum
(
axis
=
1
,
keepdims
=
True
).
astype
(
"float32"
)
def
get_cross_entropy
(
self
):
self
.
cross_entropy
=
(
-
self
.
label
*
np
.
log
(
self
.
x
)).
sum
(
axis
=
1
,
keepdims
=
True
).
astype
(
self
.
dtype
)
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
True
}
def
init_attr_type
(
self
):
self
.
soft_label
=
True
def
test_check_output
(
self
):
self
.
check_output
()
def
init_dtype_type
(
self
):
self
.
dtype
=
np
.
float32
def
init_bs_class_num
(
self
):
self
.
batch_size
=
5
self
.
class_num
=
37
def
test_check_grad
(
self
):
self
.
check_grad
(
[
"X"
],
"Y"
,
max_relative_error
=
0.05
,
numeric_grad_delta
=
0.001
)
class
TestCrossEntropyOp3
(
OpTest
):
class
TestCrossEntropyOp3
(
TestCrossEntropyOp
):
"""Test cross-entropy with vectorized one-hot representation of labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
batch_size
=
5
class_num
=
17
def
init_label
(
self
):
self
.
label_index
=
np
.
random
.
randint
(
0
,
self
.
class_num
,
(
self
.
batch_size
))
self
.
label
=
np
.
zeros
(
self
.
x
.
shape
).
astype
(
self
.
dtype
)
self
.
label
[
np
.
arange
(
self
.
batch_size
),
self
.
label_index
]
=
1
X
=
randomize_probability
(
batch_size
,
class_num
)
label_index
=
np
.
random
.
randint
(
0
,
class_num
,
(
batch_size
),
dtype
=
"int32"
)
label
=
np
.
zeros
(
X
.
shape
)
label
[
np
.
arange
(
batch_size
),
label_index
]
=
1
def
get_cross_entropy
(
self
):
self
.
cross_entropy
=
np
.
asmatrix
(
[[
-
np
.
log
(
self
.
x
[
i
][
self
.
label_index
[
i
]])]
for
i
in
range
(
self
.
x
.
shape
[
0
])]).
astype
(
self
.
dtype
)
cross_entropy
=
np
.
asmatrix
(
[[
-
np
.
log
(
X
[
i
][
label_index
[
i
]])]
for
i
in
range
(
X
.
shape
[
0
])],
dtype
=
"float32"
)
cross_entropy2
=
(
-
label
*
np
.
log
(
X
)).
sum
(
axis
=
1
,
keepdims
=
True
).
astype
(
"float32"
)
def
init_attr_type
(
self
):
self
.
soft_label
=
True
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
.
astype
(
np
.
float32
)}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
True
}
def
init_dtype_type
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output
()
def
init_bs_class_num
(
self
):
self
.
batch_size
=
5
self
.
class_num
=
17
def
test_check_grad
(
self
):
self
.
check_grad
(
[
"X"
],
"Y"
,
max_relative_error
=
0.05
,
numeric_grad_delta
=
0.001
)
class
TestCrossEntropyOp4
(
OpTest
):
class
TestCrossEntropyOp4
(
TestCrossEntropyOp
):
"""Test high rank tensor cross-entropy with discrete one-hot labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
shape
=
[
10
,
2
,
4
]
ins_num
=
np
.
prod
(
np
.
array
(
shape
))
class_num
=
10
def
init_x
(
self
):
self
.
shape
=
[
10
,
2
,
4
]
self
.
ins_num
=
np
.
prod
(
np
.
array
(
self
.
shape
))
self
.
X_2d
=
randomize_probability
(
self
.
ins_num
,
self
.
class_num
).
astype
(
self
.
dtype
)
self
.
x
=
self
.
