Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
1c1f73b4
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1c1f73b4
编写于
10月 13, 2017
作者:
Y
Yan Chunwei
提交者:
GitHub
10月 13, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Feature/dynamic recurrent op forward test (#4729)
上级
6316b40a
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
323 addition
and
69 deletion
+323
-69
paddle/framework/tensor_array.cc
paddle/framework/tensor_array.cc
+17
-11
paddle/framework/tensor_array.h
paddle/framework/tensor_array.h
+9
-3
paddle/operators/dynamic_recurrent_op.cc
paddle/operators/dynamic_recurrent_op.cc
+110
-52
paddle/operators/dynamic_recurrent_op.h
paddle/operators/dynamic_recurrent_op.h
+25
-1
paddle/operators/dynamic_recurrent_op_test.cc
paddle/operators/dynamic_recurrent_op_test.cc
+0
-1
paddle/operators/sum_op.cc
paddle/operators/sum_op.cc
+1
-1
paddle/pybind/pybind.cc
paddle/pybind/pybind.cc
+28
-0
python/paddle/v2/framework/op.py
python/paddle/v2/framework/op.py
+22
-0
python/paddle/v2/framework/tests/test_dynamic_recurrent_op.py
...on/paddle/v2/framework/tests/test_dynamic_recurrent_op.py
+111
-0
未找到文件。
paddle/framework/tensor_array.cc
浏览文件 @
1c1f73b4
...
@@ -76,6 +76,17 @@ LoDTensor PackDynamicBatch(const std::vector<LoDTensor>& source,
...
@@ -76,6 +76,17 @@ LoDTensor PackDynamicBatch(const std::vector<LoDTensor>& source,
const
std
::
vector
<
DySeqMeta
>&
meta
,
const
LoD
&
lod
,
const
std
::
vector
<
DySeqMeta
>&
meta
,
const
LoD
&
lod
,
size_t
level
);
size_t
level
);
std
::
vector
<
size_t
>
GenDyBatchIndice
(
const
DySeqMetaBatch
&
meta
,
int
batch_id
)
{
// collect indice need to copy to the batch
std
::
vector
<
size_t
>
indice
;
for
(
const
auto
&
seq
:
meta
)
{
size_t
id
=
seq
.
begin
+
batch_id
;
if
(
id
>=
seq
.
end
)
break
;
indice
.
push_back
(
id
);
}
return
indice
;
}
}
// namespace detail
}
// namespace detail
const
LoDTensor
&
TensorArray
::
Read
(
size_t
index
)
const
{
const
LoDTensor
&
TensorArray
::
Read
(
size_t
index
)
const
{
...
@@ -113,8 +124,8 @@ LoDTensor TensorArray::Pack(size_t level, const std::vector<DySeqMeta>& meta,
...
@@ -113,8 +124,8 @@ LoDTensor TensorArray::Pack(size_t level, const std::vector<DySeqMeta>& meta,
return
detail
::
PackDynamicBatch
(
values_
,
meta
,
lod
,
level
);
return
detail
::
PackDynamicBatch
(
values_
,
meta
,
lod
,
level
);
}
}
std
::
vector
<
DySeqMeta
>
TensorArray
::
Unpack
(
const
LoDTensor
&
source
,
int
level
,
DySeqMetaBatch
TensorArray
::
Unpack
(
const
LoDTensor
&
source
,
int
level
,
bool
length_desend
)
{
bool
length_desend
)
{
detail
::
DynamicBatchUnpacker
unpacker
(
source
,
level
,
detail
::
DynamicBatchUnpacker
unpacker
(
source
,
level
,
length_desend
/*descend*/
);
length_desend
/*descend*/
);
...
@@ -129,6 +140,7 @@ std::vector<DySeqMeta> TensorArray::Unpack(const LoDTensor& source, int level,
...
@@ -129,6 +140,7 @@ std::vector<DySeqMeta> TensorArray::Unpack(const LoDTensor& source, int level,
Write
(
batch_id
,
unpacker
.
GetBatch
(
batch_id
));
Write
(
batch_id
,
unpacker
.
GetBatch
(
batch_id
));
}
}
PADDLE_ENFORCE
(
!
unpacker
.
meta
.
empty
());
return
unpacker
.
meta
;
return
unpacker
.
meta
;
}
}
...
@@ -218,13 +230,7 @@ LoDTensor DynamicBatchUnpacker::GetBatch(size_t index) {
...
@@ -218,13 +230,7 @@ LoDTensor DynamicBatchUnpacker::GetBatch(size_t index) {
PADDLE_ENFORCE
(
!
meta
.
empty
(),
"should build meta first"
);
PADDLE_ENFORCE
(
!
meta
.
empty
(),
"should build meta first"
);
LoDTensor
result
;
LoDTensor
result
;
// collect indice need to copy to the batch
auto
indice
=
detail
::
GenDyBatchIndice
(
meta
,
index
);
std
::
vector
<
size_t
>
indice
;
for
(
const
auto
&
seq
:
meta
)
{
size_t
id
=
seq
.
begin
+
index
;
if
(
id
>=
seq
.
end
)
break
;
indice
.
push_back
(
id
);
}
PADDLE_ENFORCE
(
!
indice
.
empty
(),
"invalid batch at %d"
,
index
);
PADDLE_ENFORCE
(
!
indice
.
empty
(),
"invalid batch at %d"
,
index
);
// copy the indice of records in LoDTensor
// copy the indice of records in LoDTensor
...
