Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
20120d9c
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
20120d9c
编写于
11月 29, 2018
作者:
T
Tao Luo
提交者:
GitHub
11月 29, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #14608 from jczaja/prv-conv2d-transpose-mkldnn
[MKL-DNN]conv2d transpose
上级
d215293c
1540df51
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
879 addition
and
435 deletion
+879
-435
paddle/fluid/operators/batch_norm_mkldnn_op.cc
paddle/fluid/operators/batch_norm_mkldnn_op.cc
+1
-1
paddle/fluid/operators/conv_mkldnn_op.cc
paddle/fluid/operators/conv_mkldnn_op.cc
+9
-261
paddle/fluid/operators/conv_transpose_mkldnn_op.cc
paddle/fluid/operators/conv_transpose_mkldnn_op.cc
+299
-0
paddle/fluid/operators/conv_transpose_op.cc
paddle/fluid/operators/conv_transpose_op.cc
+28
-7
paddle/fluid/operators/softmax_mkldnn_op.cc
paddle/fluid/operators/softmax_mkldnn_op.cc
+1
-1
paddle/fluid/platform/mkldnn_helper.h
paddle/fluid/platform/mkldnn_helper.h
+0
-164
paddle/fluid/platform/mkldnn_reuse.h
paddle/fluid/platform/mkldnn_reuse.h
+458
-0
python/paddle/fluid/tests/unittests/test_conv2d_transpose_mkldnn_op.py
.../fluid/tests/unittests/test_conv2d_transpose_mkldnn_op.py
+77
-0
python/paddle/fluid/tests/unittests/test_conv2d_transpose_op.py
.../paddle/fluid/tests/unittests/test_conv2d_transpose_op.py
+6
-1
未找到文件。
paddle/fluid/operators/batch_norm_mkldnn_op.cc
浏览文件 @
20120d9c
...
...
@@ -14,7 +14,7 @@ limitations under the License. */
#include "mkldnn.hpp"
#include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/platform/mkldnn_
helper
.h"
#include "paddle/fluid/platform/mkldnn_
reuse
.h"
namespace
paddle
{
namespace
operators
{
...
...
paddle/fluid/operators/conv_mkldnn_op.cc
浏览文件 @
20120d9c
...
...
@@ -15,7 +15,7 @@
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_
helper
.h"
#include "paddle/fluid/platform/mkldnn_
reuse
.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -28,259 +28,6 @@ using mkldnn::stream;
using
platform
::
to_void_cast
;
using
platform
::
GetMKLDNNFormat
;
class
ConvMKLDNNHandler
:
public
platform
::
MKLDNNHandler
{
public:
ConvMKLDNNHandler
(
std
::
shared_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
conv_pd
,
const
platform
::
MKLDNNDeviceContext
&
dev_ctx
,
mkldnn
::
engine
engine
,
const
std
::
string
&
base_key
)
:
platform
::
MKLDNNHandler
(
dev_ctx
,
engine
,
base_key
)
{
conv_pd_
=
conv_pd
;
}
ConvMKLDNNHandler
(
std
::
shared_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
conv_pd
,
std
::
shared_ptr
<
mkldnn
::
convolution_backward_data
::
primitive_desc
>
conv_bwd_data_pd
,
std
::
shared_ptr
<
mkldnn
::
convolution_backward_weights
::
primitive_desc
>
conv_bwd_weights_pd
,
const
platform
::
MKLDNNDeviceContext
&
dev_ctx
,
mkldnn
::
engine
engine
,
const
std
::
string
&
base_key
)
:
platform
::
MKLDNNHandler
(
dev_ctx
,
engine
,
base_key
),
conv_pd_
(
conv_pd
),
conv_bwd_weights_pd_
(
conv_bwd_weights_pd
),
conv_bwd_data_pd_
(
conv_bwd_data_pd
)
{
// If we are in Grad operatgor then update a key with BWD suffix to
// distinguish from FWD memory primitives
key_
+=
"-BWD"
;
}
size_t
GetDstMemorySize
()
const
{
return
conv_pd_
->
dst_primitive_desc
().
get_size
();
}
mkldnn
::
memory
::
format
GetDstFormat
()
const
{
return
static_cast
<
mkldnn
::
memory
::
format
>
(
conv_pd_
->
dst_primitive_desc
().
desc
().
data
.
format
);
}
size_t
GetDiffWeightsMemorySize
()
const
{
return
conv_bwd_weights_pd_
->
diff_weights_primitive_desc
().
get_size
();
}
size_t
GetDiffSourceMemorySize
()
const
{
return
conv_bwd_data_pd_
->
diff_src_primitive_desc
().
get_size
();
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireSrcMemoryFromWeightsPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
auto
src_pd
=
conv_bwd_weights_pd_
->
src_primitive_desc
();
auto
user_pd
=
user_memory_p
->
get_primitive_desc
();
return
this
->
AcquireMemory
(
src_pd
,
user_pd
,
user_memory_p
,
"@weights-src_mem_p"
,
pipeline
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDiffDstMemoryFromWeightsPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
auto
diff_dst_pd
=
conv_bwd_weights_pd_
->
diff_dst_primitive_desc
();
auto
user_pd
=
user_memory_p
->
get_primitive_desc
();
return
this
->
AcquireMemory
(
diff_dst_pd
,
user_pd
,
user_memory_p
,
"@weights-diff_dst_mem_p"
,
pipeline
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDiffWeightsMemoryFromWeightsPrimitive
(
void
*
ptr
)
{
return
this
->
AcquireMemoryFromPrimitive
(
conv_bwd_weights_pd_
->
diff_weights_primitive_desc
(),
ptr
,
"@diff_weights_mem_p"
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDiffDstMemoryFromDataPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
auto
diff_dst_pd
=
conv_bwd_data_pd_
->
diff_dst_primitive_desc
();
auto
user_pd
=
user_memory_p
->
get_primitive_desc
();
return
this
->
AcquireMemory
(
diff_dst_pd
,
user_pd
,
user_memory_p
,
"@data-diff_dst_mem_p"
,
pipeline
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireWeightsMemoryFromDataPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_weights_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
auto
weights_pd
=
conv_bwd_data_pd_
->
weights_primitive_desc
();
auto
user_pd
=
user_weights_memory_p
->
get_primitive_desc
();
return
this
->
AcquireMemory
(
weights_pd
,
user_pd
,
user_weights_memory_p
,
"@data-weights_mem_p"
,
pipeline
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireResidualDataMemory
(
const
mkldnn
::
memory
::
desc
&
md
,
void
*
ptr
)
{
return
this
->
AcquireMemory
(
md
,
ptr
,
"@user_residual_data_mem_p"
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDstMemoryFromResidualDataMemory
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>&
user_residual_memory_p
,
void
*
dst_ptr
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
return
this
->
AcquireMemory
(
user_residual_memory_p
,
this
->
AcquireDstMemoryFromPrimitive
(
dst_ptr
),
"@residual_data_mem_p"
,
pipeline
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDiffSrcMemoryFromDataPrimitive
(
void
*
ptr
)
{
return
this
->
AcquireMemoryFromPrimitive
(
conv_bwd_data_pd_
->
diff_src_primitive_desc
(),
ptr
,
"@diff_src_mem_p"
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDstMemoryFromPrimitive
(
void
*
ptr
)
{
return
this
->
AcquireMemoryFromPrimitive
(
conv_pd_
->
dst_primitive_desc
(),
ptr
,
"@dst_mem_p"
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireSrcMemoryFromPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
auto
src_pd
=
conv_pd_
->
src_primitive_desc
();
auto
user_pd
=
user_memory_p
->
get_primitive_desc
();
return
this
->
AcquireMemory
(
src_pd
,
user_pd
,
user_memory_p
,
"@src_mem_p"
,
pipeline
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireWeightsMemoryFromPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_weights_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
// NOLINT
bool
is_persistent
=
false
)
{
auto
user_weights_pd
=
user_weights_memory_p
->
get_primitive_desc
();
auto
weights_pd
=
conv_pd_
->
weights_primitive_desc
();
return
this
->
AcquireMemory
(
weights_pd
,
user_weights_pd
,
user_weights_memory_p
,
"@weights_mem_p"
,
pipeline
,
is_persistent
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireBiasMemoryFromPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_bias_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
auto
user_bias_pd
=
user_bias_memory_p
->
get_primitive_desc
();
auto
bias_pd
=
conv_pd_
->
bias_primitive_desc
();
return
this
->
AcquireMemory
(
bias_pd
,
user_bias_pd
,
user_bias_memory_p
,
"@bias_mem_p"
,
pipeline
);
}
std
::
shared_ptr
<
mkldnn
::
convolution_forward
>
AcquireConvolution
(
std
::
shared_ptr
<
mkldnn
::
memory
>
src_memory_p
,
std
::
shared_ptr
<
mkldnn
::
memory
>
weights_memory_p
,
std
::
shared_ptr
<
mkldnn
::
memory
>
dst_memory_p
)
{
auto
prim_key
=
key_
+
"@conv_p"
;
auto
conv_p
=
std
::
static_pointer_cast
<
mkldnn
::
convolution_forward
>
(
dev_ctx_
.