X_2d
.
reshape
(
self
.
shape
+
[
self
.
class_num
])
X_2d
=
randomize_probability
(
ins_num
,
class_num
,
dtype
=
'float64'
)
def
init_label
(
self
):
self
.
label_2d
=
np
.
random
.
randint
(
0
,
self
.
class_num
,
(
self
.
ins_num
,
1
),
dtype
=
"int64"
)
self
.
label
=
self
.
label_2d
.
reshape
(
self
.
shape
+
[
1
])
label_2d
=
np
.
random
.
randint
(
0
,
class_num
,
(
ins_num
,
1
),
dtype
=
"int64"
)
def
get_cross_entropy
(
self
):
cross_entropy_2d
=
np
.
asmatrix
(
[[
-
np
.
log
(
X_2d
[
i
][
label_2d
[
i
][
0
]])]
for
i
in
range
(
X_2d
.
shape
[
0
])],
dtype
=
"float64"
)
[[
-
np
.
log
(
self
.
X_2d
[
i
][
self
.
label_2d
[
i
][
0
]])]
for
i
in
range
(
self
.
X_2d
.
shape
[
0
])]).
astype
(
self
.
dtype
)
self
.
cross_entropy
=
np
.
array
(
cross_entropy_2d
).
reshape
(
self
.
shape
+
[
1
])
X
=
X_2d
.
reshape
(
shape
+
[
class_num
])
label
=
label_2d
.
reshape
(
shape
+
[
1
])
cross_entropy
=
np
.
array
(
cross_entropy_2d
).
reshape
(
shape
+
[
1
])
def
init_attr_type
(
self
):
self
.
soft_label
=
False
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
False
}
def
test_check_output
(
self
):
self
.
check_output
()
def
init_dtype_type
(
self
):
self
.
dtype
=
np
.
float64
def
test_check_grad
(
self
):
self
.
c
heck_grad
([
"X"
],
"Y"
,
numeric_grad_delta
=
0.001
)
def
init_bs_class_num
(
self
):
self
.
c
lass_num
=
10
class
TestCrossEntropyOp5
(
OpTest
):
class
TestCrossEntropyOp5
(
TestCrossEntropyOp
):
"""Test high rank tensor cross-entropy with vectorized soft labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
shape
=
[
4
,
3
]
ins_num
=
np
.
prod
(
np
.
array
(
shape
))
class_num
=
37
def
init_x
(
self
):
self
.
shape
=
[
4
,
3
]
self
.
ins_num
=
np
.
prod
(
np
.
array
(
self
.
shape
))
self
.
X_2d
=
randomize_probability
(
self
.
ins_num
,
self
.
class_num
).
astype
(
self
.
dtype
)
self
.
x
=
self
.
X_2d
.
reshape
(
self
.
shape
+
[
self
.
class_num
])
X_2d
=
randomize_probability
(
ins_num
,
class_num
)
label_2d
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
ins_num
,
class_num
]).
astype
(
"float32"
)
label_2d
/=
label_2d
.
sum
(
axis
=
1
,
keepdims
=
True
)
cross_entropy_2d
=
(
-
label_2d
*
np
.
log
(
X_2d
)).
sum
(
axis
=
1
,
keepdims
=
True
).
astype
(
"float32"
)
def
init_label
(
self
):
self
.
label_2d
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
self
.
ins_num
,
self
.
class_num
]).
astype
(
self
.
dtype
)
self
.
label_2d
/=
self
.
label_2d
.
sum
(
axis
=
1
,
keepdims
=
True
)
self
.
label
=
self
.
label_2d
.
reshape
(
self
.
shape
+
[
self
.
class_num
])
X
=
X_2d
.
reshape
(
shape
+
[
class_num
])
label
=
label_2d
.
reshape
(
shape
+
[
class_num
])
cross_entropy
=
np
.
array
(
cross_entropy_2d
).
reshape
(
shape
+
[
1
])
def
get_cross_entropy
(
self
):
cross_entropy_2d
=
(
-
self
.
label_2d
*
np
.
log
(
self
.