@@ -237,9 +243,9 @@ LoDTensor DynamicBatchUnpacker::GetBatch(size_t index) {
...
@@ -237,9 +243,9 @@ LoDTensor DynamicBatchUnpacker::GetBatch(size_t index) {
for
(
size_t
i
=
0
;
i
<
indice
.
size
();
i
++
)
{
for
(
size_t
i
=
0
;
i
<
indice
.
size
();
i
++
)
{
auto
index
=
indice
[
i
];
auto
index
=
indice
[
i
];
auto
target
=
result
.
Slice
<
value_type
>
(
i
,
i
+
1
);
auto
target
=
result
.
Slice
<
value_type
>
(
i
,
i
+
1
);
auto
s
ource_
=
source
->
Slice
<
value_type
>
(
index
,
index
+
1
);
auto
s
lice
=
source
->
Slice
<
value_type
>
(
index
,
index
+
1
);
target
.
CopyFrom
<
value_type
>
(
s
ource_
,
platform
::
CPUPlace
(),
target
.
CopyFrom
<
value_type
>
(
s
lice
,
platform
::
CPUPlace
(),
platform
::
CPUDeviceContext
());
platform
::
CPUDeviceContext
());
}
}
...
...
paddle/framework/tensor_array.h
浏览文件 @
1c1f73b4
...
@@ -34,6 +34,13 @@ struct DySeqMeta {
...
@@ -34,6 +34,13 @@ struct DySeqMeta {
size_t
ori_idx
;
size_t
ori_idx
;
};
};
using
DySeqMetaBatch
=
std
::
vector
<
DySeqMeta
>
;
/*
* Extract the indices of instances.
*/
std
::
vector
<
size_t
>
GenDyBatchIndice
(
const
DySeqMetaBatch
&
metas
,
int
batch_id
);
/*
/*
* TensorArray is a C-array-like array of tensors, it is meant to be used with
* TensorArray is a C-array-like array of tensors, it is meant to be used with
* dynamic iteration primitives such as while_loop. It is used to segment inputs
* dynamic iteration primitives such as while_loop. It is used to segment inputs
...
@@ -69,7 +76,7 @@ class TensorArray {
...
@@ -69,7 +76,7 @@ class TensorArray {
* Recover the original LoD-arranged LoDTensor with the `values`, `level` and
* Recover the original LoD-arranged LoDTensor with the `values`, `level` and
* `indice_map`.
* `indice_map`.
*/
*/
LoDTensor
Pack
(
size_t
level
,
const
std
::
vector
<
DySeqMeta
>
&
meta
,
LoDTensor
Pack
(
size_t
level
,
const
DySeqMetaBatch
&
meta
,
const
LoD
&
lod
)
const
;
const
LoD
&
lod
)
const
;
/*
/*
...
@@ -77,8 +84,7 @@ class TensorArray {
...
@@ -77,8 +84,7 @@ class TensorArray {
* `values`, if set `desend`, will sort by length in descending order else in
* `values`, if set `desend`, will sort by length in descending order else in
* ascending order.
* ascending order.
*/
*/
std
::
vector
<
DySeqMeta
>
Unpack
(
const
LoDTensor
&
source
,
int
level
,
DySeqMetaBatch
Unpack
(
const
LoDTensor
&
source
,
int
level
,
bool
length_desend
);
bool
length_desend
);
/*
/*
* Pack the values into a tensor with rank one higher than each tensor in
* Pack the values into a tensor with rank one higher than each tensor in
...
...
paddle/operators/dynamic_recurrent_op.cc
浏览文件 @
1c1f73b4
...
@@ -23,6 +23,7 @@ using framework::Scope;
...
@@ -23,6 +23,7 @@ using framework::Scope;
using
framework
::
TensorArray
;
using
framework
::
TensorArray
;
using
framework
::
LoDTensor
;
using
framework
::
LoDTensor
;
using
framework
::
Variable
;
using
framework
::
Variable
;
using
framework
::
DySeqMetaBatch
;
namespace
detail
{
namespace
detail
{
...
@@ -33,6 +34,29 @@ inline void CreateVariables(Scope& scope,
...
@@ -33,6 +34,29 @@ inline void CreateVariables(Scope& scope,
}
}
}
}
/*
* The inputs with sequence should be reordered when they are split, so the
* boot_states should be reordered in the same order.
*
* NOTE This may require that the `pre_state` of the first time step should just
* copy the `boot_state` rather than reference it, for that the content should
* be reordered, but the RNN op should not change the `boot_state` as an input
* variable's content.
*/
template
<
typename
T
>
inline
void
ReorderBootState
(
const
DySeqMetaBatch
&
metas
,
const
LoDTensor
&
boot_state
,
LoDTensor
*
tensor
,
const
platform
::
Place
&
dst_place
)
{
for
(
size_t
seq_id
=
0
;
seq_id
<
metas
.
size
();
seq_id
++
)
{
auto
slice
=
tensor
->
Slice
<
T
>
(
seq_id
,
seq_id
+
1
);
auto
boot_slice
=
boot_state
.
Slice
<
T
>
(
metas
[
seq_id
].
ori_idx
,
metas
[
seq_id
].
ori_idx
+
1
);
// TODO(superjom) pass in device context as an argument
slice
.
template
CopyFrom
<
T
>(
boot_slice
,
dst_place
,
platform
::
CPUDeviceContext
());
}
}
}
// namespace detail
}
// namespace detail
class
DynamicRecurrentOpProtoAndCheckerMaker
class
DynamicRecurrentOpProtoAndCheckerMaker
...
