Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
1a4a51db
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1a4a51db
编写于
4月 25, 2019
作者:
T
tangwei12
提交者:
GitHub
4月 25, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fleet unify distributed training (#16791)
* implement distributed transpiler with fleet
上级
e707119a
变更
15
隐藏空白更改
内联
并排
Showing
15 changed file
with
1082 addition
and
390 deletion
+1082
-390
python/paddle/fluid/dataset.py
python/paddle/fluid/dataset.py
+1
-1
python/paddle/fluid/incubate/fleet/base/fleet_base.py
python/paddle/fluid/incubate/fleet/base/fleet_base.py
+341
-0
python/paddle/fluid/incubate/fleet/base/role_maker.py
python/paddle/fluid/incubate/fleet/base/role_maker.py
+41
-1
python/paddle/fluid/incubate/fleet/collective/__init__.py
python/paddle/fluid/incubate/fleet/collective/__init__.py
+163
-0
python/paddle/fluid/incubate/fleet/p2p/__init__.py
python/paddle/fluid/incubate/fleet/p2p/__init__.py
+0
-12
python/paddle/fluid/incubate/fleet/parameter_server/__init__.py
.../paddle/fluid/incubate/fleet/parameter_server/__init__.py
+1
-362
python/paddle/fluid/incubate/fleet/parameter_server/distributed_transpiler/__init__.py
...fleet/parameter_server/distributed_transpiler/__init__.py
+248
-0
python/paddle/fluid/incubate/fleet/parameter_server/pslib/__init__.py
...e/fluid/incubate/fleet/parameter_server/pslib/__init__.py
+273
-0
python/paddle/fluid/incubate/fleet/parameter_server/pslib/node.py
...addle/fluid/incubate/fleet/parameter_server/pslib/node.py
+0
-0
python/paddle/fluid/incubate/fleet/parameter_server/pslib/optimizer_factory.py
...ncubate/fleet/parameter_server/pslib/optimizer_factory.py
+0
-0
python/paddle/fluid/incubate/fleet/parameter_server/pslib/ps_pb2.py
...dle/fluid/incubate/fleet/parameter_server/pslib/ps_pb2.py
+0
-0
python/paddle/fluid/tests/unittests/test_dist_base.py
python/paddle/fluid/tests/unittests/test_dist_base.py
+1
-1
python/paddle/fluid/tests/unittests/test_listen_and_serv_op.py
...n/paddle/fluid/tests/unittests/test_listen_and_serv_op.py
+8
-11
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+2
-1
python/setup.py.in
python/setup.py.in
+3
-1
未找到文件。
python/paddle/fluid/dataset.py
浏览文件 @
1a4a51db
...
...
@@ -233,7 +233,7 @@ class InMemoryDataset(DatasetBase):
Examples:
>>> import paddle.fluid as fluid
>>>
import paddle.fluid.incubate.fleet.parameter_server as
fleet
>>>
from paddle.fluid.incubate.fleet.pslib import
fleet
>>> dataset = fluid.DatasetFactory.create_dataset("InMemoryDataset")
>>> filelist = ["a.txt", "b.txt"]
>>> dataset.set_filelist(filelist)
...
...
python/paddle/fluid/incubate/fleet/base/fleet_base.py
0 → 100644
浏览文件 @
1a4a51db
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
abc
import
sys
from
enum
import
Enum
from
paddle.fluid.optimizer
import
SGD
from
role_maker
import
RoleMakerBase
,
Role
from
role_maker
import
MPISymetricRoleMaker
from
role_maker
import
UserDefinedRoleMaker
class
Mode
(
Enum
):
TRANSPILER
=
1
,
PSLIB
=
2
,
COLLECTIVE
=
3
class
Fleet
(
object
):
"""
Fleet is the base class, transpiler and pslib are implementation of Fleet.
Args:
mode(Mode): the implementation of Fleet's mode.
Returns:
None
"""
__metaclass__
=
abc
.
ABCMeta
def
__init__
(
self
,
mode
):
assert
isinstance
(
mode
,
Mode
)
self
.
is_initialized
=
False
self
.
mode
=
mode
self
.
workers
=
0
self
.
servers
=
0
self
.
worker_endpoints
=
[]
self
.
server_endpoints
=
[]
self
.
role
=
Role
.
WORKER
self
.
current_endpoint
=
None
self
.
current_id
=
0
self
.
optimizer
=
None
self
.
role_maker_
=
None
def
is_first_worker
(
self
):
"""
Check whether the node is the first instance of worker.
Returns:
bool: True if this is the first node of worker,
False if not.
"""
return
self
.
is_worker
()
and
self
.
current_id
==
0
def
worker_id
(
self
):
"""
Get current worker id.
Returns:
int: node id
"""
return
self
.
current_id
def
get_workers
(
self
):
"""
Get current total worker number.
Returns:
int: worker number
"""
return
self
.
workers
def
is_worker
(
self
):
"""
Check whether the node is an instance of worker.
Returns:
bool: True if this is a node of worker,
False if not.
"""
return
self
.
role
==
Role
.
WORKER
def
is_server
(
self
):
"""
Check whether the node is an instance of server.
Returns:
bool: True if this is a node of server,
False if not.
"""
return
self
.
role
==
Role
.
SERVER
def
split_files
(
self
,
files
):
"""
split files before distributed training,
for example, files is [a, b, c ,d, e] and trainer_num = 2,
then trainer 0 gets [a, b, c] and trainer 1 gets [d, e]
Args:
files(list): file list need to be read.
Returns:
list: files belongs to this worker.
"""
file_num
=
len
(
files
)
trainer_id
=
self
.
worker_id
()
trainer_num
=
self
.
get_workers
()
if
trainer_num
>
file_num
:
raise
ValueError
(
"trainer_num should be <= file_num : "
"%s > %s"
%
(
trainer_num
,
file_num
))
start
=
0
end
=
0
for
i
in
range
(
0
,
trainer_id
+
1
):
length
=
file_num
/
trainer_num
+
(
i
<
(
file_num
%
trainer_num
))
start
=
end
end
+=
length
return
files
[
start
:
end
]
def
init
(
self
,
role_maker
=
None
):
"""
should be called only once in user's python scripts,
init() will initialize RoleMaker which is used for identifying
current node's role, e.g. worker, server, etc.
Args:
role_maker(RoleMakerBase): subclass of RoleMakerBase.
Returns:
None
"""
if
role_maker
and
not
isinstance
(
role_maker
,
RoleMakerBase
):
raise
ValueError
(
"role_maker must be an instance of RoleMakerBase"
)
self
.
role_maker_
=
role_maker
if
isinstance
(
role_maker
,
MPISymetricRoleMaker
):
self
.
role_maker_
.
_generate_role
()
self
.
role
=
Role
.
WORKER
if
role_maker
.
_is_worker
()
else
Role
.
SERVER
self
.
workers
=
role_maker
.