X_2d
)).
sum
(
axis
=
1
,
keepdims
=
True
).
astype
(
self
.
dtype
)
self
.
cross_entropy
=
np
.
array
(
cross_entropy_2d
).
reshape
(
self
.
shape
+
[
1
])
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
True
}
def
init_attr_type
(
self
):
self
.
soft_label
=
True
def
test_check_output
(
self
):
self
.
check_output
()
def
init_dtype_type
(
self
):
self
.
dtype
=
np
.
float32
def
init_bs_class_num
(
self
):
self
.
class_num
=
37
def
test_check_grad
(
self
):
self
.
check_grad
(
[
"X"
],
"Y"
,
max_relative_error
=
0.05
,
numeric_grad_delta
=
0.001
)
class
TestCrossEntropyOp6
(
OpTest
):
class
TestCrossEntropyOp6
(
TestCrossEntropyOp
):
"""Test high rank tensor cross-entropy with vectorized one-hot representation of labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
shape
=
[
4
,
3
,
2
]
ins_num
=
np
.
prod
(
np
.
array
(
shape
))
class_num
=
17
X_2d
=
randomize_probability
(
ins_num
,
class_num
)
label_index_2d
=
np
.
random
.
randint
(
0
,
class_num
,
(
ins_num
),
dtype
=
"int32"
)
label_2d
=
np
.
zeros
(
X_2d
.
shape
)
label_2d
[
np
.
arange
(
ins_num
),
label_index_2d
]
=
1
def
init_x
(
self
):
self
.
shape
=
[
4
,
3
,
2
]
self
.
ins_num
=
np
.
prod
(
np
.
array
(
self
.
shape
))
self
.
X_2d
=
randomize_probability
(
self
.
ins_num
,
self
.
class_num
).
astype
(
self
.
dtype
)
self
.
x
=
self
.
X_2d
.
reshape
(
self
.
shape
+
[
self
.
class_num
])
def
init_label
(
self
):
self
.
label_index_2d
=
np
.
random
.
randint
(
0
,
self
.
class_num
,
(
self
.
ins_num
),
dtype
=
"int64"
)
label_2d
=
np
.
zeros
(
self
.
X_2d
.
shape
)
label_2d
[
np
.
arange
(
self
.
ins_num
),
self
.
label_index_2d
]
=
1
self
.
label
=
label_2d
.
reshape
(
self
.
shape
+
[
self
.
class_num
]).
astype
(
self
.
dtype
)
def
get_cross_entropy
(
self
):
cross_entropy_2d
=
np
.
asmatrix
(
[[
-
np
.
log
(
X_2d
[
i
][
label_index_2d
[
i
]])]
for
i
in
range
(
X_2d
.
shape
[
0
])],
dtype
=
"float32"
)
[[
-
np
.
log
(
self
.
X_2d
[
i
][
self
.
label_index_2d
[
i
]])]
for
i
in
range
(
self
.
X_2d
.
shape
[
0
])])
self
.
cross_entropy
=
np
.
array
(
cross_entropy_2d
).
reshape
(
self
.
shape
+
[
1
]).
astype
(
self
.
dtype
)
X
=
X_2d
.
reshape
(
shape
+
[
class_num
])
label
=
label_2d
.
reshape
(
shape
+
[
class_num
])
cross_entropy
=
np
.
array
(
cross_entropy_2d
).
reshape
(
shape
+
[
1
])
def
init_attr_type
(
self
):
self
.
soft_label
=
True
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
.
astype
(
np
.
float32
)}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
True
}
def
init_dtype_type
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
c
heck_output
()
def
init_bs_class_num
(
self
):
self
.
c
lass_num
=
17
def
test_check_grad
(
self
):
self
.
check_grad
(
[
"X"
],
"Y"
,
max_relative_error
=
0.05
,
numeric_grad_delta
=
0.001
)
class
TestCrossEntropyOp7
(
OpTest
):
class
TestCrossEntropyOp7
(
TestCrossEntropyOp
):
"""Test cross-entropy with ignore index.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
batch_size
=
30
class_num
=
10
ignore_index
=
3
X
=
randomize_probability
(
batch_size
,
class_num
,
dtype
=
'float64'
)
label
=
np
.