@@ -69,6 +93,7 @@ void DynamicRecurrentOp::Run(const Scope& scope,
...
@@ -69,6 +93,7 @@ void DynamicRecurrentOp::Run(const Scope& scope,
CreateScopes
();
CreateScopes
();
WriteStepInputs
();
WriteStepInputs
();
InitStates
();
InitStates
();
WriteStepOutputs
();
// call stepnet in all the time steps
// call stepnet in all the time steps
for
(
size_t
step
=
0
;
step
<
cache_
.
num_steps
;
step
++
)
{
for
(
size_t
step
=
0
;
step
<
cache_
.
num_steps
;
step
++
)
{
...
@@ -76,7 +101,6 @@ void DynamicRecurrentOp::Run(const Scope& scope,
...
@@ -76,7 +101,6 @@ void DynamicRecurrentOp::Run(const Scope& scope,
stepnet_
->
Run
(
step_scope
,
dev_ctx
);
stepnet_
->
Run
(
step_scope
,
dev_ctx
);
}
}
WriteStepOutputs
();
ConcatOutputs
();
ConcatOutputs
();
}
}
...
@@ -84,11 +108,11 @@ void DynamicRecurrentOp::SplitInputs() const {
...
@@ -84,11 +108,11 @@ void DynamicRecurrentOp::SplitInputs() const {
// TODO(superjom) make level a config
// TODO(superjom) make level a config
// TODO(superjom) check all the inputs has the same LoD
// TODO(superjom) check all the inputs has the same LoD
int
level
=
0
;
int
level
=
0
;
const
auto
&
inlinks
=
cache_
.
inlinks
;
for
(
const
auto
&
item
:
cache_
.
inlinks
)
{
for
(
const
auto
&
item
:
inlinks
)
{
const
auto
&
var
=
item
.
second
;
const
auto
&
var
=
item
.
second
;
const
auto
&
tensor
=
var
->
Get
<
LoDTensor
>
();
const
auto
&
tensor
=
var
->
Get
<
LoDTensor
>
();
TensorArray
&
ta
=
step_inputs_
[
item
.
first
];
TensorArray
&
ta
=
step_inputs_
[
item
.
first
];
dy_seq_metas_
[
item
.
first
]
=
dy_seq_metas_
[
item
.
first
]
=
ta
.
Unpack
(
tensor
,
level
,
true
/*length_descend*/
);
ta
.
Unpack
(
tensor
,
level
,
true
/*length_descend*/
);
...
@@ -120,17 +144,11 @@ void DynamicRecurrentOp::WriteStepInputs() const {
...
@@ -120,17 +144,11 @@ void DynamicRecurrentOp::WriteStepInputs() const {
}
}
void
DynamicRecurrentOp
::
WriteStepOutputs
()
const
{
void
DynamicRecurrentOp
::
WriteStepOutputs
()
const
{
for
(
size_t
step
=
0
;
step
<
cache_
.
scopes
->
size
();
step
++
)
{
// initialize step outputs
auto
&
scope
=
cache_
.
GetScope
(
step
);
for
(
const
auto
&
item
:
cache_
.
outlinks
)
{
for
(
auto
&
item
:
step_outputs_
)
{
step_outputs_
.
emplace
(
item
.
first
,
TensorArray
());
auto
*
var
=
scope
.
FindVar
(
item
.
first
);
if
(
var
==
nullptr
)
{
var
=
scope
.
NewVar
(
item
.
first
);
}
auto
*
tensor
=
var
->
GetMutable
<
LoDTensor
>
();
item
.
second
.
WriteShared
(
step
,
*
tensor
);
}
}
}
PADDLE_ENFORCE_GT
(
step_outputs_
.
size
(),
0UL
);
}
}
void
DynamicRecurrentOp
::
CreateScopes
()
const
{
void
DynamicRecurrentOp
::
CreateScopes
()
const
{
...
@@ -145,12 +163,18 @@ void DynamicRecurrentOp::CreateScopes() const {
...
@@ -145,12 +163,18 @@ void DynamicRecurrentOp::CreateScopes() const {
PADDLE_ENFORCE_NOT_NULL
(
stepnet_
,
"stepnet should be set first"
);
PADDLE_ENFORCE_NOT_NULL
(
stepnet_
,
"stepnet should be set first"
);
std
::
vector
<
std
::
string
>
memories
;
std
::
vector
<
std
::
string
>
memories
;
std
::
vector
<
std
::
string
>
pre_memories
;
std
::
vector
<
std
::
string
>
pre_memories
;
std
::
vector
<
std
::
string
>
stepnet_outputs
;
std
::
transform
(
arg_
.
memories
.
begin
(),
arg_
.
memories
.
end
(),
std
::
transform
(
arg_
.
memories
.
begin
(),
arg_
.
memories
.
end
(),
std
::
back_inserter
(
memories
),
std
::
back_inserter
(
memories
),
[](
const
rnn
::
MemoryAttr
&
m
)
{
return
m
.
var
;
});
[](
const
rnn
::
MemoryAttr
&
m
)
{
return
m
.
var
;
});
std
::
transform
(
arg_
.
memories
.
begin
(),
arg_
.
memories
.