_worker_num
()
self
.
servers
=
role_maker
.
_server_num
()
self
.
server_endpoints
=
role_maker
.
_get_pserver_endpoints
()
self
.
worker_endpoints
=
role_maker
.
_get_trainer_endpoints
()
self
.
current_id
=
role_maker
.
_worker_index
(
)
if
role_maker
.
_is_worker
()
else
role_maker
.
_server_index
()
self
.
current_endpoint
=
self
.
worker_endpoints
[
self
.
current_id
]
\
if
role_maker
.
_is_worker
()
else
self
.
server_endpoints
[
self
.
current_id
]
elif
isinstance
(
role_maker
,
UserDefinedRoleMaker
):
self
.
current_id
=
role_maker
.
current_id
self
.
current_endpoint
=
role_maker
.
current_endpoint
self
.
workers
=
role_maker
.
workers
self
.
worker_endpoints
=
role_maker
.
worker_endpoints
self
.
servers
=
role_maker
.
servers
self
.
server_endpoints
=
role_maker
.
server_endpoints
self
.
role
=
role_maker
.
role
else
:
raise
ValueError
(
"role_maker must be an instance of UserDefinedRoleMaker/MPISymetricRoleMaker"
)
self
.
is_initialized
=
True
@
abc
.
abstractmethod
def
init_worker
(
self
,
executor
):
pass
@
abc
.
abstractmethod
def
run_worker
(
self
,
executor
,
main_program
=
None
):
pass
@
abc
.
abstractmethod
def
init_server
(
self
,
executor
,
model_dir
=
None
):
pass
@
abc
.
abstractmethod
def
run_server
(
self
,
executor
):
pass
@
abc
.
abstractmethod
def
stop_worker
(
self
):
pass
@
abc
.
abstractmethod
def
stop
(
self
,
executor
):
pass
@
abc
.
abstractmethod
def
distributed_optimizer
(
self
,
optimizer
,
strategy
=
None
):
pass
@
abc
.
abstractmethod
def
save_inference_model
(
self
,
executor
,
dirname
,
feeded_var_names
,
target_vars
,
main_program
=
None
,
export_for_deployment
=
True
):
pass
@
abc
.
abstractmethod
def
save_persistables
(
self
,
executor
,
dirname
,
main_program
=
None
):
pass
def
to_string
(
self
):
infos
=
"""
mode = {}
workers = {}
server_endpoints = {}
role = {}
current_endpoint = {}
current_id = {}
"""
.
format
(
self
.
mode
,
self
.
workers
,
self
.
server_endpoints
,
self
.
role
,
self
.
current_endpoint
,
self
.
current_id
)
return
infos
class
DistributedOptimizer
(
object
):
"""
DistributedOptimizer is a wrapper for paddle.fluid.optimizer
A user should pass a paddle.fluid.optimizer to DistributedOptimizer
minimize() function is implemented.
DistributedOptimizer is the starting point for a user who wants to
run distributed training. The optimized information will be stored in
Fleet() instance who holds the global information about current distributed
training.
Args:
optimizer(Optimizer): subclass of Optimizer.
strategy(dict): the user define config for Optimizer.
Returns:
None
"""
__metaclass__
=
abc
.
ABCMeta
def
__init__
(
self
,
optimizer
,
strategy
=
None
):
if
not
isinstance
(
optimizer
,
SGD
.
__bases__
):
raise
ValueError
(
"optimizer must be an instance of Optimizer"
)
if
strategy
and
not
isinstance
(
strategy
,
dict
):
raise
ValueError
(
"strategy must be an instance of Dict"
)
self
.
_optimizer
=
optimizer
self
.
_strategy
=
strategy
@
abc
.
abstractmethod
def
backward
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
,
callbacks
=
None
):
"""
First part of `minimize`, do auto-diff to append backward ops for
the current program.
Args:
loss (Variable): loss variable to run optimizations.
startup_program (Program): startup_program for initializing parameters
in `parameter_list`.
parameter_list (list): list of Variables to update.
no_grad_set (set|None): set of Variables should be ignored.
callbacks (list|None): list of callables to run when appending backward
operator for one parameter.
Return:
list: list of (param, grad) pair, grad is the output of backward.
Examples:
See examples in `apply_gradients`.
"""
pass
@
abc
.
abstractmethod
def
apply_gradients
(
self
,
params_grads
):
"""
Second part of `minimize`, appending optimization operators for
given `params_grads` pairs.
Args:
params_grads (list): list of (param, grad) pair to do optimization.
Returns:
list: A list of operators appended to the current program.
Examples:
.. code-block:: python
loss = network()
optimizer = fluid.optimizer.SGD(learning_rate=0.1)
params_grads = optimizer.backward(loss)
# you may append operations for params_grads here
# ...
optimizer.apply_gradients(params_grads)
"""
pass
@
abc
.
abstractmethod
def
minimize
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
"""
Add operations to minimize `loss` by updating `parameter_list`.
This method combines interface `backward()` and
`apply_gradients()` into one.
Args:
loss (Variable): loss variable to run optimizations.
startup_program (Program): startup_program for initializing parameters
in `parameter_list`.
parameter_list (list): list of Variables to update.
no_grad_set (set|None): set of Variables should be ignored.
Returns:
tuple: (optimize_ops, params_grads) which are, list of operators appended;
and list of (param, grad) Variables pair for optimization.
"""
pass
python/paddle/fluid/incubate/fleet/base/role_maker.py
浏览文件 @
1a4a51db
...
...
@@ -13,6 +13,13 @@
# limitations under the License.
import
sys
from
enum
import
Enum
class
Role
(
Enum
):
WORKER
=
1
,
SERVER
=
2
class
RoleMakerBase
(
object
):
"""
...
...
@@ -23,7 +30,6 @@ class RoleMakerBase(object):
"""
def
__init__
(
self
):
self
.
_role_maker_name
=
""
self
.
_trainer_endpoints
=
[]
self
.
_pserver_endpoints
=
[]
self
.
_role_is_generated
=
False
...
...
@@ -239,3 +245,37 @@ class MPISymetricRoleMaker(MPIRoleMaker):
self
.
_node_type
=
1
self
.
_node_type_comm
=
self
.
_comm
.
Split
(
self
.
_node_type
)
self
.
_role_is_generated
=
True
class
UserDefinedRoleMaker
(
RoleMakerBase
):
def
__init__
(
self
,
current_id
=
0
,
current_endpoint
=
None
,
workers
=
0
,
worker_endpoints
=
None
,
servers
=
0
,
server_endpoints
=
None
,
role
=
Role
.
WORKER
):
"""
UserDefinedRoleMaker is designed for worker and server assignment
under manual. Typically, a worker and a server node will be appointed
on each physical node, It can be assign by user.
"""
super
(
UserDefinedRoleMaker
,
self
).