GetBlob
(
prim_key
));
PADDLE_ENFORCE
((
conv_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
"Fail to find convolution primitive in device context"
);
if
(
conv_p
==
nullptr
)
{
conv_p
=
std
::
make_shared
<
mkldnn
::
convolution_forward
>
(
*
conv_pd_
,
*
(
src_memory_p
),
*
(
weights_memory_p
.
get
()),
*
(
dst_memory_p
.
get
()));
dev_ctx_
.
SetBlob
(
prim_key
,
conv_p
);
}
else
{
is_reusing_
=
true
;
}
return
conv_p
;
}
std
::
shared_ptr
<
mkldnn
::
convolution_forward
>
AcquireConvolution
(
std
::
shared_ptr
<
mkldnn
::
memory
>
src_memory_p
,
std
::
shared_ptr
<
mkldnn
::
memory
>
weights_memory_p
,
std
::
shared_ptr
<
mkldnn
::
memory
>
bias_memory_p
,
std
::
shared_ptr
<
mkldnn
::
memory
>
dst_memory_p
)
{
auto
prim_key
=
key_
+
"@conv_p"
;
auto
conv_p
=
std
::
static_pointer_cast
<
mkldnn
::
convolution_forward
>
(
dev_ctx_
.
GetBlob
(
prim_key
));
PADDLE_ENFORCE
((
conv_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
"Fail to find convolution primitive in device context"
);
if
(
conv_p
==
nullptr
)
{
conv_p
=
std
::
make_shared
<
mkldnn
::
convolution_forward
>
(
*
conv_pd_
,
*
(
src_memory_p
),
*
(
weights_memory_p
.
get
()),
*
(
bias_memory_p
.
get
()),
*
(
dst_memory_p
.
get
()));
dev_ctx_
.
SetBlob
(
prim_key
,
conv_p
);
}
else
{
is_reusing_
=
true
;
}
return
conv_p
;
}
std
::
shared_ptr
<
mkldnn
::
convolution_backward_weights
>
AcquireConvolutionBackwardWeights
(
std
::
shared_ptr
<
mkldnn
::
memory
>
src_memory_p
,
std
::
shared_ptr
<
mkldnn
::
memory
>
diff_dst_memory_p
,
std
::
shared_ptr
<
mkldnn
::
memory
>
diff_weights_memory_p
)
{
auto
prim_key
=
key_
+
"@conv_bwd_weights_p"
;
auto
conv_bwd_weights_p
=
std
::
static_pointer_cast
<
mkldnn
::
convolution_backward_weights
>
(
dev_ctx_
.
GetBlob
(
prim_key
));
PADDLE_ENFORCE
(
(
conv_bwd_weights_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
"Fail to find convolution bwd weights primitive in device context"
);
if
(
conv_bwd_weights_p
==
nullptr
)
{
// create backward conv primitive for weights
conv_bwd_weights_p
=
std
::
make_shared
<
mkldnn
::
convolution_backward_weights
>
(
*
conv_bwd_weights_pd_
,
*
src_memory_p
,
*
diff_dst_memory_p
,
*
diff_weights_memory_p
);
dev_ctx_
.
SetBlob
(
prim_key
,
conv_bwd_weights_p
);
}
else
{
is_reusing_
=
true
;
}
return
conv_bwd_weights_p
;
}
std
::
shared_ptr
<
mkldnn
::
convolution_backward_data
>
AcquireConvolutionBackwardData
(
std
::
shared_ptr
<
mkldnn
::
memory
>
diff_dst_memory_p
,
std
::
shared_ptr
<
mkldnn
::
memory
>
weights_memory_p
,
std
::
shared_ptr
<
mkldnn
::
memory
>
diff_src_memory_p
)
{
auto
prim_key
=
key_
+
"@conv_bwd_data_p"
;
auto
conv_bwd_data_p
=
std
::
static_pointer_cast
<
mkldnn
::
convolution_backward_data
>
(
dev_ctx_
.
GetBlob
(
prim_key
));
PADDLE_ENFORCE
(
(
conv_bwd_data_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
"Fail to find convolution bwd data primitive in device context"
);
if
(
conv_bwd_data_p
==
nullptr
)
{
conv_bwd_data_p
=
std
::
make_shared
<
mkldnn
::
convolution_backward_data
>
(
*
conv_bwd_data_pd_
,
*
diff_dst_memory_p
,
*
weights_memory_p
,
*
diff_src_memory_p
);
dev_ctx_
.
SetBlob
(
prim_key
,
conv_bwd_data_p
);
}
else
{
is_reusing_
=
true
;
}
return
conv_bwd_data_p
;
}
// Generate keys for storing/retriving primitives for this operator
// TODO(jczaja): Make hashing function more optimial
static
std
::
string
GetHash
(
memory
::
dims
&
input_dims
,
// NOLINT
memory
::
dims
&
weights_dims
,
// NOLINT
std
::
vector
<
int
>&
strides
,
// NOLINT
std
::
vector
<
int
>&
paddings
,
// NOLINT
std
::
vector
<
int
>&
dilations
,
// NOLINT
int
groups
,
const
std
::
string
&
suffix
)
{
return
dims2str
(
input_dims
)
+
dims2str
(
weights_dims
)
+
dims2str
(
strides
)
+
dims2str
(
paddings
)
+
dims2str
(
dilations
)
+
std
::
to_string
(
groups
)
+
suffix
;
}
private:
std
::
shared_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
conv_pd_
;
std
::
shared_ptr
<
mkldnn
::
convolution_backward_weights
::
primitive_desc
>
conv_bwd_weights_pd_
;
std
::
shared_ptr
<
mkldnn
::
convolution_backward_data
::
primitive_desc
>
conv_bwd_data_pd_
;
};
template
<
typename
T
>
class
ConvMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -351,7 +98,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
// Get unique name for storing MKLDNN primitives
const
std
::
string
key
=
ConvMKLDNNHandler
::
GetHash
(
const
std
::
string
key
=
platform
::
ConvMKLDNNHandler
::
GetHash
(
src_tz
,
weights_tz
,
strides
,
paddings
,
dilations
,
groups
,
ctx
.
op
().
Output
(
"Output"
));
const
std
::
string
key_conv_pd
=
key
+
"@conv_pd"
;
...
...
@@ -400,7 +147,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
// Save conv_pd/src_memory/weights_memory for backward pass
if
(
!
is_test
)
dev_ctx
.
SetBlob
(
key_conv_pd
,
conv_pd
);
ConvMKLDNNHandler
handler
(
conv_pd
,
dev_ctx
,
mkldnn_engine
,
key
);
platform
::
ConvMKLDNNHandler
handler
(
conv_pd
,
dev_ctx
,
mkldnn_engine
,
key
);
// create mkldnn memory from input tensors (data/weights)
auto
user_src_memory_p
=
...