end
(),
std
::
transform
(
arg_
.
memories
.
begin
(),
arg_
.
memories
.
end
(),
std
::
back_inserter
(
pre_memories
),
std
::
back_inserter
(
pre_memories
),
[](
const
rnn
::
MemoryAttr
&
m
)
{
return
m
.
pre_var
;
});
[](
const
rnn
::
MemoryAttr
&
m
)
{
return
m
.
pre_var
;
});
for
(
const
auto
&
item
:
stepnet_
->
Outputs
())
{
for
(
const
auto
&
var
:
item
.
second
)
{
stepnet_outputs
.
push_back
(
var
);
}
}
for
(
size_t
step
=
0
;
step
<
cache_
.
num_steps
;
step
++
)
{
for
(
size_t
step
=
0
;
step
<
cache_
.
num_steps
;
step
++
)
{
auto
&
scope
=
cache_
.
GetScope
(
step
);
auto
&
scope
=
cache_
.
GetScope
(
step
);
...
@@ -158,60 +182,88 @@ void DynamicRecurrentOp::CreateScopes() const {
...
@@ -158,60 +182,88 @@ void DynamicRecurrentOp::CreateScopes() const {
detail
::
CreateVariables
(
scope
,
arg_
.
outlinks
);
detail
::
CreateVariables
(
scope
,
arg_
.
outlinks
);
detail
::
CreateVariables
(
scope
,
memories
);
detail
::
CreateVariables
(
scope
,
memories
);
detail
::
CreateVariables
(
scope
,
pre_memories
);
detail
::
CreateVariables
(
scope
,
pre_memories
);
detail
::
CreateVariables
(
scope
,
stepnet_outputs
);
}
}
}
}
void
DynamicRecurrentOp
::
ConcatOutputs
()
const
{
void
DynamicRecurrentOp
::
ConcatOutputs
()
const
{
// TODO(superjom) transform this to a config
// TODO(superjom) transform this to a config
int
level
=
0
;
int
level
=
0
;
// TODO(superjom) pass in some lod
for
(
size_t
step
=
0
;
step
<
cache_
.
num_steps
;
step
++
)
{
// just a placeholder
auto
&
scope
=
cache_
.
GetScope
(
step
);
framework
::
LoD
lod
;
for
(
auto
&
item
:
step_outputs_
)
{
auto
*
var
=
scope
.
FindVar
(
item
.
first
);
PADDLE_ENFORCE_NOT_NULL
(
var
);
auto
*
tensor
=
var
->
GetMutable
<
LoDTensor
>
();
tensor
->
mutable_data
<
value_type
>
(
platform
::
CPUPlace
());
item
.
second
.
WriteShared
(
step
,
*
tensor
);
}
}
// the inlinks' lods should be the same, so randomly get one lod.
const
auto
&
some_lod
=
cache_
.
scope
->
FindVar
(
arg_
.
inlinks
.
front
())
->
Get
<
LoDTensor
>
().
lod
();
const
auto
&
some_meta
=
dy_seq_metas_
[
arg_
.
inlinks
.
front
()];
for
(
auto
&
item
:
step_outputs_
)
{
for
(
auto
&
item
:
step_outputs_
)
{
auto
tensor
=
item
.
second
.
Pack
(
level
,
dy_seq_metas_
[
item
.
first
],
lod
);
auto
tensor
=
item
.
second
.
Pack
(
level
,
some_meta
,
some_
lod
);
auto
&
output
=
cache_
.
outlinks
[
item
.
first
]
->
Get
<
LoDTensor
>
();
auto
*
output
=
cache_
.
outlinks
[
item
.
first
]
->
GetMutable
<
LoDTensor
>
();
const_cast
<
LoDTensor
*>
(
&
output
)
->
ShareDataWith
<
value_type
>
(
tensor
);
const_cast
<
LoDTensor
*>
(
output
)
->
ShareDataWith
<
value_type
>
(
tensor
);
}
}
}
}
void
DynamicRecurrentOp
::
InitStates
()
const
{
void
DynamicRecurrentOp
::
InitStates
()
const
{
// init the first state
for
(
size_t
step
=
0
;
step
<
cache_
.
num_steps
;
step
++
)
{
// TODO(superjom) parepare the scenerio that boot state not exists
for
(
const
auto
&
memory
:
arg_
.
memories
)
{
for
(
auto
memory
:
arg_
.
memories
)
{
CreateState
(
memory
,
step
);
auto
*
boot_state_var
=
cache_
.
scope
->
FindVar
(
memory
.
boot_var
);
LinkState
(
memory
,
step
);
PADDLE_ENFORCE_NOT_NULL
(
boot_state_var
);
auto
&
boot_state
=
boot_state_var
->
Get
<
LoDTensor
>
();
const
auto
&
dims
=
boot_state
.
dims
();
for
(
size_t
step
=
0
;
step
<
cache_
.
num_steps
;
step
++
)
{
auto
&
cur_scope
=
cache_
.
GetScope
(
step
);
// link pre-state to boot_state
// init state and pre-state
auto
*
pre_state
=
cur_scope
.
FindVar
(
memory
.
pre_var
);
PADDLE_ENFORCE_NOT_NULL
(
pre_state
);
pre_state
->
GetMutable
<
LoDTensor
>
();
auto
*
state
=
cur_scope
.