__init__
()
self
.
current_id
=
current_id
self
.
current_endpoint
=
current_endpoint
self
.
workers
=
workers
self
.
worker_endpoints
=
worker_endpoints
self
.
servers
=
servers
self
.
server_endpoints
=
server_endpoints
self
.
role
=
role
def
_is_worker
(
self
):
return
self
.
role
==
Role
.
WORKER
def
_is_server
(
self
):
return
self
.
role
==
Role
.
SERVER
def
_generate_role
(
self
):
self
.
role_is_generated_
=
True
python/paddle/fluid/incubate/fleet/collective/__init__.py
0 → 100644
浏览文件 @
1a4a51db
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import
sys
import
logging
import
paddle.fluid
as
fluid
import
paddle.fluid.io
as
io
import
paddle.fluid.transpiler.distribute_transpiler
as
dist_transpiler
from
..base.fleet_base
import
Fleet
from
..base.fleet_base
import
Mode
from
..base.fleet_base
import
DistributedOptimizer
class
Collective
(
Fleet
):
def
__init__
(
self
):
super
(
Collective
,
self
).
__init__
(
Mode
.
COLLECTIVE
)
self
.
local_ip_
=
0
def
init
(
self
,
role_maker
=
None
):
"""
should be called only once in user's python scripts,
init() will initialize RoleMaker which is used for identifying
current node's role, e.g. worker, server, etc.
Args:
role_maker(RoleMakerBase): subclass of RoleMakerBase.
Returns:
None
"""
super
(
Collective
,
self
).
init
(
role_maker
)
self
.
_role_maker
.
_generate_role
()
def
init_worker
(
self
,
executor
):
logging
.
warn
(
"You should not call 'init_worker' method for collective mode."
)
def
run_worker
(
self
,
executor
,
main_program
=
None
):
logging
.
warn
(
"You should not call 'run_worker' method for collective mode."
)
def
init_server
(
self
,
executor
,
model_dir
=
None
):
logging
.
warn
(
"You should not call 'init_server' method for collective mode."
)
def
run_server
(
self
,
executor
):
logging
.
warn
(
"You should not call 'run_server' method for collective mode."
)
def
stop_worker
(
self
):
logging
.
warn
(
"You should not call 'stop_worker' method for collective mode."
)
def
stop
(
self
,
executor
):
"""
stop(): will be called after a user finishes his/her training task.
"""
logging
.
warn
(
"You should not call 'stop' method for collective mode."
)
def
distributed_optimizer
(
self
,
optimizer
,
strategy
=
None
):
self
.
optimizer
=
CollectiveOptimizer
(
optimizer
,
strategy
)
return
self
.
optimizer
def
save_inference_model
(
self
,
executor
,
dirname
,
feeded_var_names
=
None
,
target_vars
=
None
,
main_program
=
None
,
export_for_deployment
=
True
):
io
.
save_inference_model
(
dirname
,
feeded_var_names
,
target_vars
,
executor
,
main_program
,
None
,
None
,
export_for_deployment
)
def
save_persistables
(
self
,
executor
,
dirname
,
main_program
=
None
):
io
.
save_persistables
(
executor
,
dirname
,
main_program
,
None
)
fleet
=
Collective
()
class
CollectiveOptimizer
(
DistributedOptimizer
):
"""
DistributedOptimizer is a wrapper for paddle.fluid.optimizer
A user should pass a paddle.fluid.optimizer to DistributedOptimizer
minimize() function is implemented.
DistributedOptimizer is the starting point for a user who wants to
run distributed training. The optimized information will be stored in
Fleet() instance who holds the global information about current distributed
training.
"""
def
__init__
(
self
,
optimizer
,
strategy
=
None
):
super
(
CollectiveOptimizer
,
self
).
__init__
(
optimizer
,
strategy
)
assert
strategy
is
None
,
"You cannot set 'strategy' for collective."
def
backward
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
,
callbacks
=
None
):
return
self
.
_optimizer
.
backward
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
,
callbacks
)
def
apply_gradients
(
self
,
params_grads
):
return
self
.
_optimizer
.
apply_gradients
(
params_grads
)
def
minimize
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
"""
minimize a program through loss
Args:
loss (Variable|Variable List): loss variable or loss variable list to run optimization.
startup_program (Program): startup_program for initializing parameters
in `parameter_list`.
parameter_list (list): list of Variables to update.
no_grad_set (set|None): set of Variables should be ignored.
Returns:
tuple: (optimize_ops, params_grads) which are, list of operators appended;
and list of (param, grad) Variables pair for optimization.
Note that in parameter server mode, a worker will not get anything about optimize_os
Because optmizer algorithms run on pserver side. We will make this usable in pserver
process, but currently the optimization part is written into Fleet(). A user does not
need to care about how to startup a pserver node.
"""
optimize_ops
,
param_grads
=
self
.
_optimizer
.
minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
worker_endpoints
=
fleet
.
worker_endpoints
trainer_id
=
fleet
.
current_id
current_endpoint
=
fleet
.
current_endpoint
startup_program
=
startup_program
if
startup_program
else
\
fluid
.
framework
.
default_startup_program
# call transpiler
config
=
dist_transpiler
.
DistributeTranspilerConfig
()
config
.
mode
=
"nccl2"
t
=
dist_transpiler
.
DistributeTranspiler
(
config
=
config
)
t
.
transpile
(
trainer_id
,
trainers
=
','
.
join
(
worker_endpoints
),
startup_program
=
startup_program
,
current_endpoint
=
current_endpoint
)
return
optimize_ops
,
param_grads
python/paddle/fluid/incubate/fleet/p2p/__init__.py
已删除
100644 → 0
浏览文件 @
e707119a
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
python/paddle/fluid/incubate/fleet/parameter_server/__init__.py
浏览文件 @
1a4a51db
...
...
@@ -10,365 +10,4 @@
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import
sys
import
os
from
..base.role_maker
import
MPISymetricRoleMaker
from
.optimizer_factory
import
*
from
google.protobuf
import
text_format
import
paddle.fluid.optimizer
as
local_optimizer
import
paddle.fluid
as
fluid
class
Fleet
(
object
):
"""
Fleet in Python. Fleet is used in distributed training. It is designed as a singlton instance
in c++. A Fleet() object will be initialized automatically when a user import this package as
fleet. The General interface Fleet supports are:
init(): which should be called only once in user's python scripts. init() will initialize
FleetWrapper in CPP, it will also initialize a RoleMaker which is used for identifying
current node's role, e.g. worker, server, etc.
stop(): will be called after a user finishes his/her training task. Fleet instance will be
destroyed when stop() is called.
init_pserver(): will be called by user. When a user knows current process is_worker(), he/she
should call init_pserver() to initialize global information about parameter server
init_worker(): will be called by user. When a user knows current process is_server(), he/she
should call init_worker() to initialize global information about worker and connect
worker with pserver.
get_worker_num(): return the number of current task's worker node
get_server_num(): return the number of current task's pserver node
is_worker(): return whether current process is a worker
is_server(): return thether current process is a server
init_pserver_model(): initialize model parameters in pserver, called from a worker node
save_pserver_model(): save model parameters in pserver, called from a server node
Example:
.. code-block:: python
import paddle.fluid.incubate.fleet.parameter_server as fleet
from my_model import bow_net
model = bow_net()
fleet.init()
sgd_optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.0001)
sgd_optimizer = fleet.DistributedOptimizer(sgd_optimizer)
sgd_optimizer.minimize(model.loss)
exe = paddle.fluid.Executor(paddle.fluid.CPUPlace())
if fleet.is_worker():
exe.run(paddle.fluid.default_startup_program())
fleet.init_worker() # init worker should be called before training
# do other things like training
elif fleet.is_server():
fleet.init_pserver()
fleet.stop()
"""
def
__init__
(
self
):
self
.