...
@@ -616,9 +363,9 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
// Get an unique name from "argument" name of "Output" variable
// as well as attributes of primitive to be created
// This name will be used as key when saving info into device context
const
std
::
string
key
=
ConvMKLDNNHandler
::
GetHash
(
src_tz
,
weights_tz
,
strides
,
padding
s
,
dilations
,
groups
,
ctx
.
op
().
Input
(
"Output"
));
const
std
::
string
key
=
platform
::
ConvMKLDNNHandler
::
GetHash
(
src_tz
,
weights_tz
,
strides
,
paddings
,
dilations
,
group
s
,
ctx
.
op
().
Input
(
"Output"
));
const
std
::
string
key_conv_pd
=
key
+
"@conv_pd"
;
std
::
vector
<
primitive
>
pipeline
;
...
...
@@ -673,8 +420,9 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
std
::
make_shared
<
mkldnn
::
convolution_backward_data
::
primitive_desc
>
(
conv_bwd_data_desc
,
mkldnn_engine
,
*
conv_pd
);
ConvMKLDNNHandler
handler
(
conv_pd
,
conv_bwd_data_pd
,
conv_bwd_weights_pd
,
dev_ctx
,
mkldnn_engine
,
key
);
platform
::
ConvMKLDNNHandler
handler
(
conv_pd
,
conv_bwd_data_pd
,
conv_bwd_weights_pd
,
dev_ctx
,
mkldnn_engine
,
key
);
// create mkldnn memory from input tensors (data/weights)
auto
user_src_memory_p
=
...
...
paddle/fluid/operators/conv_transpose_mkldnn_op.cc
0 → 100644
浏览文件 @
20120d9c
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
framework
::
DataLayout
;
template
<
typename
T
>
class
ConvTransposeMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
paddle
::
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"It must use CPUPlace."
);
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
PADDLE_ENFORCE
(
is_test
==
true
,
"ConvTransposeMKLDNN works only for inference!. Set is_test = True"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
*
filter
=
ctx
.
Input
<
Tensor
>
(
"Filter"
);
auto
*
bias
=
ctx
.
HasInput
(
"Bias"
)
?
ctx
.
Input
<
Tensor
>
(
"Bias"
)
:
nullptr
;
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
PADDLE_ENFORCE
(
input
->
layout
()
==
DataLayout
::
kMKLDNN
&&
input
->
format
()
!=
mkldnn
::
memory
::
format
::
format_undef
,
"Wrong layout/format set for Input tensor"
);
PADDLE_ENFORCE
(
filter
->
layout
()
==
DataLayout
::
kMKLDNN
&&
filter
->
format
()
!=
mkldnn
::
memory
::
format
::
format_undef
,
"Wrong layout/format set for Filter tensor"
);
PADDLE_ENFORCE
(
input
->
dims
().
size
()
==
4
,
"Input must be with 4 dimensions, i.e. NCHW"
);
PADDLE_ENFORCE
(
filter
->
dims
().
size
()
==
4
,
"Filter must be with 4 dimensions, i.e. OIHW"
);
if
(
bias
)
{
PADDLE_ENFORCE
(
bias
->
layout
()
==
DataLayout
::
kMKLDNN
&&
bias
->
format
()
!=
mkldnn
::
memory
::
format
::
format_undef
,
"Wrong layout/format set for Bias tensor"
);
PADDLE_ENFORCE
(
bias
->
dims
().
size
()
==
1
,
"Bias must only have 1 dimension, i.e. X"
);
}
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
// TODO(tpatejko): add support for dilation
PADDLE_ENFORCE
(
dilations
.
size
()
==
2
&&
dilations
[
0
]
==
1
&&
dilations
[
1
]
==
1
,
"dilation in convolution is not implemented yet"
);
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
filter_data
=
filter
->
data
<
T
>
();
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
std
::
vector
<
int
>
iohw_weights_tz
=
paddle
::
framework
::
vectorize2int
(
filter
->
dims
());
std
::
vector
<
int
>
weights_tz
=
iohw_weights_tz
;
// IOHW -> OIHW
weights_tz
[
0
]
=
iohw_weights_tz
[
1
];
weights_tz
[
1
]
=
iohw_weights_tz
[
0
];
// Custom Reorder from IOHW to OIHW
auto
iohw2oihw_reorder
=
[
&
iohw_weights_tz
](
const
T
*
filter_data
)
->
std
::
shared_ptr
<
T
>
{
int
o
=
iohw_weights_tz
[
1
];
int
c
=
iohw_weights_tz
[
0
];
int
h
=
iohw_weights_tz
[
2
];
int
w
=
iohw_weights_tz
[
3
];
std
::
shared_ptr
<
T
>
reordered_filter_data
(
new
T
[
o
*
c
*
h
*
w
](),
std
::
default_delete
<
T
[]
>
());
for
(
int
i
=
0
;
i
<
c
;
++
i
)
{
for
(
int
j
=
0
;
j
<
o
;
++
j
)
{
int
in_offset
=
j
*
h
*
w
+
i
*
o
*
h
*
w
;
int
out_offset
=
j
*
c
*
h
*
w
+
i
*
h
*
w
;
std
::
memcpy
(
&
(
reordered_filter_data
.
get
())[
out_offset
],
&
filter_data
[
in_offset
],
h
*
w
*
sizeof
(
T
));
}
}
return
reordered_filter_data
;
};
int
g
=
std
::
max
(
groups
,
1
);
if
(
g
>
1
)
{
int
o
=
weights_tz
[
0
];
int
i
=
weights_tz
[
1
];
int
h
=
weights_tz
[
2
];
int
w
=
weights_tz
[
3
];
weights_tz
.
resize
(
5
);
weights_tz
[
0
]
=
g
;
weights_tz
[
1
]
=
o
/
g
;
weights_tz
[
2
]
=
i
;
weights_tz
[
3
]
=
h
;
weights_tz
[
4
]
=
w
;
}
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
// Get unique name for storing MKLDNN primitives
const
std
::
string
key
=
platform
::
ConvTransposeMKLDNNHandler
::
GetHash
(
src_tz
,
weights_tz
,
strides
,
paddings
,
dilations
,
groups
,
ctx
.
op
().
Output
(
"Output"
));
const
std
::
string
key_conv_transpose_pd
=
key
+
"@conv_transpose_pd"
;
std
::
vector
<
mkldnn
::
primitive
>
pipeline
;
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
{
src_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
input
->
format
());
auto
user_weights_md
=
platform
::
MKLDNNMemDesc
({
weights_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
(
g
==
1
)
?
mkldnn
::
memory
::
format
::
oihw
:
mkldnn
::
memory
::
format
::
goihw
);
/* create memory descriptor for convolution without specified format
* ('any') which lets a primitive (convolution in this case) choose
* the memory format preferred for best performance
*/
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
auto
chosen_memory_format
=
platform
::
data_format_to_memory_format
(
data_format
);
bool
fuse_relu
=
ctx
.
Attr
<
bool
>
(
"fuse_relu"
);
auto
src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
std
::
vector
<
int
>
bias_tz
;
// TODO(mgallus): avoid empty vector creation.
// Currently used whenever bias is != nullptr.
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
// create a deconv(conv transpose) primitive descriptor and save it for
// usage in backward
std
::
shared_ptr
<
mkldnn
::
deconvolution_forward
::
primitive_desc
>
conv_transpose_pd
;
auto
fwd_prop_kind
=
is_test
?
mkldnn
::
prop_kind
::
forward_inference
:
mkldnn
::
prop_kind
::
forward_training
;
if
(
bias
)
{
bias_tz
=
paddle
::
framework
::
vectorize2int
(
bias
->
dims
());
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
mkldnn
::
memory
::
format
::
x
);
conv_transpose_pd
=
ConvTransposeFwdPrimitiveDesc
(
src_md
,
weights_md
,
bias_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_relu
,
fwd_prop_kind
);
}
else
{
conv_transpose_pd
=
ConvTransposeFwdPrimitiveDesc
(
src_md
,
weights_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_relu
,
fwd_prop_kind
);
}
// Save conv_pd/src_memory/weights_memory for backward pass
if
(
!
is_test
)
dev_ctx
.
