未验证 提交 19b79897 编写于 作者: G Guanghua Yu 提交者: GitHub

fix some link error (#648)

上级 59cd3a68
...@@ -98,17 +98,17 @@ ...@@ -98,17 +98,17 @@
- [剪枝](slim/prune) - [剪枝](slim/prune)
- [蒸馏](slim/distillation) - [蒸馏](slim/distillation)
- [神经网络搜索](slim/nas) - [神经网络搜索](slim/nas)
- [推理部署](inference) - [推理部署](deploy)
- [模型导出教程](docs/advanced_tutorials/inference/EXPORT_MODEL.md) - [模型导出教程](docs/advanced_tutorials/deploy/EXPORT_MODEL.md)
- [预测引擎Python API使用示例](docs/advanced_tutorials/inference/INFERENCE.md) - [Python端推理部署](deploy/python)
- [C++推理部署](deploy/README.md) - [C++端推理部署](deploy/cpp)
- [推理Benchmark](docs/advanced_tutorials/inference/BENCHMARK_INFER_cn.md) - [推理Benchmark](docs/advanced_tutorials/deploy/BENCHMARK_INFER_cn.md)
## 模型库 ## 模型库
- [模型库](docs/MODEL_ZOO_cn.md) - [模型库](docs/MODEL_ZOO_cn.md)
- [人脸检测模型](configs/face_detection/README.md) 开源BlazeFace系列模型,Wider-Face数据集上最高精度达到91.5%,同时具备了较高的预测性能 - [人脸检测模型](docs/featured_model/FACE_DETECTION.md) 开源BlazeFace系列模型,Wider-Face数据集上最高精度达到91.5%,同时具备了较高的预测性能
- [行人检测和车辆检测预训练模型](contrib/README_cn.md) 针对不同场景的检测模型 - [行人检测和车辆检测预训练模型](docs/featured_model/CONTRIB_cn.md) 针对不同场景的检测模型
- [YOLOv3增强模型](docs/featured_model/YOLOv3_ENHANCEMENT.md) 改进原始YOLOv3,精度达到43.6%,原论文精度为33.0%,同时预测速度也得到提升 - [YOLOv3增强模型](docs/featured_model/YOLOv3_ENHANCEMENT.md) 改进原始YOLOv3,精度达到43.6%,原论文精度为33.0%,同时预测速度也得到提升
- [Objects365 2019 Challenge夺冠模型](docs/featured_model/CACascadeRCNN.md) Objects365 Full Track任务中最好的单模型之一,精度达到31.7% - [Objects365 2019 Challenge夺冠模型](docs/featured_model/CACascadeRCNN.md) Objects365 Full Track任务中最好的单模型之一,精度达到31.7%
- [Open Images V5和Objects365数据集模型](docs/featured_model/OIDV5_BASELINE_MODEL.md) - [Open Images V5和Objects365数据集模型](docs/featured_model/OIDV5_BASELINE_MODEL.md)
......
...@@ -112,20 +112,20 @@ The following is the relationship between COCO mAP and FPS on Tesla V100 of repr ...@@ -112,20 +112,20 @@ The following is the relationship between COCO mAP and FPS on Tesla V100 of repr
- [Model pruning](slim/prune) - [Model pruning](slim/prune)
- [Model distillation](slim/distillation) - [Model distillation](slim/distillation)
- [Neural Architecture Search](slim/nas) - [Neural Architecture Search](slim/nas)
- [Deployment](inference) - [Deployment](deploy)
- [Export model for inference](docs/advanced_tutorials/inference/EXPORT_MODEL.md) - [Export model for inference](docs/advanced_tutorials/deploy/EXPORT_MODEL.md)
- [Model inference](docs/advanced_tutorials/inference/INFERENCE.md) - [Python inference](deploy/python)
- [C++ inference](inference/README.md) - [C++ inference](deploy/cpp)
- [Inference benchmark](docs/advanced_tutorials/inference/BENCHMARK_INFER_cn.md) - [Inference benchmark](docs/advanced_tutorials/inference/BENCHMARK_INFER_cn.md)
## Model Zoo ## Model Zoo
- Pretrained models are available in the [PaddleDetection model zoo](docs/MODEL_ZOO.md). - Pretrained models are available in the [PaddleDetection model zoo](docs/MODEL_ZOO.md).
- [Face detection models](configs/face_detection/README.md) BlazeFace series model with the highest precision of 91.5% on Wider-Face dataset and outstanding inference performance. - [Face detection models](docs/featured_model/FACE_DETECTION_en.md) BlazeFace series model with the highest precision of 91.5% on Wider-Face dataset and outstanding inference performance.
- [Pretrained models for pedestrian and vehicle detection](contrib/README.md) Models for object detection in specific scenarios. - [Pretrained models for pedestrian and vehicle detection](docs/featured_model/CONTRIB.md) Models for object detection in specific scenarios.
- [YOLOv3 enhanced model](docs/YOLOv3_ENHANCEMENT.md) Compared to MAP of 33.0% in paper, enhanced YOLOv3 reaches the MAP of 43.6% and inference speed is improved as well - [YOLOv3 enhanced model](docs/featured_model/YOLOv3_ENHANCEMENT.md) Compared to MAP of 33.0% in paper, enhanced YOLOv3 reaches the MAP of 43.6% and inference speed is improved as well
- [Objects365 2019 Challenge champion model](docs/CACascadeRCNN.md) One of the best single models in Objects365 Full Track of which MAP reaches 31.7%. - [Objects365 2019 Challenge champion model](docs/featured_model/CACascadeRCNN.md) One of the best single models in Objects365 Full Track of which MAP reaches 31.7%.
- [Open Images Dataset V5 and Objects365 Dataset models](docs/OIDV5_BASELINE_MODEL.md) - [Open Images Dataset V5 and Objects365 Dataset models](docs/featured_model/OIDV5_BASELINE_MODEL.md)
- [Mobile models](configs/mobile/README.md) - [Mobile models](configs/mobile/README.md)
......
../../../deploy/cpp/README.md
\ No newline at end of file
../../../deploy/python/README.md
\ No newline at end of file
...@@ -5,6 +5,6 @@ ...@@ -5,6 +5,6 @@
:maxdepth: 2 :maxdepth: 2
EXPORT_MODEL.md EXPORT_MODEL.md
INFERENCE.md DEPLOY_PY.md
DEPLOY_CPP.md
BENCHMARK_INFER_cn.md BENCHMARK_INFER_cn.md
DEPLOYMENT.md
...@@ -4,9 +4,9 @@ ...@@ -4,9 +4,9 @@
.. toctree:: .. toctree::
:maxdepth: 2 :maxdepth: 2
deploy/index
READER.md READER.md
MODEL_TECHNICAL.md MODEL_TECHNICAL.md
CONFIG_cn.md CONFIG_cn.md
TRANSFER_LEARNING_cn.md TRANSFER_LEARNING_cn.md
slim/index slim/index
inference/index
../../../../deploy/cpp/README.md
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册