_opt_info
=
None
# for fleet only
self
.
_role_maker
=
None
self
.
_local_ip
=
0
self
.
_is_initialized
=
False
def
init
(
self
):
# TODO(guru4elephant)
# this is a temporary solution
# we will support more configurable RoleMaker for users in the future
"""
init(): which should be called only once in user's python scripts. init() will initialize
FleetWrapper in CPP, it will also initialize a RoleMaker which is used for identifying
current node's role, e.g. worker, server, etc.
"""
if
not
self
.
is_initialized_
:
self
.
_role_maker
=
MPISymetricRoleMaker
()
self
.
_role_maker
.
_generate_role
()
self
.
_fleet_ptr
=
fluid
.
core
.
Fleet
()
self
.
_is_initialized
=
True
def
stop
(
self
):
"""
stop(): will be called after a user finishes his/her training task. Fleet instance will be
destroyed when stop() is called.
"""
self
.
_role_maker
.
_barrier_worker
()
if
self
.
_role_maker
.
_is_first_worker
():
self
.
_fleet_ptr
.
stop_server
()
self
.
_role_maker
.
_barrier_worker
()
self
.
_role_maker
.
_barrier_all
()
self
.
_role_maker
.
_finalize
()
def
init_pserver
(
self
):
"""
init_pserver(): will be called by user. When a user knows current process is_worker(), he/she
should call init_pserver() to initialize global information about parameter server
"""
if
self
.
_opt_info
:
if
"fleet_desc"
in
self
.
_opt_info
:
self
.
_dist_desc_str
=
text_format
.
MessageToString
(
self
.
_opt_info
[
"fleet_desc"
])
self
.
_dist_desc
=
self
.
_opt_info
[
"fleet_desc"
]
else
:
print
(
"You should run DistributedOptimizer.minimize() first"
)
sys
.
exit
(
-
1
)
self
.
_fleet_ptr
.
init_server
(
self
.
_dist_desc_str
,
self
.
role_maker_
.
_get_rank
())
self
.
_local_ip
=
self
.
_fleet_ptr
.
run_server
()
# barrier_all for init_server
self
.
_role_maker
.
_barrier_all
()
self
.
_all_ips
=
self
.
_role_maker
.
_all_gather
(
self
.
local_ip_
)
self
.
_fleet_ptr
.
gather_servers
(
self
.
_all_ips
,
self
.
_role_maker
.
_get_size
())
# barrier_all for init_worker, wait all workers start
self
.
_role_maker
.
_barrier_all
()
else
:
print
(
"You should run DistributedOptimizer.minimize() first"
)
sys
.
exit
(
-
1
)
def
init_worker
(
self
,
programs
,
scopes
=
None
):
"""
init_worker(): will be called by user. When a user knows current process is_server(), he/she
should call init_worker() to initialize global information about worker and connect
worker with pserver. You should run startup program before init_worker.
Args:
programs(Program|list): a Program or a list of Programs
scopes(Scope|list): a Scope or a list of Scopes, default None.
"""
if
not
isinstance
(
programs
,
list
):
programs
=
[
programs
]
if
scopes
is
None
:
scopes
=
[
fluid
.
global_scope
()]
*
len
(
programs
)
if
len
(
scopes
)
!=
len
(
programs
):
print
(
"You should make sure len(scopes) == len(programs) or set scopes None"
)
sys
.
exit
(
-
1
)
if
self
.
_opt_info
:
if
"fleet_desc"
in
self
.
_opt_info
:
self
.
_dist_desc_str
=
text_format
.
MessageToString
(
self
.
_opt_info
[
"fleet_desc"
])
self
.
_dist_desc
=
self
.
_opt_info
[
"fleet_desc"
]
else
:
print
(
"You should run DistributedOptimizer.minimize() first"
)
sys
.
exit
(
-
1
)
# barrier_all for init_server, wait for server starts
self
.
_role_maker
.
_barrier_all
()
self
.
_all_ips
=
self
.
_role_maker
.
_all_gather
(
self
.
local_ip_
)
self
.
_fleet_ptr
.
init_worker
(
self
.
_dist_desc_str
,
self
.
_all_ips
,
self
.
_role_maker
.
_get_size
(),
self
.
_role_maker
.
_get_rank
())
# barrier_all for init_worker
self
.
_role_maker
.
_barrier_all
()
# prepare for client to client communication
info
=
self
.
_fleet_ptr
.
get_clients_info
()
all_info
=
self
.
_role_maker
.
_worker_gather
(
info
[
0
])
self
.
_fleet_ptr
.
gather_clients
(
all_info
)
self
.
_fleet_ptr
.
create_client2client_connection
()
# barrier for init model
self
.
_role_maker
.
_barrier_worker
()
if
self
.
_role_maker
.
_is_first_worker
():
tables
=
self
.
_dist_desc
.
trainer_param
.
dense_table
for
prog
,
scope
in
zip
(
programs
,
scopes
):
prog_id
=
str
(
id
(
prog
))
prog_conf
=
self
.
_opt_info
[
'program_configs'
][
prog_id
]
prog_tables
=
{}
for
key
in
prog_conf
:
if
"dense"
not
in
key
:
continue
for
table_id
in
prog_conf
[
key
]:
prog_tables
[
int
(
table_id
)]
=
0
for
table
in
tables
:
if
int
(
table
.
table_id
)
not
in
prog_tables
:
continue
var_name_list
=
[]
for
i
in
range
(
0
,
len
(
table
.
dense_variable_name
)):
var_name
=
table
.
dense_variable_name
[
i
]
if
scope
.
find_var
(
var_name
)
is
None
:
print
(
"var "
+
var_name
+
" not found in scope, "
+
"you should run startup program first"
)
sys
.
exit
(
-
1
)
var_name_list
.
append
(
var_name
)
self
.
_fleet_ptr
.
init_model
(
scope
,
int
(
table
.
table_id
),
var_name_list
)
# barrier for init model done
self
.
_role_maker
.
_barrier_worker
()
else
:
print
(
"You should run DistributedOptimizer.minimize() first"
)
sys
.
exit
(
-
1
)
def
get_worker_num
(
self
):
"""
return the number of current job's worker num
"""
return
self
.