SetBlob
(
key_conv_transpose_pd
,
conv_transpose_pd
);
platform
::
ConvTransposeMKLDNNHandler
handler
(
conv_transpose_pd
,
dev_ctx
,
mkldnn_engine
,
key
);
// create mkldnn memory from input tensors (data/weights)
auto
user_src_memory_p
=
handler
.
AcquireSrcMemory
(
user_src_md
,
platform
::
to_void_cast
<
T
>
(
input_data
));
auto
user_weights_memory_p
=
handler
.
AcquireWeightsMemory
(
user_weights_md
,
platform
::
to_void_cast
<
T
>
(
filter_data
),
is_test
?
iohw2oihw_reorder
:
platform
::
user_function
());
// create reorder primitive if the input format is not the preferred one
auto
src_memory_p
=
handler
.
AcquireSrcMemoryFromPrimitive
(
user_src_memory_p
,
pipeline
);
auto
weights_memory_p
=
handler
.
AcquireWeightsMemoryFromPrimitive
(
user_weights_memory_p
,
pipeline
,
is_test
);
std
::
shared_ptr
<
mkldnn
::
memory
>
dst_memory_p
;
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
paddle
::
memory
::
Allocator
::
kDefault
,
handler
.
GetDstMemorySize
());
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
platform
::
to_void_cast
<
T
>
(
output_data
));
// create convolution op primitive
std
::
shared_ptr
<
mkldnn
::
deconvolution_forward
>
conv_p
;
if
(
bias
)
{
const
T
*
bias_data
=
bias
->
data
<
T
>
();
auto
user_bias_md
=
platform
::
MKLDNNMemDesc
({
bias_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
mkldnn
::
memory
::
format
::
x
);
auto
user_bias_memory_p
=
handler
.
AcquireBiasMemory
(
user_bias_md
,
platform
::
to_void_cast
<
T
>
(
bias_data
));
auto
bias_memory_p
=
handler
.
AcquireBiasMemoryFromPrimitive
(
user_bias_memory_p
,
pipeline
);
conv_p
=
handler
.
AcquireConvolution
(
src_memory_p
,
weights_memory_p
,
bias_memory_p
,
dst_memory_p
);
}
else
{
conv_p
=
handler
.
AcquireConvolution
(
src_memory_p
,
weights_memory_p
,
dst_memory_p
);
}
// push primitive to stream and wait until it's executed
pipeline
.
push_back
(
*
conv_p
);
mkldnn
::
stream
(
mkldnn
::
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
platform
::
GetMKLDNNFormat
(
*
dst_memory_p
));
}
private:
mkldnn
::
primitive_attr
CreatePostOps
(
bool
fuse_relu
)
const
{
mkldnn
::
primitive_attr
conv_attr
;
mkldnn
::
post_ops
post_operations
;
// Fusion with ReLU layer is executed through the PostOps feature. Create a
// PostOps object and configure it to execute an eltwise relu operation.
if
(
fuse_relu
)
{
constexpr
float
scale
=
1.0
f
;
constexpr
float
negative_slope
=
0.0
f
;
constexpr
float
placeholder
=
0.0
f
;
post_operations
.
append_eltwise
(
scale
,
mkldnn
::
algorithm
::
eltwise_relu
,
negative_slope
,
placeholder
);
}
conv_attr
.
set_post_ops
(
post_operations
);
return
conv_attr
;
}
std
::
unique_ptr
<
mkldnn
::
deconvolution_forward
::
primitive_desc
>
ConvTransposeFwdPrimitiveDesc
(
const
mkldnn
::
memory
::
desc
&
src
,
const
mkldnn
::
memory
::
desc
&
weights
,
const
mkldnn
::
memory
::
desc
&
dst
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_relu
,
mkldnn
::
prop_kind
fwd_prop_kind
)
const
{
mkldnn
::
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
mkldnn
::
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
auto
deconv_desc
=
mkldnn
::
deconvolution_forward
::
desc
(
fwd_prop_kind
,
mkldnn
::
deconvolution_direct
,
src
,
weights
,
dst
,
stride_dims
,
padding_dims
,
padding_dims
,
mkldnn
::
padding_kind
::
zero
);
mkldnn
::
primitive_attr
deconv_attr
=
CreatePostOps
(
fuse_relu
);
auto
p_conv_transpose_pd
=
new
mkldnn
::
deconvolution_forward
::
primitive_desc
(
deconv_desc
,
deconv_attr
,
engine
);
return
std
::
unique_ptr
<
mkldnn
::
deconvolution_forward
::
primitive_desc
>
(
p_conv_transpose_pd
);
}
std
::
unique_ptr
<
mkldnn
::
deconvolution_forward
::
primitive_desc
>
ConvTransposeFwdPrimitiveDesc
(
const
mkldnn
::
memory
::
desc
&
src
,
const
mkldnn
::
memory
::
desc
&
weights
,
const
mkldnn
::
memory
::
desc
&
bias
,
const
mkldnn
::
memory
::
desc
&
dst
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_relu
,
mkldnn
::
prop_kind
fwd_prop_kind
)
const
{
mkldnn
::
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
mkldnn
::
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
auto
deconv_desc
=
mkldnn
::
deconvolution_forward
::
desc
(
fwd_prop_kind
,
mkldnn
::
deconvolution_direct
,
src
,
weights
,
bias
,
dst
,
stride_dims
,
padding_dims
,
padding_dims
,
mkldnn
::
padding_kind
::
zero
);
mkldnn
::
primitive_attr
deconv_attr
=
CreatePostOps
(
fuse_relu
);
auto
p_conv_transpose_pd
=
new
mkldnn
::
deconvolution_forward
::
primitive_desc
(
deconv_desc
,
deconv_attr
,
engine
);
return
std
::
unique_ptr
<
mkldnn
::
deconvolution_forward
::
primitive_desc
>
(
p_conv_transpose_pd
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_KERNEL
(
conv2d_transpose
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
ops
::
ConvTransposeMKLDNNOpKernel
<
float
>
);
paddle/fluid/operators/conv_transpose_op.cc
浏览文件 @
20120d9c
...
...
@@ -16,6 +16,10 @@ limitations under the License. */
#include <string>
#include <vector>
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace
paddle
{
namespace
operators
{
...
...
@@ -78,29 +82,38 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
framework
::
OpKernelType
ConvTransposeOp
::
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
framework
::
LibraryType
library_
{
framework
::
LibraryType
::
kPlain
};
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
framework
::
DataLayout
layout_
=
framework
::
StringToDataLayout
(
data_format
);
bool
use_cudnn
=
ctx
.
Attr
<
bool
>
(
"use_cudnn"
);
use_cudnn
&=
platform
::
is_gpu_place
(
ctx
.
GetPlace
());
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
use_cudnn
&=
dev_ctx
.
cudnn_handle
()
!=
nullptr
;
if
(
use_cudnn
)
{
library_
=
framework
::
LibraryType
::
kCUDNN
;
}
}
#endif
framework
::
LibraryType
library_
;
if
(
use_cudnn
)
{
library_
=
framework
::
LibraryType
::
kCUDNN
;
}
else
{
l
ibrary_
=
framework
::
LibraryType
::
kPlain
;
#ifdef PADDLE_WITH_MKLDNN
if
(
library_
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
library_
=
framework
::
LibraryType
::
kMKLDNN
;
l
ayout_
=
framework
::
DataLayout
::
kMKLDNN
;
}
#endif
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
framework
::
DataLayout
layout_
=
framework
::
StringToDataLayout
(
data_format
);
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"Input"
)
->
type
()),
ctx
.
GetPlace
(),
layout_
,
library_
);
}
void
Conv2DTransposeOpMaker
::
Make
()
{
AddAttr
<
bool
>
(
"is_test"
,
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true."