random
.
randint
(
0
,
class_num
,
(
batch_size
,
1
),
dtype
=
"int64"
)
cross_entropy
=
np
.
asmatrix
(
[[
-
np
.
log
(
X
[
i
][
label
[
i
][
0
]])]
if
label
[
i
][
0
]
!=
ignore_index
else
[
0
]
for
i
in
range
(
X
.
shape
[
0
])],
dtype
=
"float64"
)
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
False
,
"ignore_index"
:
ignore_index
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Y"
,
numeric_grad_delta
=
0.001
)
def
init_label
(
self
):
self
.
label
=
np
.
random
.
randint
(
0
,
self
.
class_num
,
(
self
.
batch_size
,
1
),
dtype
=
"int64"
)
def
get_cross_entropy
(
self
):
self
.
cross_entropy
=
np
.
asmatrix
(
[[
-
np
.
log
(
self
.
x
[
i
][
self
.
label
[
i
][
0
]])]
if
self
.
label
[
i
][
0
]
!=
self
.
ignore_index
else
[
0
]
for
i
in
range
(
self
.
x
.
shape
[
0
])]).
astype
(
self
.
dtype
)
def
init_attr_type
(
self
):
self
.
soft_label
=
False
self
.
ignore_index
=
3
def
init_dtype_type
(
self
):
self
.
dtype
=
np
.
float64
def
init_bs_class_num
(
self
):
self
.
batch_size
=
30
self
.
class_num
=
10
# Add Fp16 test
def
create_test_class
(
parent
,
cls_name
):
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestCrossEntropyFP16Op
(
parent
):
def
init_dtype_type
(
self
):
return
np
.
float16
def
test_check_output
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
2e-1
)
def
test_check_grad
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Y'
,
max_relative_error
=
0.9
)
cls_name
=
"{0}"
.
format
(
cls_name
)
TestCrossEntropyFP16Op
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestCrossEntropyFP16Op
create_test_class
(
TestCrossEntropyOp
,
"TestCrossEntropyF16Op"
)
#create_test_class(TestCrossEntropyOp2, "TestCrossEntropyF16Op2")
create_test_class
(
TestCrossEntropyOp3
,
"TestCrossEntropyF16Op3"
)
create_test_class
(
TestCrossEntropyOp4
,
"TestCrossEntropyF16Op4"
)
#create_test_class(TestCrossEntropyOp5, "TestCrossEntropyF16Op5")
create_test_class
(
TestCrossEntropyOp6
,
"TestCrossEntropyF16Op6"
)
create_test_class
(
TestCrossEntropyOp7
,
"TestCrossEntropyF16Op7"
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_mean_op.py
浏览文件 @
25e070ec
...
...
@@ -17,14 +17,20 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle.fluid.core
as
core
class
TestMeanOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"mean"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
10
,
10
)).
astype
(
"float32"
)}
self
.
dtype
=
np
.
float32
self
.
init_dtype_type
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
10
,
10
)).
astype
(
self
.
dtype
)}
self
.
outputs
=
{
'Out'
:
np
.
mean
(
self
.
inputs
[
"X"
])}
def
init_dtype_type
(
self
):
pass
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -32,5 +38,23 @@ class TestMeanOp(OpTest):
self
.
check_grad
([
'X'
],
'Out'
)
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestFP16MeanOp
(
TestMeanOp
):
def
init_dtype_type
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
2e-3
)
def
test_checkout_grad
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
max_relative_error
=
0.8
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_mul_op.py
浏览文件 @
25e070ec
...
...