_role_maker
.
_worker_num
()
def
get_server_num
(
self
):
"""
return the number of current job's server num
"""
return
self
.
_role_maker
.
_server_num
()
def
get_worker_index
(
self
):
"""
return the mpi rank of current worker
"""
return
self
.
_role_maker
.
_worker_index
()
def
is_worker
(
self
):
"""
return whether current node is a worker
"""
return
self
.
_role_maker
.
_is_worker
()
def
is_server
(
self
):
"""
return whether current node is pserver
"""
return
self
.
_role_maker
.
_is_server
()
def
init_pserver_model
(
self
):
"""
init pserver model called from pserver
"""
if
self
.
_role_maker
.
_is_first_worker
():
self
.
_fleet_ptr
.
init_model
()
self
.
_role_maker
.
_barrier_worker
()
def
save_pserver_model
(
self
,
save_path
):
"""
save pserver model called from a worker
"""
self
.
_fleet_ptr
.
save_model
(
save_path
)
def
split_filelist
(
self
,
filelist
):
"""
split filelist before distributed training,
for example, filelist is [a, b, c ,d, e] and trainer_num = 2,
then trainer 0 gets [a, b, c] and trainer 1 gets [d, e]
Example:
>>> all_filelist = ["a.txt", "b.txt", "c.txt"]
>>> my_filelist = fleet.split_filelist(all_filelist)
>>> dataset = fluid.DatasetFactory().create_dataset()
>>> dataset.set_filelist(my_filelist)
Args:
filelist(list): list of filename, can be local or hdfs/afs.
Returns:
list of filename which belongs to this trainer.
"""
file_num
=
len
(
filelist
)
trainer_id
=
self
.
get_worker_index
()
trainer_num
=
self
.
get_worker_num
()
if
trainer_num
>
file_num
:
raise
ValueError
(
"trainer_num should be <= file_num : "
"%s > %s"
%
(
trainer_num
,
file_num
))
# get interval of filelist, it's [ )
start
=
0
end
=
0
for
i
in
range
(
0
,
trainer_id
+
1
):
length
=
file_num
/
trainer_num
+
(
i
<
(
file_num
%
trainer_num
))
start
=
end
end
+=
length
my_filelist
=
filelist
[
start
:
end
]
return
my_filelist
def
_set_opt_info
(
self
,
opt_info
):
"""
this function saves the result from DistributedOptimizer.minimize()
"""
self
.
_opt_info
=
opt_info
class
DistributedOptimizer
(
object
):
"""
DistributedOptimizer is a wrapper for paddle.fluid.optimizer
A user should pass a paddle.fluid.optimizer to DistributedOptimizer
minimize() function is implemented.
DistributedOptimizer is the starting point for a user who wants to
run distributed training. The optimized information will be stored in
Fleet() instance who holds the global information about current distributed
training.
"""
def
__init__
(
self
,
optimizer
,
dist_config
=
{}):
super
(
DistributedOptimizer
,
self
).
__init__
()
self
.
_optimizer
=
optimizer
self
.
_optimizer_name
=
"Distributed%s"
%
optimizer
.
type
.
capitalize
()
if
optimizer
.
type
!=
"adam"
:
print
(
"Currently, distributed optimizer only supports Adam"
"Will config built-in adam for you."
"We will support more functions in DistributedOptimizer"
,
sys
.
stderr
)
self
.
_optimizer_name
=
"DistributedAdam"
self
.
_distributed_optimizer
=
globals
()[
self
.
_optimizer_name
](
optimizer
)
def
backward
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
,
callbacks
=
None
):
"""
Currently, backward function can not be called through DistributedOptimizer
"""
raise
NotImplementedError
()
def
apply_gradients
(
self
,
params_grads
):
"""
Currently, apply_gradients function can not be called through DistributedOptimizer
"""
raise
NotImplementedError
()
def
minimize
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
"""
minimize a program through loss, loss can be a list in DistributedOptimizer
Args:
loss (Variable|Variable List): loss variable or loss variable list to run optimization.
startup_program (Program): startup_program for initializing parameters
in `parameter_list`.
parameter_list (list): list of Variables to update.
no_grad_set (set|None): set of Variables should be ignored.
Returns:
tuple: (optimize_ops, params_grads) which are, list of operators appended;
and list of (param, grad) Variables pair for optimization.
Note that in parameter server mode, a worker will not get anything about optimize_os
Because optmizer algorithms run on pserver side. We will make this usable in pserver
process, but currently the optimization part is written into Fleet(). A user does not
need to care about how to startup a pserver node.
"""
optimize_ops
,
param_grads
,
opt_info
=
\
self
.
_distributed_optimizer
.
_minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
fleet_instance
.
_set_opt_info
(
opt_info
)
return
[
optimize_ops
,
param_grads
]
# this is a temporary solution
# TODO(guru4elephant)
# will make this more flexible for more Parameter Server Archs
fleet_instance
=
Fleet
()
init
=
fleet_instance
.
init
stop
=
fleet_instance
.
stop
init_pserver
=
fleet_instance
.
init_pserver
init_worker
=
fleet_instance
.
init_worker
is_worker
=
fleet_instance
.
is_worker
is_server
=
fleet_instance
.
is_server
init_pserver_model
=
fleet_instance
.
init_pserver_model
save_pserver_model
=
fleet_instance
.
save_pserver_model
worker_num
=
fleet_instance
.
get_worker_num
server_num
=
fleet_instance
.
get_server_num
worker_index
=
fleet_instance
.
get_worker_index
split_filelist
=
fleet_instance
.
split_filelist
# limitations under the License.
python/paddle/fluid/incubate/fleet/parameter_server/distributed_transpiler/__init__.py
0 → 100644
浏览文件 @
1a4a51db
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
from
paddle.fluid.executor
import
Executor
from
paddle.fluid.framework
import
Program
from
paddle.fluid.framework
import
default_main_program
from
paddle.fluid.framework
import
default_startup_program
from
paddle.fluid.optimizer
import
Optimizer
import
paddle.fluid.io
as
io
from
paddle.fluid.transpiler.distribute_transpiler
import
DistributeTranspilerConfig
from
paddle.fluid.transpiler.distribute_transpiler
import
DistributeTranspiler
as
OriginTranspiler
from
...base.role_maker
import
Role
from
...base.fleet_base
import
Fleet
from
...base.fleet_base
import
Mode
from
...base.fleet_base
import
DistributedOptimizer
class
DistributedTranspiler
(
Fleet
):
"""
A subclass for compatibility with fluid.transpiler.DistributeTranspiler.
"""
def
__init__
(
self
):
super
(
DistributedTranspiler
,
self
).
__init__
(
Mode
.
TRANSPILER
)
self
.
_transpiler
=
OriginTranspiler
()
self
.
_startup_program
=
None
self
.
