Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
23cf0c61
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
23cf0c61
编写于
8月 13, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add DeConv3DLayer
上级
11975b4f
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
269 addition
and
0 deletion
+269
-0
paddle/gserver/layers/DeConv3DLayer.cpp
paddle/gserver/layers/DeConv3DLayer.cpp
+211
-0
paddle/gserver/layers/DeConv3DLayer.h
paddle/gserver/layers/DeConv3DLayer.h
+58
-0
未找到文件。
paddle/gserver/layers/DeConv3DLayer.cpp
0 → 100644
浏览文件 @
23cf0c61
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#include "DeConv3DLayer.h"
namespace
paddle
{
REGISTER_LAYER
(
deconv3d
,
DeConv3DLayer
);
#define DECONV_OUTPUT_SIZE(IN_SIZE, STRID, PAD, KSIZE) \
(((IN_SIZE) - 1) * (STRID) - 2 * (PAD) + (KSIZE))
bool
DeConv3DLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
if
(
!
ConvBaseLayer
::
init
(
layerMap
,
parameterMap
))
return
false
;
// for Deconv, the dimension of Kernel is
// channel * output * depth * height * weigth
// Matrix storage format: (output * depth * height * weigth) x channel
for
(
int
index
=
0
;
index
<
config_
.
inputs
().
size
();
++
index
)
{
M_
.
push_back
(
filterChannels_
[
index
]);
K_
.
push_back
(
filterPixels_
[
index
]
*
(
numFilters_
/
groups_
[
index
]));
weights_
[
index
]
->
getW
()
->
reshape
(
filterPixels_
[
index
]
*
numFilters_
,
filterChannels_
[
index
]);
weights_
[
index
]
->
getWGrad
()
->
reshape
(
filterPixels_
[
index
]
*
numFilters_
,
filterChannels_
[
index
]);
}
biases_
->
getWGrad
()
->
reshape
(
biases_
->
getWGrad
()
->
width_
,
biases_
->
getWGrad
()
->
height_
);
biases_
->
getW
()
->
reshape
(
biases_
->
getW
()
->
width_
,
biases_
->
getW
()
->
height_
);
CHECK
(
inputLayers_
.
size
()
==
parameters_
.
size
());
return
true
;
}
size_t
DeConv3DLayer
::
getSize
()
{
CHECK_NE
(
inputLayers_
.
size
(),
0UL
);
// imgSizeH_.clear();
// imgSizeW_.clear();
// imgSizeD_.clear();
outputH_
.
clear
();
outputW_
.
clear
();
outputD_
.
clear
();
N_
.
clear
();
No_
.
clear
();
size_t
layerSize
=
0
;
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
++
i
)
{
// imgSizeH_.push_back(inputLayers_[i]->getOutput().getFrameHeight());
// imgSizeW_.push_back(inputLayers_[i]->getOutput().getFrameWidth());
// imgSizeD_.push_back(inputLayers_[i]->getOutput().getFrameDepth());
outputW_
.
push_back
(
DECONV_OUTPUT_SIZE
(
imgSizeW_
[
i
],
stride_
[
i
],
padding_
[
i
],
filterSize_
[
i
]));
outputH_
.
push_back
(
DECONV_OUTPUT_SIZE
(
imgSizeH_
[
i
],
strideY_
[
i
],
paddingY_
[
i
],
filterSizeY_
[
i
]));
outputD_
.
push_back
(
DECONV_OUTPUT_SIZE
(
imgSizeD_
[
i
],
strideZ_
[
i
],
paddingZ_
[
i
],
filterSizeZ_
[
i
]));
No_
.
push_back
(
outputD_
[
i
]
*
outputH_
[
i
]
*
outputW_
[
i
]);
N_
.
push_back
(
imgSizeD_
[
i
]
*
imgSizeH_
[
i
]
*
imgSizeW_
[
i
]);
CHECK
(
layerSize
==
0
||
N_
[
i
]
*
size_t
(
numFilters_
)
==
layerSize
);
layerSize
+=
No_
[
i
]
*
numFilters_
;
}
getOutput
().
setFrameHeight
(
outputH_
[
0
]);
getOutput
().