FindVar
(
memory
.
var
);
PADDLE_ENFORCE_NOT_NULL
(
state
);
state
->
GetMutable
<
LoDTensor
>
()
->
Resize
(
dims
);
state
->
GetMutable
<
LoDTensor
>
()
->
mutable_data
<
value_type
>
(
platform
::
CPUPlace
());
if
(
step
==
0
)
{
auto
*
pre_state_tensor
=
pre_state
->
GetMutable
<
LoDTensor
>
();
pre_state_tensor
->
Resize
(
boot_state
.
dims
());
pre_state_tensor
->
ShareDataWith
<
value_type
>
(
boot_state
);
}
else
{
auto
&
pre_scope
=
cache_
.
GetScope
(
step
-
1
);
auto
*
state_pre
=
pre_scope
.
FindVar
(
memory
.
var
);
PADDLE_ENFORCE_NOT_NULL
(
state_pre
);
pre_state
->
GetMutable
<
LoDTensor
>
()
->
ShareDataWith
<
value_type
>
(
*
state_pre
->
GetMutable
<
LoDTensor
>
());
}
}
}
}
}
}
}
void
DynamicRecurrentOp
::
CreateState
(
const
rnn
::
MemoryAttr
&
memory
,
size_t
step
)
const
{
auto
&
scope
=
cache_
.
GetScope
(
step
);
auto
&
state
=
*
cache_
.
GetTensor
(
scope
,
memory
.
var
);
auto
&
boot_state
=
*
cache_
.
GetTensor
(
*
cache_
.
scope
,
memory
.
boot_var
);
size_t
num_instances
=
step_inputs_
[
arg_
.
inlinks
.
front
()].
Read
(
step
).
dims
()[
0
];
auto
dims
=
boot_state
.
dims
();
dims
[
0
]
=
num_instances
;
state
.
Resize
(
dims
);
state
.
mutable_data
<
value_type
>
(
platform
::
CPUPlace
());
states_
[
memory
.
var
].
WriteShared
(
step
,
state
);
}
void
DynamicRecurrentOp
::
LinkState
(
const
rnn
::
MemoryAttr
&
memory
,
size_t
step
)
const
{
auto
&
scope
=
cache_
.
GetScope
(
step
);
auto
&
state_pre
=
*
cache_
.
GetTensor
(
scope
,
memory
.
pre_var
);
// all the step_inputs' metas should be the same, just randomly select one
// and get the dyseq meta.
const
auto
&
some_meta
=
dy_seq_metas_
[
arg_
.
inlinks
.
front
()];
size_t
num_instances
=
step_inputs_
[
arg_
.
inlinks
.
front
()].
Read
(
step
).
dims
()[
0
];
LoDTensor
*
pre_state
{
nullptr
};
if
(
step
==
0
)
{
pre_state
=
cache_
.
GetTensor
(
*
cache_
.
scope
,
memory
.
boot_var
);
pre_state
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
// allocate memory
state_pre
.
Resize
(
pre_state
->
dims
());
state_pre
.
mutable_data
<
value_type
>
(
platform
::
CPUPlace
());
detail
::
ReorderBootState
<
value_type
>
(
some_meta
,
*
pre_state
,
&
state_pre
,
pre_state
->
place
());
}
else
{
pre_state
=
cache_
.
GetTensor
(
cache_
.
GetScope
(
step
-
1
),
memory
.
var
);
}
// shink and share from previous state
auto
shrinked_pre_state
=
pre_state
->
Slice
<
value_type
>
(
0
,
num_instances
);
state_pre
.
ShareDataWith
<
value_type
>
(
shrinked_pre_state
);
}
void
DynamicRecurrentOp
::
ArgCache
::
Init
(
void
DynamicRecurrentOp
::
ArgCache
::
Init
(
const
rnn
::
ArgumentName
&
name
,
const
paddle
::
framework
::
OperatorBase
&
op
,
const
rnn
::
ArgumentName
&
name
,
const
paddle
::
framework
::
OperatorBase
&
op
,
const
paddle
::
framework
::
Scope
&
scope
,
rnn
::
Argument
*
arg
)
{
const
paddle
::
framework
::
Scope
&
scope
,
rnn
::
Argument
*
arg
)
{
...
@@ -261,6 +313,12 @@ Variable* DynamicRecurrentOp::ArgCache::GetVariable(const Scope& scope,
...
@@ -261,6 +313,12 @@ Variable* DynamicRecurrentOp::ArgCache::GetVariable(const Scope& scope,
return
var
;
return
var
;
}
}
LoDTensor
*
DynamicRecurrentOp
::
ArgCache
::
GetTensor
(
const
framework
::
Scope
&
scope
,
const
std
::
string
&
name
)
{
auto
*
var
=
GetVariable
(
scope
,
name
);
return
var
->
GetMutable
<
LoDTensor
>
();
}
const
rnn
::
ArgumentName
DynamicRecurrentOp
::
kArgName
{
const
rnn
::
ArgumentName
DynamicRecurrentOp
::
kArgName
{
"step_net"
,
"step_scopes"
,
"inlinks"
,
"outlinks"
,
"step_net"
,
"step_scopes"
,
"inlinks"
,
"outlinks"
,
"memories"
,
"pre_memories"
,
"boot_memories"
};
"memories"
,
"pre_memories"
,
"boot_memories"
};
...
...
paddle/operators/dynamic_recurrent_op.h
浏览文件 @
1c1f73b4
...