_main_program
=
None
def
init_worker
(
self
,
executor
):
"""
`init_worker` has many many functions to do before training,
first, wait for all parameter servers launch completely.
second, run executor to initialize startup program
third, wait for all worker initialize completely.
Args:
executor(Executor): The executor to run for init startup program.
Returns:
None
"""
if
not
isinstance
(
executor
,
Executor
):
raise
ValueError
(
"executor must be an instance of Executor"
)
if
not
self
.
_startup_program
:
raise
ValueError
(
"startup_program is None, need invoke DistributedOptimizer.minimize first"
)
executor
.
run
(
self
.
_startup_program
)
def
run_worker
(
self
,
executor
,
main_program
=
None
):
pass
def
init_server
(
self
,
executor
,
model_dir
=
None
):
"""
`init_server` has many many functions to do before start pserver,
first, run executor to initialize startup program,
second, if the `model_dir` is not empty, it will load parameters from it for increment training.
Args:
executor(Executor): The executor to run for init server.
model_dir(str): The directory path.
Returns:
None
"""
if
not
isinstance
(
executor
,
Executor
):
raise
ValueError
(
"executor must be an instance of Executor"
)
if
not
self
.
_startup_program
:
raise
ValueError
(
"startup_program is None, need invoke DistributedOptimizer.minimize first"
)
executor
.
run
(
self
.
_startup_program
)
if
model_dir
:
if
not
os
.
path
.
isdir
(
model_dir
):
raise
ValueError
(
"There is no directory named '%s'"
,
model_dir
)
io
.
load_persistables
(
executor
,
model_dir
,
self
.
_startup_program
)
def
run_server
(
self
,
executor
):
"""
`run_server` execute executor to start pserver main program.
Args:
executor(Executor): The executor to run for init server.
Returns:
None
"""
if
not
isinstance
(
executor
,
Executor
):
raise
ValueError
(
"executor must be an instance of Executor"
)
if
not
self
.
_main_program
:
raise
ValueError
(
"main_program is None, need invoke DistributedOptimizer.minimize first"
)
executor
.
run
(
self
.
_main_program
)
def
stop_worker
(
self
):
pass
def
stop
(
self
,
executor
):
"""
Close this executor.
For the distributed training, this method would free the resource on PServers related to
the current Trainer.
Args:
executor(Executor): The executor to run for init server.
Returns:
None
"""
if
not
isinstance
(
executor
,
Executor
):
raise
ValueError
(
"executor must be an instance of Executor"
)
executor
.
close
()
def
distributed_optimizer
(
self
,
optimizer
,
strategy
=
None
):
"""
Optimizer for distributed training.
For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
Which has basic Optimizer function and special features for distributed training.
Args:
optimizer(Optimizer): The executor to run for init server.
strategy(dict): Extra properties for distributed optimizer.
Returns:
TranspilerOptimizer: subclass of DistributedOptimizer.
"""
if
not
isinstance
(
optimizer
,
Optimizer
):
raise
ValueError
(
"optimizer must be an instance of Optimizer"
)
self
.
optimizer
=
TranspilerOptimizer
(
optimizer
,
strategy
)
return
self
.
optimizer
def
save_inference_model
(
self
,
executor
,
dirname
,
feeded_var_names
,
target_vars
,
main_program
=
None
,
export_for_deployment
=
True
):
"""
Prune the given `main_program` to build a new program especially for inference,
and then save it and all related parameters to given `dirname` by the `executor`.
"""
io
.
save_inference_model
(
dirname
,
feeded_var_names
,
target_vars
,
executor
,
main_program
,
None
,
None
,
export_for_deployment
)
def
save_persistables
(
self
,
executor
,
dirname
,
main_program
=
None
):
"""
This function filters out all variables with `persistable==True` from the
give `main_program` and then saves these variables to the folder `dirname`
or file `filename`.
The `dirname` is used to specify the folder where persistable variables
are going to be saved. If you would like to save variables in separate
files, set `filename` None; if you would like to save all variables in a
single file, use `filename` to specify the file name.
"""
io
.
save_persistables
(
executor
,
dirname
,
main_program
,
None
)
def
_transpile
(
self
,
config
):
if
not
isinstance
(
config
,
DistributeTranspilerConfig
):
raise
ValueError
(
"config must be an instance of DistributeTranspilerConfig"
)
self
.
_transpiler
=
OriginTranspiler
(
config
)
self
.
_transpiler
.
transpile
(
trainer_id
=
fleet
.
worker_id
(),
pservers
=
fleet
.
server_endpoints
,
trainers
=
fleet
.
worker_num
())
if
self
.
role
==
Role
.
WORKER
:
self
.
_main_program
=
self
.
_transpiler
.
get_trainer_program
()
self
.
_startup_program
=
default_startup_program
()
else
:
self
.
_main_program
,
self
.
_startup_program
=
\
self
.
_transpiler
.
get_pserver_programs
(
self
.
current_endpoint
)
fleet
=
DistributedTranspiler
()
class
TranspilerOptimizer
(
DistributedOptimizer
):
def
__init__
(
self
,
optimizer
,
strategy
=
None
):
super
(
TranspilerOptimizer
,
self
).
__init__
(
optimizer
,
strategy
)
if
strategy
and
not
isinstance
(
strategy
,
DistributeTranspilerConfig
):
raise
ValueError
(
"In {} mode, strategy must be an instance of DistributeTranspilerConfig"
.
format
(
fleet
.
mode
))
def
backward
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
,
callbacks
=
None
):
return
self
.
_optimizer
.
backward
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
,
callbacks
)
def
apply_gradients
(
self
,
params_grads
):
return
self
.
_optimizer
.
apply_gradients
(
params_grads
)
def
minimize
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
optimize_ops
,
params_grads
=
self
.
_optimizer
.
minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
self
.
transpile
()
return
optimize_ops
,
params_grads
def
transpile
(
self
):
if
self
.
_strategy
is
None
:
self
.
_strategy
=
DistributeTranspilerConfig
()
fleet
.
_transpile
(
config
=
self
.
_strategy
)
python/paddle/fluid/incubate/fleet/parameter_server/pslib/__init__.py
0 → 100644
浏览文件 @
1a4a51db
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import
sys
from
.optimizer_factory
import
*
from
google.protobuf
import
text_format
import
paddle.fluid
as
fluid
from
paddle.fluid.framework
import
Program
from
...base.fleet_base
import
Fleet
from
...base.fleet_base
import
Mode
from
...base.role_maker
import
MPISymetricRoleMaker
from
...base.fleet_base
import
DistributedOptimizer
class
PSLib
(
Fleet
):
def
__init__
(
self
):
super
(
PSLib
,
self
).
__init__
(
Mode
.
PSLIB
)
self
.
_opt_info
=
None
self
.
local_ip_
=
0
self
.
_fleet_ptr
=
None
def
init
(
self
,
role_maker
=
None
):
super
(
PSLib
,
self
).
init
(
MPISymetricRoleMaker
())
self
.