setFrameWidth
(
outputW_
[
0
]);
getOutput
().
setFrameDepth
(
outputD_
[
0
]);
return
layerSize
;
}
void
DeConv3DLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
int
batchSize
=
inputLayers_
[
0
]
->
getOutputValue
()
->
getHeight
();
int
outWidth
=
getSize
();
resetOutput
(
batchSize
,
outWidth
);
const
MatrixPtr
outMat
=
getOutputValue
();
for
(
size_t
i
=
0
;
i
!=
inputLayers_
.
size
();
++
i
)
{
REGISTER_TIMER_INFO
(
"FwdDeConv3D"
,
getName
().
c_str
());
const
MatrixPtr
&
inMat
=
getInputValue
(
i
);
int
width
=
inMat
->
getWidth
();
int
M
=
M_
[
i
];
int
N
=
N_
[
i
];
int
K
=
K_
[
i
];
MatrixPtr
wMat
=
weights_
[
i
]
->
getW
();
Matrix
::
resizeOrCreate
(
colBuf_
,
K
*
groups_
[
i
]
,
N
,
false
,
useGpu_
);
for
(
int
n
=
0
;
n
<
batchSize
;
++
n
)
{
real
*
inData
=
inMat
->
getData
()
+
n
*
width
;
real
*
colBufData
=
colBuf_
->
getData
();
for
(
int
g
=
0
;
g
<
groups_
[
i
];
g
++
)
{
MatrixPtr
wMatSub
=
wMat
->
subMatrix
(
g
*
K
,
K
);
MatrixPtr
inMatSub
=
Matrix
::
create
(
inData
,
M
,
N
,
false
,
useGpu_
);
MatrixPtr
colBufDataSub
=
Matrix
::
create
(
colBufData
,
K
,
N
,
false
,
useGpu_
);
colBufDataSub
->
mul
(
*
wMatSub
,
*
inMatSub
,
1.0
,
0.0
);
colBufData
+=
K
*
N
;
inData
+=
M
*
N
;
}
colBuf_
->
col2Vol
(
outMat
->
getData
()
+
n
*
outMat
->
getWidth
(),
numFilters_
,
outputD_
[
i
],
outputH_
[
i
],
outputW_
[
i
],
filterSizeZ_
[
i
],
filterSizeY_
[
i
],
filterSize_
[
i
],
strideZ_
[
i
],
strideY_
[
i
],
stride_
[
i
],
paddingZ_
[
i
],
paddingY_
[
i
],
padding_
[
i
],
1.0
,
1.0
);
}
}
if
(
nullptr
!=
this
->
biasParameter_
)
{
REGISTER_TIMER_INFO
(
"FwBiasTimer"
,
getName
().
c_str
());
this
->
addBias
();
}
forwardActivation
();
}
void
DeConv3DLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
backwardActivation
();
int
batchSize
=
getOutputGrad
()
->
getHeight
();
int
outputWidth
=
getOutputGrad
()
->
getWidth
();
if
(
biases_
&&
biases_
->
getWGrad
())
{
bpropBiases
();
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
++
i
)
{
int
M
=
M_
[
i
];
int
N
=
N_
[
i
];
int
K
=
K_
[
i
];
Matrix
::
resizeOrCreate
(
colBuf_
,
K
*
groups_
[
i
],
N
,
false
,
useGpu_
);
const
MatrixPtr
&
inMat
=
getInputValue
(
i
);
for
(
int
n
=
0
;
n
<
batchSize
;
++
n
)
{
REGISTER_TIMER_INFO
(
"BwdDeConv3D"
,
getName
().