)
.
SetDefault
(
false
);
AddInput
(
"Input"
,
"(Tensor) The input tensor of convolution transpose operator. "
...
...
@@ -145,6 +158,11 @@ void Conv2DTransposeOpMaker::Make() {
"use_cudnn"
,
"(bool, default false) Only used in cudnn kernel, need install cudnn"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"fuse_relu"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"data_format"
,
"(string, default NCHW) Only used in "
...
...
@@ -238,6 +256,9 @@ void Conv3DTransposeOpMaker::Make() {
"use_cudnn"
,
"(bool, default false) Only used in cudnn kernel, need install cudnn"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"data_format"
,
"(string, default NCHW) Only used in "
...
...
paddle/fluid/operators/softmax_mkldnn_op.cc
浏览文件 @
20120d9c
...
...
@@ -15,7 +15,7 @@ limitations under the License. */
#include <iostream>
#include "mkldnn.hpp"
#include "paddle/fluid/operators/softmax_op.h"
#include "paddle/fluid/platform/mkldnn_
helper
.h"
#include "paddle/fluid/platform/mkldnn_
reuse
.h"
namespace
paddle
{
namespace
operators
{
...
...
paddle/fluid/platform/mkldnn_helper.h
浏览文件 @
20120d9c
...
...
@@ -107,170 +107,6 @@ inline mkldnn::memory::format GetMKLDNNFormat(
memory
.
dst_primitive_desc
().
desc
().
data
.
format
);
}
class
MKLDNNHandler
{
public:
MKLDNNHandler
(
const
MKLDNNDeviceContext
&
dev_ctx
,
mkldnn
::
engine
engine
,
const
std
::
string
&
base_key
)
:
dev_ctx_
(
dev_ctx
),
engine_
(
engine
),
key_
(
base_key
),
is_reusing_
(
false
)
{}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireSrcMemory
(
const
mkldnn
::
memory
::
desc
&
md
,
void
*
ptr
)
{
return
this
->
AcquireMemory
(
md
,
ptr
,
"@user_src_mem_p"
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireWeightsMemory
(
const
mkldnn
::
memory
::
desc
&
md
,
void
*
ptr
)
{
return
this
->
AcquireMemory
(
md
,
ptr
,
"@user_weights_mem_p"
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireBiasMemory
(
const
mkldnn
::
memory
::
desc
&
md
,
void
*
ptr
)
{
return
this
->
AcquireMemory
(
md
,
ptr
,
"@user_bias_mem_p"
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDstMemory
(
const
mkldnn
::
memory
::
desc
&
md
,
void
*
ptr
)
{
return
this
->
AcquireMemory
(
md
,
ptr
,
"@user_dst_mem_p"
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDiffDstMemory
(
const
mkldnn
::
memory
::
desc
&
md
,
void
*
ptr
)
{
return
this
->
AcquireMemory
(
md
,
ptr
,
"@user_diff_dst_mem_p"
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDiffSrcMemory
(
const
mkldnn
::
memory
::
desc
&
md
,
void
*
ptr
)
{
return
this
->
AcquireMemory
(
md
,
ptr
,
"@user_diff_src_mem_p"
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireMemoryFromPrimitive
(
mkldnn
::
memory
::
primitive_desc
mdp
,
void
*
ptr
,
const
std
::
string
&
suffix
)
{
auto
local_key
=
key_
+
suffix
;
auto
mem_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx_
.
GetBlob
(
local_key
));
PADDLE_ENFORCE
((
mem_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
"Fail to find mem primitive in device context"
);
if
(
mem_p
==
nullptr
)
{
mem_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
mdp
,
ptr
);
dev_ctx_
.
SetBlob
(
local_key
,
mem_p
);
}
else
{
mem_p
->
set_data_handle
(
ptr
);
// Mark that reusing happenned. All primitives from operator instance
// should be reused or none of them. So we check consistency
is_reusing_
=
true
;
}
return
mem_p
;
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireMemory
(
const
mkldnn
::
memory
::
desc
&
md
,
void
*
ptr
,
const
std
::
string
&
suffix
)
{
/*Generate key*/
auto
local_key
=
key_
+
suffix
;
auto
mem_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx_
.
GetBlob
(
local_key
));
PADDLE_ENFORCE
((
mem_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
"Fail to find mem primitive in device context"
);
if
(
mem_p
==
nullptr
)
{
mem_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
mkldnn
::
memory
::
primitive_desc
{
md
,
engine_
},
ptr
);
dev_ctx_
.
SetBlob
(
local_key
,
mem_p
);
}
else
{
mem_p
->
set_data_handle
(
ptr
);
// Mark that reusing happenned. All primitives from operator instance
// should be reused or none of them. So we check consistency
is_reusing_
=
true
;
}
return
mem_p
;
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireMemory
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>&
user_memory_p
,
const
std
::
shared_ptr
<
mkldnn
::
memory
>&
target_memory_p
,
const
std
::
string
&
suffix
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
auto
local_key
=
key_
+
suffix
;
auto
key_reorder_p
=
key_
+
suffix
+
"reorder_p"
;
auto
stored_reorder_p
=
std
::
static_pointer_cast
<
mkldnn
::
reorder
>
(
dev_ctx_
.
GetBlob
(
key_reorder_p
));
if
(
stored_reorder_p
)
{
pipeline
.
push_back
(
*
stored_reorder_p
);
}
else
{
auto
reorder_p
=
std
::
make_shared
<
mkldnn
::
reorder
>
(
*
user_memory_p
,
*
target_memory_p
);
dev_ctx_
.
SetBlob
(
key_reorder_p
,
reorder_p
);
pipeline
.
push_back
(
*
reorder_p
);
}
return
target_memory_p
;
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireMemory
(
mkldnn
::
memory
::
primitive_desc
&
mpd
,
// NOLINT
mkldnn
::
memory
::
primitive_desc
&
user_mpd
,
// NOLINT
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_memory_p
,
const
std
::
string
&
suffix
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
// NOLINT
bool
is_persistent
=
false
)
{
// create reorder primitive if the input format is not the preferred one
auto
local_key
=
key_
+
suffix
;
auto
key_reorder_p
=
key_
+
suffix
+
"reorder_p"
;
auto
target_memory_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx_
.
GetBlob
(
local_key
));
PADDLE_ENFORCE
((
target_memory_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
"Fail to find mem primitive in device context"
);
if
(
target_memory_p
==
nullptr
)
{
target_memory_p
=
user_memory_p
;
std
::
shared_ptr
<
mkldnn
::
primitive
>
reorder_p
;
if
(
mpd
!=
user_mpd
)
{
target_memory_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
mpd
);
auto
reorder_p
=
std
::
make_shared
<
mkldnn
::
reorder
>
(
*
user_memory_p
,
*
target_memory_p
);
dev_ctx_
.
SetBlob
(
key_reorder_p
,
reorder_p
);
pipeline
.
push_back
(
*
reorder_p
);
}
dev_ctx_
.
SetBlob
(
local_key
,
target_memory_p
);
}
else
if
(
!
is_persistent
)
{
// Make reorder if needed
auto
reorder_p
=
std
::
static_pointer_cast
<
mkldnn
::
reorder
>
(
dev_ctx_
.
GetBlob
(
key_reorder_p
));
if
(
reorder_p
!=
nullptr
)
{
pipeline
.
push_back
(
*
reorder_p
);
}
is_reusing_
=
true
;
}
return
target_memory_p
;
}
static
std
::
string
GetHash
(
mkldnn
::
memory
::
dims
&
operand_dims
,
// NOLINT
const
std
::
string
&
suffix
)
{
return
dims2str
(
operand_dims
)
+
suffix
;
}
protected:
static
std
::
string
dims2str
(
const
mkldnn
::
memory
::
dims
&
operand_dims
)
{
std
::
string
dstr
=
""
;
for
(
size_t
i
=
0
;
i
<
operand_dims
.
size
();
++
i
)
{
dstr
+=
std
::
to_string
(
operand_dims
[
i
])
+
"-"
;
}
return
dstr
;
}
protected:
const
MKLDNNDeviceContext
&
dev_ctx_
;
mkldnn
::
engine
engine_
;
std
::
string
key_
;
bool
is_reusing_
;
};
inline
mkldnn
::
memory
::
format
MKLDNNFormatForSize
(
size_t
dims_size
,
mkldnn
::
memory
::
format
data_format
)
{
if
(
dims_size
==
1
)
{
...
