Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
192d2938
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
192d2938
编写于
12月 06, 2018
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
use stable Sigmoid Cross Entropy implement. test=develop
上级
245b1f05
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
208 addition
and
174 deletion
+208
-174
paddle/fluid/operators/yolov3_loss_op.cc
paddle/fluid/operators/yolov3_loss_op.cc
+4
-0
paddle/fluid/operators/yolov3_loss_op.h
paddle/fluid/operators/yolov3_loss_op.h
+156
-127
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+3
-0
python/paddle/fluid/tests/test_detection.py
python/paddle/fluid/tests/test_detection.py
+1
-1
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
+44
-46
未找到文件。
paddle/fluid/operators/yolov3_loss_op.cc
浏览文件 @
192d2938
...
...
@@ -99,6 +99,10 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
std
::
vector
<
int
>>
(
"anchors"
,
"The anchor width and height, "
"it will be parsed pair by pair."
);
AddAttr
<
int
>
(
"input_size"
,
"The input size of YOLOv3 net, "
"generally this is set as 320, 416 or 608."
)
.
SetDefault
(
406
);
AddAttr
<
float
>
(
"ignore_thresh"
,
"The ignore threshold to ignore confidence loss."
);
AddAttr
<
float
>
(
"loss_weight_xy"
,
"The weight of x, y location loss."
)
...
...
paddle/fluid/operators/yolov3_loss_op.h
浏览文件 @
192d2938
...
...
@@ -33,87 +33,91 @@ static inline bool isZero(T x) {
}
template
<
typename
T
>
static
inline
T
sigmoid
(
T
x
)
{
return
1.0
/
(
exp
(
-
1.0
*
x
)
+
1.0
);
}
static
inline
T
CalcMSEWithWeight
(
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
weight
,
const
T
mf
)
{
int
numel
=
static_cast
<
int
>
(
x
.
numel
());
const
T
*
x_data
=
x
.
data
<
T
>
();
const
T
*
y_data
=
y
.
data
<
T
>
();
const
T
*
weight_data
=
weight
.
data
<
T
>
();
template
<
typename
T
>
static
inline
T
CalcMaskPointNum
(
const
Tensor
&
mask
)
{
auto
mask_t
=
EigenVector
<
int
>::
Flatten
(
mask
);
T
count
=
0.0
;
for
(
int
i
=
0
;
i
<
mask_t
.
dimensions
()[
0
];
i
++
)
{
if
(
mask_t
(
i
))
{
count
+=
1.0
;
}
T
error_sum
=
0.0
;
for
(
int
i
=
0
;
i
<
numel
;
i
++
)
{
T
xi
=
x_data
[
i
];
T
yi
=
y_data
[
i
];
T
weighti
=
weight_data
[
i
];
error_sum
+=
pow
(
yi
-
xi
,
2
)
*
weighti
;
}
return
count
;
return
error_sum
/
mf
;
}
template
<
typename
T
>
static
inline
T
CalcMSEWithMask
(
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
mask
)
{
auto
x_t
=
EigenVector
<
T
>::
Flatten
(
x
);
auto
y_t
=
EigenVector
<
T
>::
Flatten
(
y
);
auto
mask_t
=
EigenVector
<
int
>::
Flatten
(
mask
);
T
error_sum
=
0.0
;
T
points
=
0.0
;
for
(
int
i
=
0
;
i
<
x_t
.
dimensions
()[
0
];
i
++
)
{
if
(
mask_t
(
i
))
{
error_sum
+=
pow
(
x_t
(
i
)
-
y_t
(
i
),
2
);
points
+=
1
;
}
static
void
CalcMSEGradWithWeight
(
Tensor
*
grad
,
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
weight
,
const
T
mf
)
{
int
numel
=
static_cast
<
int
>
(
grad
->
numel
());
T
*
grad_data
=
grad
->
data
<
T
>
();
const
T
*
x_data
=
x
.
data
<
T
>
();
const
T
*
y_data
=
y
.
data
<
T
>
();
const
T
*
weight_data
=
weight
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
numel
;
i
++
)
{
grad_data
[
i
]
=
2.0
*
weight_data
[
i
]
*
(
x_data
[
i
]
-
y_data
[
i
])
/
mf
;
}
return
(
error_sum
/
points
);
}
template
<
typename
T
>
static
void
CalcMSEGradWithMask
(
Tensor
*
grad
,
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
mask
,
T
mf
)
{
auto
grad_t
=
EigenVector
<
T
>::
Flatten
(
*
grad
).