@@ -23,12 +23,17 @@ from op_test import OpTest
class
TestMulOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"mul"
self
.
dtype
=
np
.
float32
self
.
init_dtype_type
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
2
,
5
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
5
,
3
)).
astype
(
"float32"
)
'X'
:
np
.
random
.
random
((
2
,
5
)).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
random
((
5
,
3
)).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
np
.
dot
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
init_dtype_type
(
self
):
pass
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -47,9 +52,11 @@ class TestMulOp(OpTest):
class
TestMulOp2
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"mul"
self
.
dtype
=
np
.
float32
self
.
init_dtype_type
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
3
,
4
,
4
,
3
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
2
,
6
,
1
,
2
,
3
)).
astype
(
"float32"
)
'X'
:
np
.
random
.
random
((
3
,
4
,
4
,
3
)).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
random
((
2
,
6
,
1
,
2
,
3
)).
astype
(
self
.
dtype
)
}
self
.
attrs
=
{
'x_num_col_dims'
:
2
,
...
...
@@ -60,6 +67,9 @@ class TestMulOp2(OpTest):
result
=
result
.
reshape
(
3
,
4
,
1
,
2
,
3
)
self
.
outputs
=
{
'Out'
:
result
}
def
init_dtype_type
(
self
):
pass
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -75,40 +85,76 @@ class TestMulOp2(OpTest):
[
'X'
],
'Out'
,
max_relative_error
=
0.5
,
no_grad_set
=
set
(
'Y'
))
class
TestFP16MulOp1
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"mul"
x
=
np
.
random
.
random
((
3
,
5
)).
astype
(
"float16"
)
y
=
np
.
random
.
random
((
5
,
4
)).
astype
(
"float16"
)
self
.
inputs
=
{
'X'
:
x
.
view
(
np
.
float16
),
'Y'
:
y
.
view
(
np
.
float16
)}
self
.
outputs
=
{
'Out'
:
np
.
dot
(
x
,
y
)}
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestFP16MulOp1
(
TestMulOp
):
def
init_dtype_type
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-1
)
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-1
)
def
test_check_grad_normal
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.5
)
class
TestFP16MulOp2
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"mul"
x
=
np
.
random
.
random
((
3
,
4
,
4
,
3
)).
astype
(
"float16"
)
y
=
np
.
random
.
random
((
2
,
6
,
1
,
2
,
3
)).
astype
(
"float16"
)
self
.
inputs
=
{
'X'
:
x
.
view
(
np
.
float16
),
'Y'
:
y
.
view
(
np
.
float16
)}
self
.
attrs
=
{
'x_num_col_dims'
:
2
,
'y_num_col_dims'
:
2
,
}
result
=
np
.
dot
(
x
.
reshape
(
3
*
4
,
4
*
3
),
y
.
reshape
(
2
*
6
,
1
*
2
*
3
))
result
=
result
.
reshape
(
3
,
4
,
1
,
2
,
3
)
self
.
outputs
=
{
'Out'
:
result
}
def
test_check_grad_ingore_x
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_grad_with_place
(
place
,
[
'Y'
],
'Out'
,
max_relative_error
=
0.5
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
max_relative_error
=
0.5
,
no_grad_set
=
set
(
'Y'
))
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestFP16MulOp2
(
TestMulOp2
):
def
init_dtype_type
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
2e-1
)
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
2e-1
)
def
test_check_grad_normal
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.9
)
def
test_check_grad_ingore_x
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_grad_with_place
(
place
,
[
'Y'
],
'Out'
,
max_relative_error
=
0.5
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
max_relative_error
=
0.9
,
no_grad_set
=
set
(
'Y'
))
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/test_pool2d_mkldnn_op.py
浏览文件 @
25e070ec
...
...
@@ -15,10 +15,10 @@
from
__future__
import
print_function
import
unittest
from
test_pool2d_op
import
TestPool2
d
_Op
,
TestCase1
,
TestCase2
,
TestCase3
,
TestCase4
,
TestCase5
from
test_pool2d_op
import
TestPool2
D
_Op
,
TestCase1
,
TestCase2
,
TestCase3
,
TestCase4
,
TestCase5
class
TestMKLDNNCase1
(
TestPool2
d
_Op
):
class
TestMKLDNNCase1
(
TestPool2
D
_Op
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
...