@@ -77,6 +77,17 @@ class DynamicRecurrentOp : public framework::OperatorBase {
...
@@ -77,6 +77,17 @@ class DynamicRecurrentOp : public framework::OperatorBase {
*/
*/
void
InitStates
()
const
;
void
InitStates
()
const
;
/*
* Create state variables for each time step.
*/
void
CreateState
(
const
rnn
::
MemoryAttr
&
memory
,
size_t
step
)
const
;
/*
* Link pre-state variable in current scope to the state variable in the
* previous time step (scope).
*/
void
LinkState
(
const
rnn
::
MemoryAttr
&
memory
,
size_t
step
)
const
;
/*
/*
* Concatenate outputs in each time step and generate a LoDTensor.
* Concatenate outputs in each time step and generate a LoDTensor.
*/
*/
...
@@ -91,6 +102,16 @@ class DynamicRecurrentOp : public framework::OperatorBase {
...
@@ -91,6 +102,16 @@ class DynamicRecurrentOp : public framework::OperatorBase {
}
}
const
OperatorBase
&
GetStepNet
()
const
{
return
*
stepnet_
;
}
const
OperatorBase
&
GetStepNet
()
const
{
return
*
stepnet_
;
}
const
framework
::
TensorArray
&
state
(
const
std
::
string
&
name
)
const
{
return
states_
[
name
];
}
const
framework
::
TensorArray
&
step_input
(
const
std
::
string
&
name
)
const
{
return
step_inputs_
[
name
];
}
const
framework
::
TensorArray
&
step_output
(
const
std
::
string
&
name
)
const
{
return
step_outputs_
[
name
];
}
protected:
protected:
struct
ArgCache
{
struct
ArgCache
{
framework
::
Scope
const
*
scope
;
framework
::
Scope
const
*
scope
;
...
@@ -108,6 +129,9 @@ class DynamicRecurrentOp : public framework::OperatorBase {
...
@@ -108,6 +129,9 @@ class DynamicRecurrentOp : public framework::OperatorBase {
return
*
scopes
->
at
(
index
);
return
*
scopes
->
at
(
index
);
}
}
framework
::
LoDTensor
*
GetTensor
(
const
framework
::
Scope
&
scope
,
const
std
::
string
&
name
);
private:
private:
void
InitArgument
(
const
rnn
::
ArgumentName
&
name
,
const
OperatorBase
&
op
,
void
InitArgument
(
const
rnn
::
ArgumentName
&
name
,
const
OperatorBase
&
op
,
rnn
::
Argument
*
arg
);
rnn
::
Argument
*
arg
);
...
@@ -122,7 +146,7 @@ class DynamicRecurrentOp : public framework::OperatorBase {
...
@@ -122,7 +146,7 @@ class DynamicRecurrentOp : public framework::OperatorBase {
private:
private:
std
::
unique_ptr
<
OperatorBase
>
stepnet_
;
std
::
unique_ptr
<
OperatorBase
>
stepnet_
;
mutable
framework
::
TensorArray
states_
;
mutable
std
::
map
<
std
::
string
,
framework
::
TensorArray
>
states_
;
mutable
std
::
map
<
std
::
string
,
framework
::
TensorArray
>
step_inputs_
;
mutable
std
::
map
<
std
::
string
,
framework
::
TensorArray
>
step_inputs_
;
mutable
std
::
map
<
std
::
string
,
framework
::
TensorArray
>
step_outputs_
;
mutable
std
::
map
<
std
::
string
,
framework
::
TensorArray
>
step_outputs_
;
mutable
std
::
map
<
std
::
string
,
std
::
vector
<
framework
::
DySeqMeta
>>
mutable
std
::
map
<
std
::
string
,
std
::
vector
<
framework
::
DySeqMeta
>>
...
...
paddle/operators/dynamic_recurrent_op_test.cc
浏览文件 @
1c1f73b4
...
@@ -87,7 +87,6 @@ class DynamicRecurrentOpTestHelper : public ::testing::Test {
...
@@ -87,7 +87,6 @@ class DynamicRecurrentOpTestHelper : public ::testing::Test {
platform
::
CPUPlace
place
;
platform
::
CPUPlace
place
;
scope
.
NewVar
(
"step_scopes"
);
scope
.
NewVar
(
"step_scopes"
);
CreateVar
(
scope
,
"boot_mem"
,
framework
::
make_ddim
({
10
,
20
}),
place
);
CreateVar
(
scope
,
"boot_mem"
,
framework
::
make_ddim
({
10
,
20
}),
place
);
// auto* out0 =
CreateVar
(
scope
,
"out0"
,
framework
::
make_ddim
({
10
,
20
}),
place
);
CreateVar
(
scope
,
"out0"
,
framework
::
make_ddim
({
10
,
20
}),
place
);
auto
*
in0
=
CreateVar
(
scope
,
"in0"
,
framework
::
make_ddim
({
10
,
8
}),
place
);
auto
*
in0
=
CreateVar
(
scope
,
"in0"
,
framework
::
make_ddim
({
10
,
8
}),
place
);
// 10 instanes with 4 sentences, length is 4, 3, 2, 1 respectively.
// 10 instanes with 4 sentences, length is 4, 3, 2, 1 respectively.
...
...
paddle/operators/sum_op.cc
浏览文件 @
1c1f73b4
...
@@ -34,7 +34,7 @@ class SumOp : public framework::OperatorWithKernel {
...