...
paddle/fluid/platform/mkldnn_reuse.h
0 → 100644
浏览文件 @
20120d9c
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
platform
{
using
user_function
=
std
::
function
<
std
::
shared_ptr
<
float
>
(
const
float
*
)
>
;
class
MKLDNNHandler
{
public:
MKLDNNHandler
(
const
MKLDNNDeviceContext
&
dev_ctx
,
mkldnn
::
engine
engine
,
const
std
::
string
&
base_key
)
:
dev_ctx_
(
dev_ctx
),
engine_
(
engine
),
key_
(
base_key
),
is_reusing_
(
false
)
{}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireSrcMemory
(
const
mkldnn
::
memory
::
desc
&
md
,
void
*
ptr
)
{
return
this
->
AcquireMemory
(
md
,
ptr
,
"@user_src_mem_p"
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireWeightsMemory
(
const
mkldnn
::
memory
::
desc
&
md
,
void
*
ptr
,
user_function
custom_func
=
{})
{
return
this
->
AcquireMemory
(
md
,
ptr
,
"@user_weights_mem_p"
,
custom_func
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireBiasMemory
(
const
mkldnn
::
memory
::
desc
&
md
,
void
*
ptr
)
{
return
this
->
AcquireMemory
(
md
,
ptr
,
"@user_bias_mem_p"
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDstMemory
(
const
mkldnn
::
memory
::
desc
&
md
,
void
*
ptr
)
{
return
this
->
AcquireMemory
(
md
,
ptr
,
"@user_dst_mem_p"
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDiffDstMemory
(
const
mkldnn
::
memory
::
desc
&
md
,
void
*
ptr
)
{
return
this
->
AcquireMemory
(
md
,
ptr
,
"@user_diff_dst_mem_p"
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDiffSrcMemory
(
const
mkldnn
::
memory
::
desc
&
md
,
void
*
ptr
)
{
return
this
->
AcquireMemory
(
md
,
ptr
,
"@user_diff_src_mem_p"
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireMemoryFromPrimitive
(
mkldnn
::
memory
::
primitive_desc
mdp
,
void
*
ptr
,
const
std
::
string
&
suffix
)
{
auto
local_key
=
key_
+
suffix
;
auto
mem_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx_
.
GetBlob
(
local_key
));
PADDLE_ENFORCE
((
mem_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
"Fail to find mem primitive in device context"
);
if
(
mem_p
==
nullptr
)
{
mem_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
mdp
,
ptr
);
dev_ctx_
.
SetBlob
(
local_key
,
mem_p
);
}
else
{
mem_p
->
set_data_handle
(
ptr
);
// Mark that reusing happenned. All primitives from operator instance
// should be reused or none of them. So we check consistency
is_reusing_
=
true
;
}
return
mem_p
;
}
// This incarnation of AcquireMemory can call user function eg. custom reorder
// or preprocessing routine if needed
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireMemory
(
const
mkldnn
::
memory
::
desc
&
md
,
void
*
ptr
,
const
std
::
string
&
suffix
,
user_function
custom_func
=
{})
{
/*Generate key*/
auto
local_key
=
key_
+
suffix
;
auto
mem_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx_
.
GetBlob
(
local_key
));
PADDLE_ENFORCE
((
mem_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
"Fail to find mem primitive in device context"
);
if
(
mem_p
==
nullptr
)
{
// Call custom reorder/preprocessing func if available
if
(
custom_func
)
{
auto
reordered_data
=
custom_func
(
reinterpret_cast
<
const
float
*>
(
ptr
));
dev_ctx_
.
SetBlob
(
local_key
+
"-custom_reorder"
,
reordered_data
);
ptr
=
reinterpret_cast
<
void
*>
(
reordered_data
.
get
());
}
mem_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
mkldnn
::
memory
::
primitive_desc
{
md
,
engine_
},
ptr
);
dev_ctx_
.
SetBlob
(
local_key
,
mem_p
);
}
else
{
mem_p
->
set_data_handle
(
ptr
);
// Mark that reusing happenned. All primitives from operator instance
// should be reused or none of them. So we check consistency
is_reusing_
=
true
;
}
return
mem_p
;
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireMemory
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>&
user_memory_p
,
const
std
::
shared_ptr
<
mkldnn
::
memory
>&
target_memory_p
,
const
std
::
string
&
suffix
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
auto
local_key
=
key_
+
suffix
;
auto
key_reorder_p
=
key_
+
suffix
+
"reorder_p"
;
auto
stored_reorder_p
=
std
::
static_pointer_cast
<
mkldnn
::
reorder
>
(
dev_ctx_
.
GetBlob
(
key_reorder_p
));
if
(
stored_reorder_p
)
{
pipeline
.
push_back
(
*
stored_reorder_p
);
}
else
{
auto
reorder_p
=
std
::
make_shared
<
mkldnn
::
reorder
>
(
*
user_memory_p
,
*
target_memory_p
);
dev_ctx_
.
SetBlob
(
key_reorder_p
,
reorder_p
);
pipeline
.
push_back
(
*
reorder_p
);
}
return
target_memory_p
;
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireMemory
(
mkldnn
::
memory
::
primitive_desc
&
mpd
,
// NOLINT
mkldnn
::
memory
::
primitive_desc
&
user_mpd
,
// NOLINT
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_memory_p
,
const
std
::
string
&
suffix
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
// NOLINT
bool
is_persistent
=
false
)
{
// create reorder primitive if the input format is not the preferred one
auto
local_key
=
key_
+
suffix
;
auto
key_reorder_p
=
key_
+
suffix
+
"reorder_p"
;
auto
target_memory_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx_
.
GetBlob
(
local_key
));
PADDLE_ENFORCE
((
target_memory_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
"Fail to find mem primitive in device context"
);
if
(
target_memory_p
==
nullptr
)
{
target_memory_p
=
user_memory_p
;
std
::
shared_ptr
<
mkldnn
::
primitive
>
reorder_p
;
if
(
mpd
!=
user_mpd
)
{
target_memory_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
mpd
);
auto
reorder_p
=
std
::
make_shared
<
mkldnn
::
reorder
>
(
*
user_memory_p
,
*
target_memory_p
);
dev_ctx_
.
SetBlob
(
key_reorder_p
,
reorder_p
);
pipeline
.
push_back
(
*
reorder_p
);
}
dev_ctx_
.
SetBlob
(
local_key
,
target_memory_p
);
}
else
if
(
!
is_persistent
)
{
// Make reorder if needed
auto
reorder_p
=
std
::
static_pointer_cast
<
mkldnn
::
reorder
>
(
dev_ctx_
.