_fleet_ptr
=
fluid
.
core
.
Fleet
()
def
init_worker
(
self
,
executor
):
pass
def
run_worker
(
self
,
executor
,
main_program
=
None
):
"""
init_worker(): will be called by user. When a user knows current process is_server(), he/she
should call init_worker() to initialize global information about worker and connect
worker with pserver. You should run startup program before init_worker.
Args:
programs(Program|list): a Program or a list of Programs
scopes(Scope|list): a Scope or a list of Scopes, default None.
"""
if
not
isinstance
(
main_program
,
Program
):
raise
ValueError
(
"main_program must be an instance of Program"
)
programs
=
[
main_program
]
scopes
=
[
fluid
.
global_scope
()]
*
len
(
programs
)
if
len
(
scopes
)
!=
len
(
programs
):
print
(
"You should make sure len(scopes) == len(programs) or set scopes None"
)
sys
.
exit
(
-
1
)
if
self
.
_opt_info
:
if
"fleet_desc"
in
self
.
_opt_info
:
self
.
_dist_desc_str
=
text_format
.
MessageToString
(
self
.
_opt_info
[
"fleet_desc"
])
self
.
_dist_desc
=
self
.
_opt_info
[
"fleet_desc"
]
else
:
print
(
"You should run DistributedOptimizer.minimize() first"
)
sys
.
exit
(
-
1
)
# barrier_all for init_server, wait for server starts
self
.
role_maker_
.
_barrier_all
()
self
.
all_ips_
=
self
.
role_maker_
.
_all_gather
(
self
.
local_ip_
)
self
.
_fleet_ptr
.
init_worker
(
self
.
_dist_desc_str
,
self
.
all_ips_
,
self
.
role_maker_
.
_get_size
(),
self
.
role_maker_
.
_get_rank
())
# barrier_all for init_worker
self
.
role_maker_
.
_barrier_all
()
# prepare for client to client communication
info
=
self
.
_fleet_ptr
.
get_clients_info
()
all_info
=
self
.
role_maker_
.
_worker_gather
(
info
[
0
])
self
.
_fleet_ptr
.
gather_clients
(
all_info
)
self
.
_fleet_ptr
.
create_client2client_connection
()
# barrier for init model
self
.
role_maker_
.
_barrier_worker
()
if
self
.
role_maker_
.
_is_first_worker
():
tables
=
self
.
_dist_desc
.
trainer_param
.
dense_table
for
prog
,
scope
in
zip
(
programs
,
scopes
):
prog_id
=
str
(
id
(
prog
))
prog_conf
=
self
.
_opt_info
[
'program_configs'
][
prog_id
]
prog_tables
=
{}
for
key
in
prog_conf
:
if
"dense"
not
in
key
:
continue
for
table_id
in
prog_conf
[
key
]:
prog_tables
[
int
(
table_id
)]
=
0
for
table
in
tables
:
if
int
(
table
.
table_id
)
not
in
prog_tables
:
continue
var_name_list
=
[]
for
i
in
range
(
0
,
len
(
table
.
dense_variable_name
)):
var_name
=
table
.
dense_variable_name
[
i
]
if
scope
.
find_var
(
var_name
)
is
None
:
print
(
"var "
+
var_name
+
" not found in scope, "
+
"you should run startup program first"
)
sys
.
exit
(
-
1
)
var_name_list
.
append
(
var_name
)
self
.
_fleet_ptr
.
init_model
(
scope
,
int
(
table
.
table_id
),
var_name_list
)
# barrier for init model done
self
.
role_maker_
.
_barrier_worker
()
else
:
raise
NameError
(
"You should run DistributedOptimizer.minimize() first"
)
def
init_server
(
self
,
executor
,
model_dir
=
None
):
pass
def
run_server
(
self
,
executor
):
"""
init_pserver(): will be called by user. When a user knows current process is_worker(), he/she
should call init_pserver() to initialize global information about parameter server
"""
if
self
.
_opt_info
:
if
"fleet_desc"
in
self
.
_opt_info
:
self
.
_dist_desc_str
=
text_format
.
MessageToString
(
self
.
_opt_info
[
"fleet_desc"
])
self
.
_dist_desc
=
self
.
_opt_info
[
"fleet_desc"
]
else
:
print
(
"You should run DistributedOptimizer.minimize() first"
)
sys
.
exit
(
-
1
)
self
.
_fleet_ptr
.
init_server
(
self
.
_dist_desc_str
,
self
.
role_maker_
.
_get_rank
())
self
.
local_ip_
=
self
.
_fleet_ptr
.
run_server
()
# barrier_all for init_server
self
.
role_maker_
.
_barrier_all
()
self
.
all_ips_
=
self
.
role_maker_
.
_all_gather
(
self
.
local_ip_
)
self
.
_fleet_ptr
.
gather_servers
(
self
.
all_ips_
,
self
.
role_maker_
.
_get_size
())
# barrier_all for init_worker, wait all workers start
self
.
role_maker_
.
_barrier_all
()
else
:
raise
NameError
(
"You should run DistributedOptimizer.minimize() first"
)
def
stop_worker
(
self
):
"""
stop(): will be called after a user finishes his/her training task. Fleet instance will be
destroyed when stop() is called.
"""
self
.
role_maker_
.
_barrier_worker
()
if
self
.
role_maker_
.
_is_first_worker
():
self
.
_fleet_ptr
.
stop_server
()
self
.
role_maker_
.
_barrier_worker
()
self
.
role_maker_
.
_barrier_all
()
self
.
role_maker_
.
_finalize
()
def
stop
(
self
,
executor
):
"""
stop(): will be called after a user finishes his/her training task. Fleet instance will be
destroyed when stop() is called.
"""
self
.
role_maker_
.
_barrier_worker
()
if
self
.
role_maker_
.
_is_first_worker
():
self
.
_fleet_ptr
.
stop_server
()
self
.
role_maker_
.
_barrier_worker
()
self
.
role_maker_
.
_barrier_all
()
self
.
role_maker_
.
_finalize
()
def
distributed_optimizer
(
self
,
optimizer
,
strategy
=
None
):
self
.
optimizer
=
DownpourOptimizer
(
optimizer
,
strategy
)
return
self
.
optimizer
def
save_inference_model
(
self
,
executor
,
dirname
,
feeded_var_names
=
None
,
target_vars
=
None
,
main_program
=
None
,
export_for_deployment
=
True
):
"""
save pserver model called from a worker
"""
self
.
_fleet_ptr
.
save_model
(
dirname
)
def
save_persistables
(
self
,
executor
,
dirname
,
main_program
=
None
):
self
.
_fleet_ptr
.
save_model
(
dirname
)
def
_set_opt_info
(
self
,
opt_info
):
"""
this function saves the result from DistributedOptimizer.minimize()
"""
self
.