c_str
());
if
(
weights_
[
i
]
->
getWGrad
()
||
this
->
needGradient_
)
{
colBuf_
->
vol2Col
(
getOutputGrad
()
->
getData
()
+
n
*
outputWidth
,
numFilters_
,
outputD_
[
i
],
outputH_
[
i
],
outputW_
[
i
],
filterSizeZ_
[
i
],
filterSizeY_
[
i
],
filterSize_
[
i
],
strideZ_
[
i
],
strideY_
[
i
],
stride_
[
i
],
paddingZ_
[
i
],
paddingY_
[
i
],
padding_
[
i
]);
}
if
(
weights_
[
i
]
->
getWGrad
())
{
real
*
inData
=
inMat
->
getData
()
+
n
*
inMat
->
getWidth
();;
real
*
wGradData
=
weights_
[
i
]
->
getWGrad
()
->
getData
();
for
(
int
g
=
0
;
g
<
groups_
[
i
];
g
++
)
{
MatrixPtr
colBufDataSub
=
colBuf_
->
subMatrix
(
g
*
K
,
K
);
MatrixPtr
inMatSub
=
Matrix
::
create
(
inData
,
M
,
N
,
false
,
useGpu_
);
MatrixPtr
wGradMatSub
=
Matrix
::
create
(
wGradData
,
K
,
M
,
false
,
useGpu_
);
wGradMatSub
->
mul
(
*
colBufDataSub
,
*
(
inMatSub
->
getTranspose
()),
1.0
,
1.0
);
wGradData
+=
K
*
M
;
inData
+=
M
*
N
;
}
weights_
[
i
]
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
if
(
this
->
needGradient_
)
{
real
*
preGrad
=
getInputGrad
(
i
)
->
getData
();
for
(
int
g
=
0
;
g
<
groups_
[
i
];
++
g
)
{
MatrixPtr
w
=
weights_
[
i
]
->
getW
()
->
subMatrix
(
g
*
K
,
K
);
MatrixPtr
outGradMat
=
colBuf_
->
subMatrix
(
g
*
K
,
K
);
MatrixPtr
inGradMatSub
=
Matrix
::
create
(
preGrad
,
M
,
N
,
false
,
useGpu_
);
inGradMatSub
->
mul
(
*
(
w
->
getTranspose
()),
*
outGradMat
,
1.0
,
0.0
);
preGrad
+=
M
*
N
;
}
}
REGISTER_TIMER_INFO
(
"WeightUpdate"
,
getName
().
c_str
());
}
}
}
void
DeConv3DLayer
::
bpropWeights
(
int
i
)
{
}
void
DeConv3DLayer
::
bpropData
(
int
i
)
{
}
void
DeConv3DLayer
::
bpropBiases
()
{
MatrixPtr
outGradMat
=
getOutputGrad
();
if
(
this
->
sharedBiases_
)
{
biases_
->
getWGrad
()
->
collectSharedBias
(
*
outGradMat
,
1.0
f
);
}
else
{
biases_
->
getWGrad
()
->
collectBias
(
*
outGradMat
,
1.0
f
);
}
}
void
DeConv3DLayer
::
addBias
()
{
MatrixPtr
outMat
=
getOutputValue
();
if
(
this
->
sharedBiases_
)
{
outMat
->
addSharedBias
(
*
(
biases_
->
getW
()),
1.0
f
);
}
else
{
outMat
->
addBias
(
*
(
biases_
->
getW
()),
1.0
f
);
}
}
}
// namespace paddle
paddle/gserver/layers/DeConv3DLayer.h
0 → 100644
浏览文件 @
23cf0c61
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "ConvBaseLayer.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/MathUtils.h"
#include <vector>
namespace
paddle
{
/**
* @brief A subclass of deconvolution3D layer.
* This layer expands input and use matrix multiplication to
* calculate deconvolution3D operation.
*/
class
DeConv3DLayer
:
public
ConvBaseLayer
{
public:
explicit
DeConv3DLayer
(
const
LayerConfig
&
config
)
:
ConvBaseLayer
(
config
)
{}
~
DeConv3DLayer
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
);
size_t
getSize
();
void
forward
(
PassType
passType
);
void
addBias
();
void
backward
(
const
UpdateCallback
&
callback
);
void
bpropBiases
();
void
bpropData
(
int
i
);
void
bpropWeights
(
int
i
);
protected:
// Figure out the dimensions for individual gemms.
IntV
M_
;
/// numFilters_ / filter_group_;
IntV
N_
;
/// channels_ * filterSizeZ_ * filterSize_ * filterSizeY_
IntV
K_
;
/// outputD_ * outputH_ * outputW_
IntV
No_
;
MatrixPtr
colBuf_
;
};
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录