...
python/paddle/fluid/tests/unittests/test_pool2d_op.py
浏览文件 @
25e070ec
...
...
@@ -81,7 +81,7 @@ def avg_pool2D_forward_naive(x,
return
out
class
TestPool2
d
_Op
(
OpTest
):
class
TestPool2
D
_Op
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"pool2d"
self
.
use_cudnn
=
False
...
...
@@ -160,7 +160,7 @@ class TestPool2d_Op(OpTest):
self
.
exclusive
=
True
class
TestCase1
(
TestPool2
d
_Op
):
class
TestCase1
(
TestPool2
D
_Op
):
def
init_test_case
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
self
.
ksize
=
[
3
,
3
]
...
...
@@ -175,7 +175,7 @@ class TestCase1(TestPool2d_Op):
self
.
global_pool
=
False
class
TestCase2
(
TestPool2
d
_Op
):
class
TestCase2
(
TestPool2
D
_Op
):
def
init_test_case
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
self
.
ksize
=
[
3
,
3
]
...
...
@@ -190,7 +190,7 @@ class TestCase2(TestPool2d_Op):
self
.
global_pool
=
False
class
TestCase3
(
TestPool2
d
_Op
):
class
TestCase3
(
TestPool2
D
_Op
):
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
self
.
pool2D_forward_naive
=
max_pool2D_forward_naive
...
...
@@ -208,127 +208,98 @@ class TestCase5(TestCase2):
self
.
pool2D_forward_naive
=
max_pool2D_forward_naive
#--------------------test pool2d--------------------
class
TestCUDNNCase1
(
TestPool2d_Op
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
#--------------------test pool2d cudnn--------------------
class
TestFP16CUDNNCase1
(
TestPool2d_Op
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
create_test_cudnn_class
(
parent
):
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestCUDNNCase
(
parent
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"CUDNNOp"
)
TestCUDNNCase
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestCUDNNCase
class
TestCUDNNCase2
(
TestCase1
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
create_test_cudnn_class
(
TestPool2D_Op
)
create_test_cudnn_class
(
TestCase1
)
create_test_cudnn_class
(
TestCase2
)
create_test_cudnn_class
(
TestCase3
)
create_test_cudnn_class
(
TestCase4
)
create_test_cudnn_class
(
TestCase5
)
#--------------------test pool2d cudnn_fp16--------------------
class
TestFP16CUDNNCase2
(
TestCase1
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
def
create_test_cudnn_fp16_class
(
parent
,
check_grad
=
True
):
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestCUDNNFp16Case
(
parent
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
class
TestCUDNNCase3
(
TestCase2
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
class
TestFP16CUDNNCase3
(
TestCase2
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
def
test_check_grad
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
if
core
.
is_float16_supported
(
place
)
and
self
.
pool_type
!=
"max"
and
check_grad
:
self
.
check_grad_with_place
(
place
,
set
([
'X'
]),
'Out'
,
max_relative_error
=
0.07
)
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"CUDNNFp16Op"
)
TestCUDNNFp16Case
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestCUDNNFp16Case
class
TestCUDNNCase4
(
TestCase3
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
create_test_cudnn_fp16_class
(
TestPool2D_Op
)
create_test_cudnn_fp16_class
(
TestCase1
,
check_grad
=
False
)
create_test_cudnn_fp16_class
(
TestCase2
)
create_test_cudnn_fp16_class
(
TestCase3
)
create_test_cudnn_fp16_class
(
TestCase4
)
create_test_cudnn_fp16_class
(
TestCase5
)
class
TestFP16CUDNNCase4
(
TestCase3
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
#--------------------test pool2d use ceil mode--------------------
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
def
create_test_cudnn_use_ceil_class
(
parent
):
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestPool2DUseCeilCase
(
parent
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
class
TestCUDNNCase5
(
TestCase4
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
class
TestFP16CUDNNCase5
(
TestCase4
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
class
TestCUDNNCase6
(
TestCase5
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
True
class
TestFP16CUDNNCase6
(
TestCase5
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
self
.