_opt_info
=
opt_info
fleet
=
PSLib
()
class
DownpourOptimizer
(
DistributedOptimizer
):
"""
DistributedOptimizer is a wrapper for paddle.fluid.optimizer
A user should pass a paddle.fluid.optimizer to DistributedOptimizer
minimize() function is implemented.
DistributedOptimizer is the starting point for a user who wants to
run distributed training. The optimized information will be stored in
Fleet() instance who holds the global information about current distributed
training.
"""
def
__init__
(
self
,
optimizer
,
strategy
=
None
):
super
(
DownpourOptimizer
,
self
).
__init__
(
optimizer
,
strategy
)
self
.
_optimizer
=
optimizer
self
.
_optimizer_name
=
"Distributed%s"
%
optimizer
.
type
.
capitalize
()
if
optimizer
.
type
!=
"adam"
:
print
(
"Currently, distributed optimizer only support Adam"
"Will config built-in adam for you."
"We will support more functions in DistributedOptimizer"
,
sys
.
stderr
)
self
.
_optimizer_name
=
"DistributedAdam"
self
.
_distributed_optimizer
=
globals
()[
self
.
_optimizer_name
](
optimizer
)
def
backward
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
,
callbacks
=
None
):
"""
Currently, backward function can not be called through DistributedOptimizer
"""
raise
NotImplementedError
()
def
apply_gradients
(
self
,
params_grads
):
"""
Currently, apply_gradients function can not be called through DistributedOptimizer
"""
raise
NotImplementedError
()
def
minimize
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
"""
minimize a program through loss, loss can be a list in DistributedOptimizer
Args:
loss (Variable|Variable List): loss variable or loss variable list to run optimization.
startup_program (Program): startup_program for initializing parameters
in `parameter_list`.
parameter_list (list): list of Variables to update.
no_grad_set (set|None): set of Variables should be ignored.
Returns:
tuple: (optimize_ops, params_grads) which are, list of operators appended;
and list of (param, grad) Variables pair for optimization.
Note that in parameter server mode, a worker will not get anything about optimize_os
Because optmizer algorithms run on pserver side. We will make this usable in pserver
process, but currently the optimization part is written into Fleet(). A user does not
need to care about how to startup a pserver node.
"""
optimize_ops
,
param_grads
,
opt_info
=
\
self
.
_distributed_optimizer
.
_minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
fleet
.
_set_opt_info
(
opt_info
)
return
[
optimize_ops
,
param_grads
]
python/paddle/fluid/incubate/fleet/parameter_server/node.py
→
python/paddle/fluid/incubate/fleet/parameter_server/
pslib/
node.py
浏览文件 @
1a4a51db
文件已移动
python/paddle/fluid/incubate/fleet/parameter_server/optimizer_factory.py
→
python/paddle/fluid/incubate/fleet/parameter_server/
pslib/
optimizer_factory.py
浏览文件 @
1a4a51db
文件已移动
python/paddle/fluid/incubate/fleet/parameter_server/ps_pb2.py
→
python/paddle/fluid/incubate/fleet/parameter_server/ps
lib/ps
_pb2.py
浏览文件 @
1a4a51db
文件已移动
python/paddle/fluid/tests/unittests/test_dist_base.py
浏览文件 @
1a4a51db
...
...
@@ -52,6 +52,7 @@ class TestDistRunnerBase(object):
# NOTE: import fluid until runtime, or else forking processes will cause error.
config
=
fluid
.
DistributeTranspilerConfig
()
config
.
enable_dc_asgd
=
dc_asgd
config
.
sync_mode
=
sync_mode
# config.runtime_split_send_recv = True
t
=
fluid
.
DistributeTranspiler
(
config
=
config
)
t
.
transpile
(
...
...
@@ -59,7 +60,6 @@ class TestDistRunnerBase(object):
program
=
main_program
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
,
sync_mode
=
sync_mode
,
current_endpoint
=
current_endpoint
)
return
t
...
...
python/paddle/fluid/tests/unittests/test_listen_and_serv_op.py
浏览文件 @
1a4a51db
...
...
@@ -43,12 +43,11 @@ def run_pserver(use_cuda, sync_mode, ip, port, trainers, trainer_id):
pserver_endpoints
=
ip
+
":"
+
port
current_endpoint
=
ip
+
":"
+
port
t
=
fluid
.
DistributeTranspiler
()
t
.
transpile
(
trainer_id
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
,
sync_mode
=
sync_mode
)
config
=
fluid
.
DistributeTranspilerConfig
()
config
.
sync_mode
=
sync_mode
t
=
fluid
.
DistributeTranspiler
(
config
=
config
)
t
.
transpile
(
trainer_id
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
)
pserver_prog
=
t
.
get_pserver_program
(
current_endpoint
)
pserver_startup
=
t
.
get_startup_program
(
current_endpoint
,
pserver_prog
)
exe
.
run
(
pserver_startup
)
...
...
@@ -77,13 +76,11 @@ def run_pserver_with_empty_block(use_cuda, sync_mode, ip, port, trainers,
pserver_endpoints
=
ps1
+
","
+
ps2
config
=
fluid
.
DistributeTranspilerConfig
()
config
.
sync_mode
=
sync_mode
config
.
slice_var_up
=
False
t
=
fluid
.
DistributeTranspiler
(
config
=
config
)
t
.
transpile
(
trainer_id
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
,
sync_mode
=
sync_mode
)
t
.
transpile
(
trainer_id
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
)
pserver_prog
=
t
.
get_pserver_program
(
ps2
)
# pserver2 have no parameter
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
1a4a51db
...
...
@@ -158,6 +158,7 @@ class DistributeTranspilerConfig(object):
wait_port
=
True
# split the send recv var in runtime
runtime_split_send_recv
=
False
sync_mode
=
None
class
DistributeTranspiler
(
object
):
...
...
@@ -329,7 +330,7 @@ class DistributeTranspiler(object):
return
self
.
trainer_num
=
trainers
self
.
sync_mode
=
sync_mode
self
.
sync_mode
=
s
elf
.
config
.
sync_mode
if
self
.
config
.
sync_mode
else
s
ync_mode
self
.
trainer_id
=
trainer_id
pserver_endpoints
=
pservers
.
split
(
","
)
self
.
pserver_endpoints
=
pserver_endpoints
...
...
python/setup.py.in
浏览文件 @
1a4a51db
...
...
@@ -127,7 +127,9 @@ packages=['paddle',
'paddle.fluid.incubate.fleet',
'paddle.fluid.incubate.fleet.base',
'paddle.fluid.incubate.fleet.parameter_server',
'paddle.fluid.incubate.fleet.p2p']
'paddle.fluid.incubate.fleet.parameter_server.distributed_transpiler',
'paddle.fluid.incubate.fleet.parameter_server.pslib',
'paddle.fluid.incubate.fleet.collective']
with open('@PADDLE_SOURCE_DIR@/python/requirements.txt') as f:
setup_requires = f.read().splitlines()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录