GetBlob
(
key_reorder_p
));
if
(
reorder_p
!=
nullptr
)
{
pipeline
.
push_back
(
*
reorder_p
);
}
is_reusing_
=
true
;
}
return
target_memory_p
;
}
static
std
::
string
GetHash
(
mkldnn
::
memory
::
dims
&
operand_dims
,
// NOLINT
const
std
::
string
&
suffix
)
{
return
dims2str
(
operand_dims
)
+
suffix
;
}
protected:
static
std
::
string
dims2str
(
const
mkldnn
::
memory
::
dims
&
operand_dims
)
{
std
::
string
dstr
=
""
;
for
(
size_t
i
=
0
;
i
<
operand_dims
.
size
();
++
i
)
{
dstr
+=
std
::
to_string
(
operand_dims
[
i
])
+
"-"
;
}
return
dstr
;
}
protected:
const
MKLDNNDeviceContext
&
dev_ctx_
;
mkldnn
::
engine
engine_
;
std
::
string
key_
;
bool
is_reusing_
;
};
template
<
class
forward_t
,
class
backward_data_t
,
class
backward_weights_t
>
class
ConvMKLDNNTemplateHandler
:
public
MKLDNNHandler
{
public:
ConvMKLDNNTemplateHandler
(
std
::
shared_ptr
<
typename
forward_t
::
primitive_desc
>
conv_pd
,
const
platform
::
MKLDNNDeviceContext
&
dev_ctx
,
mkldnn
::
engine
engine
,
const
std
::
string
&
base_key
)
:
platform
::
MKLDNNHandler
(
dev_ctx
,
engine
,
base_key
)
{
conv_pd_
=
conv_pd
;
}
ConvMKLDNNTemplateHandler
(
std
::
shared_ptr
<
typename
forward_t
::
primitive_desc
>
conv_pd
,
std
::
shared_ptr
<
typename
backward_data_t
::
primitive_desc
>
conv_bwd_data_pd
,
std
::
shared_ptr
<
typename
backward_weights_t
::
primitive_desc
>
conv_bwd_weights_pd
,
const
platform
::
MKLDNNDeviceContext
&
dev_ctx
,
mkldnn
::
engine
engine
,
const
std
::
string
&
base_key
)
:
platform
::
MKLDNNHandler
(
dev_ctx
,
engine
,
base_key
),
conv_pd_
(
conv_pd
),
conv_bwd_weights_pd_
(
conv_bwd_weights_pd
),
conv_bwd_data_pd_
(
conv_bwd_data_pd
)
{
// If we are in Grad operatgor then update a key with BWD suffix to
// distinguish from FWD memory primitives
key_
+=
"-BWD"
;
}
size_t
GetDstMemorySize
()
const
{
return
conv_pd_
->
dst_primitive_desc
().
get_size
();
}
mkldnn
::
memory
::
format
GetDstFormat
()
const
{
return
static_cast
<
mkldnn
::
memory
::
format
>
(
conv_pd_
->
dst_primitive_desc
().
desc
().
data
.
format
);
}
size_t
GetDiffWeightsMemorySize
()
const
{
return
conv_bwd_weights_pd_
->
diff_weights_primitive_desc
().
get_size
();
}
size_t
GetDiffSourceMemorySize
()
const
{
return
conv_bwd_data_pd_
->
diff_src_primitive_desc
().
get_size
();
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireSrcMemoryFromWeightsPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
auto
src_pd
=
conv_bwd_weights_pd_
->
src_primitive_desc
();
auto
user_pd
=
user_memory_p
->
get_primitive_desc
();
return
this
->
AcquireMemory
(
src_pd
,
user_pd
,
user_memory_p
,
"@weights-src_mem_p"
,
pipeline
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDiffDstMemoryFromWeightsPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
auto
diff_dst_pd
=
conv_bwd_weights_pd_
->
diff_dst_primitive_desc
();
auto
user_pd
=
user_memory_p
->
get_primitive_desc
();
return
this
->
AcquireMemory
(
diff_dst_pd
,
user_pd
,
user_memory_p
,
"@weights-diff_dst_mem_p"
,
pipeline
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDiffWeightsMemoryFromWeightsPrimitive
(
void
*
ptr
)
{
return
this
->
AcquireMemoryFromPrimitive
(
conv_bwd_weights_pd_
->
diff_weights_primitive_desc
(),
ptr
,
"@diff_weights_mem_p"
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDiffDstMemoryFromDataPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
auto
diff_dst_pd
=
conv_bwd_data_pd_
->
diff_dst_primitive_desc
();
auto
user_pd
=
user_memory_p
->
get_primitive_desc
();
return
this
->
AcquireMemory
(
diff_dst_pd
,
user_pd
,
user_memory_p
,
"@data-diff_dst_mem_p"
,
pipeline
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireWeightsMemoryFromDataPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_weights_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
auto
weights_pd
=
conv_bwd_data_pd_
->
weights_primitive_desc
();
auto
user_pd
=
user_weights_memory_p
->
get_primitive_desc
();
return
this
->
AcquireMemory
(
weights_pd
,
user_pd
,
user_weights_memory_p
,
"@data-weights_mem_p"
,
pipeline
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireResidualDataMemory
(
const
mkldnn
::
memory
::
desc
&
md
,
void
*
ptr
)
{
return
this
->
AcquireMemory
(
md
,
ptr
,
"@user_residual_data_mem_p"
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDstMemoryFromResidualDataMemory
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>&
user_residual_memory_p
,
void
*
dst_ptr
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
return
this
->
AcquireMemory
(
user_residual_memory_p
,
this
->
AcquireDstMemoryFromPrimitive
(
dst_ptr
),
"@residual_data_mem_p"
,
pipeline
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDiffSrcMemoryFromDataPrimitive
(
void
*
ptr
)
{
return
this
->
AcquireMemoryFromPrimitive
(
conv_bwd_data_pd_
->
diff_src_primitive_desc
(),
ptr
,
"@diff_src_mem_p"
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDstMemoryFromPrimitive
(
void
*
ptr
)
{
return
this
->
AcquireMemoryFromPrimitive
(
conv_pd_
->
dst_primitive_desc
(),
ptr
,
"@dst_mem_p"
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireSrcMemoryFromPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
auto
src_pd
=
conv_pd_
->
src_primitive_desc
();
auto
user_pd
=
user_memory_p
->
get_primitive_desc
();
return
this
->
AcquireMemory
(
src_pd
,
user_pd
,
user_memory_p
,
"@src_mem_p"
,
pipeline
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireWeightsMemoryFromPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_weights_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
// NOLINT
bool
is_persistent
=
false
)
{
auto
user_weights_pd
=
user_weights_memory_p
->
get_primitive_desc
();
auto
weights_pd
=
conv_pd_
->
weights_primitive_desc
();
return
this
->
AcquireMemory
(
weights_pd
,
user_weights_pd
,
user_weights_memory_p
,
"@weights_mem_p"
,
pipeline
,
is_persistent
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireBiasMemoryFromPrimitive
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>
user_bias_memory_p
,
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
)
{
// NOLINT
auto
user_bias_pd
=
user_bias_memory_p
->
get_primitive_desc
();
auto
bias_pd
=
conv_pd_
->
bias_primitive_desc
();
return
this
->
AcquireMemory
(
bias_pd
,
user_bias_pd
,
user_bias_memory_p
,
"@bias_mem_p"
,
pipeline
);
}
std
::
shared_ptr
<
forward_t
>
AcquireConvolution
(
std
::
shared_ptr
<
mkldnn
::
memory
>
src_memory_p
,
std
::
shared_ptr
<
mkldnn
::
memory
>
weights_memory_p
,
std
::
shared_ptr
<
mkldnn
::
memory
>
dst_memory_p
)
{
auto
prim_key
=
key_
+
"@conv_p"
;
auto
conv_p
=
std
::
static_pointer_cast
<
forward_t
>
(
dev_ctx_
.
GetBlob
(
prim_key
));
PADDLE_ENFORCE
((
conv_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
"Fail to find convolution primitive in device context"
);
if
(
conv_p
==
nullptr
)
{
conv_p
=
std
::
make_shared
<
forward_t
>
(
*
conv_pd_
,
*
(
src_memory_p
),
*
(
weights_memory_p
.
get
()),
*
(
dst_memory_p
.
get
()));
dev_ctx_
.
SetBlob
(
prim_key
,
conv_p
);
}
else
{
is_reusing_
=
true
;
}
return
conv_p
;
}
std
::
shared_ptr
<
forward_t
>
AcquireConvolution
(
std
::
shared_ptr
<
mkldnn
::
memory
>
src_memory_p
,
std
::
shared_ptr
<
mkldnn
::
memory
>
weights_memory_p
,
std
::
shared_ptr
<
mkldnn
::
memory
>
bias_memory_p
,
std
::
shared_ptr
<
mkldnn
::
memory
>
dst_memory_p
)
{
auto
prim_key
=
key_
+
"@conv_p"
;
auto
conv_p
=
std
::
static_pointer_cast
<
forward_t
>
(
dev_ctx_
.