dtype
=
np
.
float16
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"CUDNNOpCeilMode"
)
TestPool2DUseCeilCase
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestPool2DUseCeilCase
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
create_test_cudnn_use_ceil_class
(
TestPool2D_Op
)
create_test_cudnn_use_ceil_class
(
TestCase1
)
class
TestCeilModeCase1
(
TestCUDNNCase1
):
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
True
def
create_test_use_ceil_class
(
parent
):
class
TestPool2DUseCeilCase
(
parent
):
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
True
class
TestCeilModeCase2
(
TestCUDNNCase2
):
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
Tru
e
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"CeilModeCast"
)
TestPool2DUseCeilCase
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestPool2DUseCeilCas
e
class
TestCeilModeCase3
(
TestCase1
):
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
True
class
TestCeilModeCase4
(
TestCase2
):
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
True
create_test_use_ceil_class
(
TestCase1
)
create_test_use_ceil_class
(
TestCase2
)
class
TestAvgInclude
(
TestCase2
):
...
...
@@ -336,7 +307,10 @@ class TestAvgInclude(TestCase2):
self
.
exclusive
=
False
class
TestCUDNNAvgInclude
(
TestCUDNNCase3
):
class
TestCUDNNAvgInclude
(
TestCase2
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
True
def
init_exclusive
(
self
):
self
.
exclusive
=
False
...
...
python/paddle/fluid/tests/unittests/test_scale_op.py
浏览文件 @
25e070ec
...
...
@@ -24,9 +24,16 @@ from paddle.fluid.op import Operator
class
TestScaleOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"scale"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
10
,
10
)).
astype
(
"float32"
)}
self
.
dtype
=
np
.
float32
self
.
init_dtype_type
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
10
,
10
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'scale'
:
-
2.3
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
attrs
[
'scale'
]}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
dtype
(
self
.
attrs
[
'scale'
])
}
def
init_dtype_type
(
self
):
pass
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -36,9 +43,15 @@ class TestScaleOp(OpTest):
class
TestScaleOpSelectedRows
(
unittest
.
TestCase
):
def
init_dtype_type
(
self
):
pass
def
check_with_place
(
self
,
place
,
in_name
,
out_name
):
scope
=
core
.
Scope
()
self
.
dtype
=
np
.
float32
self
.
init_dtype_type
()
# create and initialize Grad Variable
in_height
=
10
in_rows
=
[
0
,
4
,
7
]
...
...
@@ -49,7 +62,7 @@ class TestScaleOpSelectedRows(unittest.TestCase):
in_selected_rows
.
set_height
(
in_height
)
in_selected_rows
.
set_rows
(
in_rows
)
in_array
=
np
.
random
.
random
(
(
len
(
in_rows
),
in_row_numel
)).
astype
(
"float32"
)
(
len
(
in_rows
),
in_row_numel
)).
astype
(
self
.
dtype
)
in_tensor
=
in_selected_rows
.
get_tensor
()
in_tensor
.
set
(
in_array
,
place
)
...
...
@@ -87,5 +100,41 @@ class TestScaleOpSelectedRows(unittest.TestCase):
self
.
check_with_place
(
place
,
'in'
,
'in'
)
# Add FP16 test
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestScaleFp16Op
(
TestScaleOp
):
def
init_dtype_type
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
0.002
)
def
test_check_grad
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_grad_with_place
(
place
,
[
"X"
],
"Out"
,
max_relative_error
=
0.05
)
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestScaleFp16OpSelectedRows
(
TestScaleOpSelectedRows
):
def
init_dtype_type
(
self
):
self
.
dtype
=
np
.
float16
def
test_scale_selected_rows
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_with_place
(
place
,
'in'
,
'out'
)
def
test_scale_selected_rows_inplace
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_with_place
(
place
,
'in'
,
'in'
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_softmax_op.py
浏览文件 @
25e070ec
...