@@ -34,7 +34,7 @@ class SumOp : public framework::OperatorWithKernel {
auto
in_dim
=
x_dims
[
0
];
auto
in_dim
=
x_dims
[
0
];
for
(
size_t
i
=
1
;
i
<
N
;
i
++
)
{
for
(
size_t
i
=
1
;
i
<
N
;
i
++
)
{
auto
dim
=
x_dims
[
i
];
auto
dim
=
x_dims
[
i
];
PADDLE_ENFORCE
(
in_dim
==
dim
,
"Input tensors must have same shape"
);
PADDLE_ENFORCE
_EQ
(
in_dim
,
dim
,
"Input tensors must have same shape"
);
}
}
ctx
->
SetOutputDim
(
"Out"
,
in_dim
);
ctx
->
SetOutputDim
(
"Out"
,
in_dim
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
...
...
paddle/pybind/pybind.cc
浏览文件 @
1c1f73b4
...
@@ -18,6 +18,7 @@ limitations under the License. */
...
@@ -18,6 +18,7 @@ limitations under the License. */
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/tensor_array.h"
#include "paddle/framework/tensor_array.h"
#include "paddle/operators/cond_op.h"
#include "paddle/operators/cond_op.h"
#include "paddle/operators/dynamic_recurrent_op.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/recurrent_op.h"
#include "paddle/operators/recurrent_op.h"
#include "paddle/platform/enforce.h"
#include "paddle/platform/enforce.h"
...
@@ -341,6 +342,33 @@ All parameter, weight, gradient are variables in Paddle.
...
@@ -341,6 +342,33 @@ All parameter, weight, gradient are variables in Paddle.
self
.
set_stepnet
(
net
.
Clone
());
self
.
set_stepnet
(
net
.
Clone
());
});
});
py
::
class_
<
operators
::
DynamicRecurrentOp
,
OperatorBase
>
(
m
,
"DynamicRecurrentOp"
)
.
def_static
(
"create"
,
[](
py
::
bytes
protobin
)
->
operators
::
DynamicRecurrentOp
*
{
OpDesc
desc
;
PADDLE_ENFORCE
(
desc
.
ParsePartialFromString
(
protobin
),
"Cannot parse user input to OpDesc"
);
PADDLE_ENFORCE
(
desc
.
IsInitialized
(),
"User OpDesc is not initialized, reason %s"
,
desc
.
InitializationErrorString
());
auto
rnn_op
=
OpRegistry
::
CreateOp
(
desc
);
return
static_cast
<
operators
::
DynamicRecurrentOp
*>
(
rnn_op
.
release
());
})
.
def
(
"set_stepnet"
,
[](
operators
::
DynamicRecurrentOp
&
self
,
const
operators
::
NetOp
&
net
)
->
void
{
self
.
SetStepNet
(
net
.
Clone
());
})
.
def
(
"get_state"
,
[](
operators
::
DynamicRecurrentOp
&
self
,
const
std
::
string
&
name
)
->
const
TensorArray
&
{
return
self
.
state
(
name
);
})
.
def
(
"get_step_input"
,
[](
operators
::
DynamicRecurrentOp
&
self
,
const
std
::
string
&
name
)
->
const
TensorArray
&
{
return
self
.
step_input
(
name
);
})
.
def
(
"get_step_output"
,
[](
operators
::
DynamicRecurrentOp
&
self
,
const
std
::
string
&
name
)
->
const
TensorArray
&
{
return
self
.
step_output
(
name
);
});
// cond_op
// cond_op
py
::
class_
<
operators
::
CondOp
,
OperatorBase
>
(
m
,
"CondOp"
)
py
::
class_
<
operators
::
CondOp
,
OperatorBase
>
(
m
,
"CondOp"
)
.
def_static
(
"create"
,
.
def_static
(
"create"
,
...
...
python/paddle/v2/framework/op.py
浏览文件 @
1c1f73b4
...
@@ -219,6 +219,27 @@ class __RecurrentOp__(object):
...
@@ -219,6 +219,27 @@ class __RecurrentOp__(object):
return
core
.
RecurrentOp
.
create
(
proto
.
SerializeToString
())
return
core
.
RecurrentOp
.
create
(
proto
.
SerializeToString
())
class
__DynamicRecurrentOp__
(
object
):
__proto__
=
None
type
=
"dynamic_recurrent"
def
__init__
(
self
):
# cache recurrent_op's proto
if
self
.
__proto__
is
None
:
for
op_proto
in
get_all_op_protos
():
if
op_proto
.
type
==
self
.
type
:
self
.
__proto__
=
op_proto
def
__call__
(
self
,
*
args
,
**
kwargs
):
if
self
.
type
not
in
args
and
"type"
not
in
kwargs
:
kwargs
[
"type"
]
=
self
.
type
# create proto
create_method
=
OpDescCreationMethod
(
self
.
__proto__
)
proto
=
create_method
(
*
args
,
**
kwargs
)
# create rnnop
return
core
.
DynamicRecurrentOp
.
create
(
proto
.
SerializeToString
())
class
__CondOp__
(
object
):
class
__CondOp__
(
object
):
__proto__
=
None
__proto__
=
None
type
=
"cond"
type
=
"cond"
...
@@ -242,4 +263,5 @@ class __CondOp__(object):
...