GetBlob
(
prim_key
));
PADDLE_ENFORCE
((
conv_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
"Fail to find convolution primitive in device context"
);
if
(
conv_p
==
nullptr
)
{
conv_p
=
std
::
make_shared
<
forward_t
>
(
*
conv_pd_
,
*
(
src_memory_p
),
*
(
weights_memory_p
.
get
()),
*
(
bias_memory_p
.
get
()),
*
(
dst_memory_p
.
get
()));
dev_ctx_
.
SetBlob
(
prim_key
,
conv_p
);
}
else
{
is_reusing_
=
true
;
}
return
conv_p
;
}
std
::
shared_ptr
<
backward_weights_t
>
AcquireConvolutionBackwardWeights
(
std
::
shared_ptr
<
mkldnn
::
memory
>
src_memory_p
,
std
::
shared_ptr
<
mkldnn
::
memory
>
diff_dst_memory_p
,
std
::
shared_ptr
<
mkldnn
::
memory
>
diff_weights_memory_p
)
{
auto
prim_key
=
key_
+
"@conv_bwd_weights_p"
;
auto
conv_bwd_weights_p
=
std
::
static_pointer_cast
<
backward_weights_t
>
(
dev_ctx_
.
GetBlob
(
prim_key
));
PADDLE_ENFORCE
(
(
conv_bwd_weights_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
"Fail to find convolution bwd weights primitive in device context"
);
if
(
conv_bwd_weights_p
==
nullptr
)
{
// create backward conv primitive for weights
conv_bwd_weights_p
=
std
::
make_shared
<
backward_weights_t
>
(
*
conv_bwd_weights_pd_
,
*
src_memory_p
,
*
diff_dst_memory_p
,
*
diff_weights_memory_p
);
dev_ctx_
.
SetBlob
(
prim_key
,
conv_bwd_weights_p
);
}
else
{
is_reusing_
=
true
;
}
return
conv_bwd_weights_p
;
}
std
::
shared_ptr
<
backward_data_t
>
AcquireConvolutionBackwardData
(
std
::
shared_ptr
<
mkldnn
::
memory
>
diff_dst_memory_p
,
std
::
shared_ptr
<
mkldnn
::
memory
>
weights_memory_p
,
std
::
shared_ptr
<
mkldnn
::
memory
>
diff_src_memory_p
)
{
auto
prim_key
=
key_
+
"@conv_bwd_data_p"
;
auto
conv_bwd_data_p
=
std
::
static_pointer_cast
<
backward_data_t
>
(
dev_ctx_
.
GetBlob
(
prim_key
));
PADDLE_ENFORCE
(
(
conv_bwd_data_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
"Fail to find convolution bwd data primitive in device context"
);
if
(
conv_bwd_data_p
==
nullptr
)
{
conv_bwd_data_p
=
std
::
make_shared
<
backward_data_t
>
(
*
conv_bwd_data_pd_
,
*
diff_dst_memory_p
,
*
weights_memory_p
,
*
diff_src_memory_p
);
dev_ctx_
.
SetBlob
(
prim_key
,
conv_bwd_data_p
);
}
else
{
is_reusing_
=
true
;
}
return
conv_bwd_data_p
;
}
// Generate keys for storing/retriving primitives for this operator
// TODO(jczaja): Make hashing function more optimial
static
std
::
string
GetHash
(
mkldnn
::
memory
::
dims
&
input_dims
,
// NOLINT
mkldnn
::
memory
::
dims
&
weights_dims
,
// NOLINT
std
::
vector
<
int
>&
strides
,
// NOLINT
std
::
vector
<
int
>&
paddings
,
// NOLINT
std
::
vector
<
int
>&
dilations
,
// NOLINT
int
groups
,
const
std
::
string
&
suffix
)
{
return
dims2str
(
input_dims
)
+
dims2str
(
weights_dims
)
+
dims2str
(
strides
)
+
dims2str
(
paddings
)
+
dims2str
(
dilations
)
+
std
::
to_string
(
groups
)
+
suffix
;
}
private:
std
::
shared_ptr
<
typename
forward_t
::
primitive_desc
>
conv_pd_
;
std
::
shared_ptr
<
typename
backward_weights_t
::
primitive_desc
>
conv_bwd_weights_pd_
;
std
::
shared_ptr
<
typename
backward_data_t
::
primitive_desc
>
conv_bwd_data_pd_
;
};
using
ConvMKLDNNHandler
=
ConvMKLDNNTemplateHandler
<
mkldnn
::
convolution_forward
,
mkldnn
::
convolution_backward_data
,
mkldnn
::
convolution_backward_weights
>
;
using
ConvTransposeMKLDNNHandler
=
ConvMKLDNNTemplateHandler
<
mkldnn
::
deconvolution_forward
,
mkldnn
::
deconvolution_backward_data
,
mkldnn
::
deconvolution_backward_weights
>
;
}
// namespace platform
}
// namespace paddle
python/paddle/fluid/tests/unittests/test_conv2d_transpose_mkldnn_op.py
0 → 100644
浏览文件 @
20120d9c
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
from
test_conv2d_transpose_op
import
TestConv2dTransposeOp
,
TestWithPad
,
TestWithStride
class
TestMKLDNN
(
TestConv2dTransposeOp
):
def
init_op_type
(
self
):
self
.
is_test
=
True
self
.
use_mkldnn
=
True
self
.
data_format
=
"NCHW"
self
.
op_type
=
"conv2d_transpose"
self
.
_cpu_only
=
True
def
test_check_grad
(
self
):
return
def
test_check_grad_no_input
(
self
):
return
def
test_check_grad_no_filter
(
self
):
return
class
TestMKLDNNWithPad
(
TestWithPad
):
def
init_op_type
(
self
):
self
.
is_test
=
True
self
.
use_mkldnn
=
True
self
.
data_format
=
"NCHW"
self
.
op_type
=
"conv2d_transpose"
self
.
_cpu_only
=
True
def
test_check_grad
(
self
):
return
def
test_check_grad_no_input
(
self
):
return
def
test_check_grad_no_filter
(
self
):
return
class
TestMKLDNNWithStride
(
TestWithStride
):
def
init_op_type
(
self
):
self
.
is_test
=
True
self
.
use_mkldnn
=
True
self
.
data_format
=
"NCHW"
self
.
op_type
=
"conv2d_transpose"
self
.
_cpu_only
=
True
def
test_check_grad
(
self
):
return
def
test_check_grad_no_input
(
self
):
return
def
test_check_grad_no_filter
(
self
):
return
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_conv2d_transpose_op.py
浏览文件 @
20120d9c
...
...
@@ -68,8 +68,11 @@ def conv2dtranspose_forward_naive(input_, filter_, attrs):
class
TestConv2dTransposeOp
(
OpTest
):
def
setUp
(
self
):
# init as conv transpose
self
.
is_test
=
False
self
.
use_cudnn
=
False
self
.
use_mkldnn
=
False
self
.
output_size
=
None
self
.
data_format
=
"AnyLayout"
self
.
init_op_type
()
self
.
init_test_case
()
...
...
@@ -83,7 +86,9 @@ class TestConv2dTransposeOp(OpTest):
'groups'
:
self
.
groups
,
'dilations'
:
self
.
dilations
,
'use_cudnn'
:
self
.
use_cudnn
,
'data_format'
:
'AnyLayout'
# TODO(dzhwinter) : should be fix latter
'is_test'
:
self
.
is_test
,
'use_mkldnn'
:
self
.
use_mkldnn
,
'data_format'
:
self
.
data_format
}
if
self
.
output_size
is
not
None
:
self
.
attrs
[
'output_size'
]
=
self
.
output_size
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录