...
@@ -62,12 +62,11 @@ class TestSoftmaxOp(OpTest):
self
.
check_output
()
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
if
self
.
use_cudnn
:
if
self
.
use_cudnn
or
self
.
dtype
==
np
.
float16
:
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
"X"
],
"Out"
,
max_relative_error
=
0.01
)
if
core
.
is_float16_supported
(
place
):
self
.
check_grad_with_place
(
place
,
[
"X"
],
"Out"
,
max_relative_error
=
0.01
)
else
:
self
.
check_grad
([
"X"
],
"Out"
,
max_relative_error
=
0.01
)
...
...
@@ -103,10 +102,23 @@ class TestSoftmaxFP16Op(TestSoftmaxOp):
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
# FIXME: If the x_shape is [10, 10], gradient failed.
def
test_check_grad
(
self
):
pass
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestSoftmaxFP16Op2
(
TestSoftmaxFP16Op
):
class
TestSoftmaxFP16Op2
(
TestSoftmaxOp
):
def
init_kernel_type
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
...
...
python/paddle/fluid/tests/unittests/test_sum_op.py
浏览文件 @
25e070ec
...
...
@@ -24,16 +24,20 @@ from paddle.fluid.op import Operator
class
TestSumOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"sum"
self
.
init_kernel_type
()
self
.
use_mkldnn
=
False
self
.
init_kernel_type
()
x0
=
np
.
random
.
random
((
3
,
4
)).
astype
(
'float32'
)
x1
=
np
.
random
.
random
((
3
,
4
)).
astype
(
'float32'
)
x2
=
np
.
random
.
random
((
3
,
4
)).
astype
(
'float32'
)
x0
=
np
.
random
.
random
((
3
,
4
)).
astype
(
self
.
dtype
)
x1
=
np
.
random
.
random
((
3
,
4
)).
astype
(
self
.
dtype
)
x2
=
np
.
random
.
random
((
3
,
4
)).
astype
(
self
.
dtype
)
self
.
inputs
=
{
"X"
:
[(
"x0"
,
x0
),
(
"x1"
,
x1
),
(
"x2"
,
x2
)]}
y
=
x0
+
x1
+
x2
self
.
outputs
=
{
'Out'
:
y
}
self
.
attrs
=
{
'use_mkldnn'
:
self
.
use_mkldnn
}
def
init_kernel_type
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -59,8 +63,11 @@ class TestSelectedRowsSumOp(OpTest):
self
.
check_input_and_optput
(
core
.
Scope
(),
place
,
inplace
,
False
,
False
,
False
)
def
init_kernel_type
(
self
):
self
.
dtype
=
np
.
float32
def
_get_array
(
self
,
row_num
,
row_numel
):
array
=
np
.
ones
((
row_num
,
row_numel
)).
astype
(
"float32"
)
array
=
np
.
ones
((
row_num
,
row_numel
)).
astype
(
self
.
dtype
)
for
i
in
range
(
row_num
):
array
[
i
]
*=
i
return
array
...
...
@@ -129,5 +136,36 @@ class TestSelectedRowsSumOp(OpTest):
self
.
check_with_place
(
place
,
inplace
)
class
TestFP16SumOp
(
TestSumOp
):
def
init_kernel_type
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
2e-2
)
# FIXME: Because of the precision fp16, max_relative_error
# should be 0.15 here.
def
test_check_grad
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_grad
([
'x0'
],
'Out'
,
max_relative_error
=
0.15
)
class
TestFP16SelectedRowsSumOp
(
TestSelectedRowsSumOp
):
def
init_kernel_type
(
self
):
self
.
dtype
=
np
.
float16
def
test_w_is_selected_rows
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
for
inplace
in
[
True
,
False
]:
self
.
check_with_place
(
place
,
inplace
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录