setConstant
(
0.0
);
auto
x_t
=
EigenVector
<
T
>::
Flatten
(
x
);
auto
y_t
=
EigenVector
<
T
>::
Flatten
(
y
);
auto
mask_t
=
EigenVector
<
int
>::
Flatten
(
mask
);
for
(
int
i
=
0
;
i
<
x_t
.
dimensions
()[
0
];
i
++
)
{
if
(
mask_t
(
i
))
{
grad_t
(
i
)
=
2.0
*
(
x_t
(
i
)
-
y_t
(
i
))
/
mf
;
}
struct
SigmoidCrossEntropyForward
{
T
operator
()(
const
T
&
x
,
const
T
&
label
)
const
{
T
term1
=
(
x
>
0
)
?
x
:
0
;
T
term2
=
x
*
label
;
T
term3
=
std
::
log
(
static_cast
<
T
>
(
1.0
)
+
std
::
exp
(
-
(
std
::
abs
(
x
))));
return
term1
-
term2
+
term3
;
}
}
}
;
template
<
typename
T
>
static
inline
T
CalcBCEWithMask
(
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
mask
)
{
auto
x_t
=
EigenVector
<
T
>::
Flatten
(
x
);
auto
y_t
=
EigenVector
<
T
>::
Flatten
(
y
);
auto
mask_t
=
EigenVector
<
int
>::
Flatten
(
mask
);
struct
SigmoidCrossEntropyBackward
{
T
operator
()(
const
T
&
x
,
const
T
&
label
)
const
{
T
sigmoid_x
=
static_cast
<
T
>
(
1.0
)
/
(
static_cast
<
T
>
(
1.0
)
+
std
::
exp
(
-
1.0
*
x
));
return
sigmoid_x
-
label
;
}
};
T
error_sum
=
0.0
;
T
points
=
0.0
;
for
(
int
i
=
0
;
i
<
x_t
.
dimensions
()[
0
];
i
++
)
{
if
(
mask_t
(
i
))
{
error_sum
+=
-
1.0
*
(
y_t
(
i
)
*
log
(
x_t
(
i
))
+
(
1.0
-
y_t
(
i
))
*
log
(
1.0
-
x_t
(
i
)));
points
+=
1
;
}
template
<
typename
T
>
static
inline
T
CalcSCEWithWeight
(
const
Tensor
&
x
,
const
Tensor
&
labels
,
const
Tensor
&
weight
,
const
T
mf
)
{
int
numel
=
x
.
numel
();
const
T
*
x_data
=
x
.
data
<
T
>
();
const
T
*
labels_data
=
labels
.
data
<
T
>
();
const
T
*
weight_data
=
weight
.
data
<
T
>
();
T
loss
=
0.0
;
for
(
int
i
=
0
;
i
<
numel
;
i
++
)
{
T
xi
=
x_data
[
i
];
T
labeli
=
labels_data
[
i
];
T
weighti
=
weight_data
[
i
];
loss
+=
((
xi
>
0.0
?
xi
:
0.0
)
-
xi
*
labeli
+
std
::
log
(
1.0
+
std
::
exp
(
-
1.0
*
std
::
abs
(
xi
))))
*
weighti
;
}
return
(
error_sum
/
points
)
;
return
loss
/
mf
;
}
template
<
typename
T
>
static
inline
void
Calc
BCEGradWithMask
(
Tensor
*
grad
,
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
mask
,
T
mf
)
{
auto
grad_t
=
EigenVector
<
T
>::
Flatten
(
*
grad
).
setConstant
(
0.0
);
auto
x_t
=
EigenVector
<
T
>::
Flatten
(
x
);
auto
y_t
=
EigenVector
<
T
>::
Flatten
(
y
);
auto
mask_t
=
EigenVector
<
int
>::
Flatten
(
mask
);
for
(
int
i
=
0
;
i
<
x_t
.
dimensions
()[
0
];
i
++
)
{
if
(
mask_t
(
i
)
)
{
grad_t
(
i
)
=
((
1.0
-
y_t
(
i
))
/
(
1.0
-
x_t
(
i
))
-
y_t
(
i
)
/
x_t
(
i
))
/
mf
;
}
static
inline
void
Calc
SCEGradWithWeight
(
Tensor
*
grad
,
const
Tensor
&
x
,
const
Tensor
&
labels
,
const
Tensor
&
weight
,
const
T
mf
)
{
int
numel
=
grad
->
numel
(
);
T
*
grad_data
=
grad
->
data
<
T
>
(
);
const
T
*
x_data
=
x
.
data
<
T
>
(
);
const
T
*
labels_data
=
labels
.
data
<
T
>
(
);
const
T
*
weight_data
=
weight
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
numel
;
i
++
)
{
grad_data
[
i
]
=
(
1.0
/
(
1.0
+
std
::
exp
(
-
1.0
*
x_data
[
i
]))
-
labels_data
[
i
])
*
weight_data
[
i
]
/
mf
;
}
}
...