@@ -242,4 +263,5 @@ class __CondOp__(object):
Operator
=
OperatorFactory
()
# The default global factory
Operator
=
OperatorFactory
()
# The default global factory
RecurrentOp
=
__RecurrentOp__
()
RecurrentOp
=
__RecurrentOp__
()
DynamicRecurrentOp
=
__DynamicRecurrentOp__
()
CondOp
=
__CondOp__
()
CondOp
=
__CondOp__
()
python/paddle/v2/framework/tests/test_dynamic_recurrent_op.py
0 → 100644
浏览文件 @
1c1f73b4
import
logging
import
paddle.v2.framework.core
as
core
import
unittest
from
paddle.v2.framework.op
import
Operator
,
DynamicRecurrentOp
import
numpy
as
np
def
create_tensor
(
scope
,
name
,
shape
,
np_data
):
tensor
=
scope
.
new_var
(
name
).
get_tensor
()
tensor
.
set_dims
(
shape
)
tensor
.
set
(
np_data
,
core
.
CPUPlace
())
return
tensor
class
DynamicRecurrentOpTest
(
unittest
.
TestCase
):
'''
Test RNNOp
equation:
h_t = \sigma (W x_t + U h_{t-1})
weights:
- W
- U
vars:
- x
memories:
- h
outputs:
- h
'''
# for siplicity, just one level LoD
lod_py
=
[[
0
,
4
,
7
,
9
,
10
]]
input_dim
=
30
num_sents
=
len
(
lod_py
[
0
])
-
1
weight_dim
=
15
def
forward
(
self
):
self
.
scope
=
core
.
Scope
()
self
.
create_global_variables
()
self
.
create_rnn_op
()
self
.
create_step_net
()
ctx
=
core
.
DeviceContext
.
create
(
core
.
CPUPlace
())
self
.
rnnop
.
run
(
self
.
scope
,
ctx
)
state
=
self
.
rnnop
.
get_state
(
"h@mem"
)
print
'state size: '
,
state
.
size
()
step_inputs
=
self
.
rnnop
.
get_step_input
(
"x"
)
print
"x size "
,
step_inputs
.
size
()
for
i
in
range
(
step_inputs
.
size
()):
print
"x %d"
%
i
,
np
.
array
(
step_inputs
.
read
(
i
).
get_dims
())
step_outputs
=
self
.
rnnop
.
get_step_output
(
'h@mem'
)
print
'step_outputs.size '
,
step_outputs
.
size
()
output
=
self
.
scope
.
find_var
(
"h@mem"
).
get_tensor
()
print
'output'
,
np
.
array
(
output
).
shape
def
create_global_variables
(
self
):
x
=
np
.
random
.
normal
(
size
=
(
self
.
lod_py
[
0
][
-
1
],
self
.
input_dim
)).
astype
(
"float32"
)
W
=
np
.
random
.
normal
(
size
=
(
self
.
input_dim
,
self
.
input_dim
)).
astype
(
"float32"
)
U
=
np
.
random
.
normal
(
size
=
(
self
.
input_dim
,
self
.
input_dim
)).
astype
(
"float32"
)
h_boot
=
np
.
random
.
normal
(
size
=
(
self
.
num_sents
,
self
.
input_dim
)).
astype
(
"float32"
)
# create inlink
x_tensor
=
create_tensor
(
self
.
scope
,
"x"
,
[
self
.
num_sents
,
self
.
input_dim
],
x
)
x_tensor
.
set_lod
(
self
.
lod_py
)
create_tensor
(
self
.
scope
,
"W"
,
[
self
.
input_dim
,
self
.
input_dim
],
W
)
create_tensor
(
self
.
scope
,
"U"
,
[
self
.
input_dim
,
self
.
input_dim
],
U
)
create_tensor
(
self
.
scope
,
"h_boot"
,
[
self
.
num_sents
,
self
.
input_dim
],
h_boot
)
self
.
scope
.
new_var
(
"step_scopes"
)
self
.
scope
.
new_var
(
"h@mem"
)
def
create_rnn_op
(
self
):
# create RNNOp
self
.
rnnop
=
DynamicRecurrentOp
(
# inputs
inlinks
=
[
"x"
],
boot_memories
=
[
"h_boot"
],
step_net
=
"stepnet"
,
# outputs
outlinks
=
[
"h@mem"
],
step_scopes
=
"step_scopes"
,
# attributes
pre_memories
=
[
"h@pre"
],
memories
=
[
"h@mem"
])
def
create_step_net
(
self
):
stepnet
=
core
.
Net
.
create
()
x_fc_op
=
Operator
(
"mul"
,
X
=
"x"
,
Y
=
"W"
,
Out
=
"Wx"
)
h_fc_op
=
Operator
(
"mul"
,
X
=
"h@pre"
,
Y
=
"U"
,
Out
=
"Uh"
)
sum_op
=
Operator
(
"sum"
,
X
=
[
"Wx"
,
"Uh"
],
Out
=
"sum"
)
sig_op
=
Operator
(
"sigmoid"
,
X
=
"sum"
,
Y
=
"h@mem"
)
for
op
in
[
x_fc_op
,
h_fc_op
,
sum_op
,
sig_op
]:
stepnet
.
append_op
(
op
)
stepnet
.
complete_add_op
(
True
)
self
.
rnnop
.
set_stepnet
(
stepnet
)
def
test_forward
(
self
):
print
'test recurrent op forward'
pd_output
=
self
.
forward
()
print
'pd_output'
,
pd_output
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录