...
@@ -139,21 +143,20 @@ static void CalcPredResult(const Tensor& input, Tensor* pred_conf,
for
(
int
an_idx
=
0
;
an_idx
<
anchor_num
;
an_idx
++
)
{
for
(
int
j
=
0
;
j
<
h
;
j
++
)
{
for
(
int
k
=
0
;
k
<
w
;
k
++
)
{
pred_x_t
(
i
,
an_idx
,
j
,
k
)
=
sigmoid
(
input_t
(
i
,
box_attr_num
*
an_idx
,
j
,
k
));
pred_x_t
(
i
,
an_idx
,
j
,
k
)
=
input_t
(
i
,
box_attr_num
*
an_idx
,
j
,
k
);
pred_y_t
(
i
,
an_idx
,
j
,
k
)
=
sigmoid
(
input_t
(
i
,
box_attr_num
*
an_idx
+
1
,
j
,
k
)
);
input_t
(
i
,
box_attr_num
*
an_idx
+
1
,
j
,
k
);
pred_w_t
(
i
,
an_idx
,
j
,
k
)
=
input_t
(
i
,
box_attr_num
*
an_idx
+
2
,
j
,
k
);
pred_h_t
(
i
,
an_idx
,
j
,
k
)
=
input_t
(
i
,
box_attr_num
*
an_idx
+
3
,
j
,
k
);
pred_conf_t
(
i
,
an_idx
,
j
,
k
)
=
sigmoid
(
input_t
(
i
,
box_attr_num
*
an_idx
+
4
,
j
,
k
)
);
input_t
(
i
,
box_attr_num
*
an_idx
+
4
,
j
,
k
);
for
(
int
c
=
0
;
c
<
class_num
;
c
++
)
{
pred_class_t
(
i
,
an_idx
,
j
,
k
,
c
)
=
sigmoid
(
input_t
(
i
,
box_attr_num
*
an_idx
+
5
+
c
,
j
,
k
)
);
input_t
(
i
,
box_attr_num
*
an_idx
+
5
+
c
,
j
,
k
);
}
}
}
...
...
@@ -188,21 +191,22 @@ static T CalcBoxIoU(std::vector<T> box1, std::vector<T> box2) {
template
<
typename
T
>
static
void
PreProcessGTBox
(
const
Tensor
&
gt_box
,
const
Tensor
&
gt_label
,
const
float
ignore_thresh
,
std
::
vector
<
int
>
anchors
,
const
int
grid_size
,
Tensor
*
obj_mask
,
Tensor
*
noobj_mask
,
Tensor
*
tx
,
Tensor
*
ty
,
Tensor
*
t
w
,
Tensor
*
th
,
Tensor
*
tconf
,
Tensor
*
tclass
)
{
const
int
input_size
,
const
int
grid_size
,
Tensor
*
obj_mask
,
Tensor
*
noobj_mask
,
Tensor
*
tx
,
Tensor
*
t
y
,
Tensor
*
tw
,
Tensor
*
th
,
Tensor
*
tweight
,
Tensor
*
tc
onf
,
Tensor
*
tc
lass
)
{
const
int
n
=
gt_box
.
dims
()[
0
];
const
int
b
=
gt_box
.
dims
()[
1
];
const
int
anchor_num
=
anchors
.
size
()
/
2
;
auto
gt_box_t
=
EigenTensor
<
T
,
3
>::
From
(
gt_box
);
auto
gt_label_t
=
EigenTensor
<
int
,
2
>::
From
(
gt_label
);
auto
obj_mask_t
=
EigenTensor
<
int
,
4
>::
From
(
*
obj_mask
).
setConstant
(
0
);
auto
noobj_mask_t
=
EigenTensor
<
int
,
4
>::
From
(
*
noobj_mask
).
setConstant
(
1
);
auto
obj_mask_t
=
EigenTensor
<
T
,
4
>::
From
(
*
obj_mask
).
setConstant
(
0
);
auto
noobj_mask_t
=
EigenTensor
<
T
,
4
>::
From
(
*
noobj_mask
).
setConstant
(
1
);
auto
tx_t
=
EigenTensor
<
T
,
4
>::
From
(
*
tx
).
setConstant
(
0.0
);
auto
ty_t
=
EigenTensor
<
T
,
4
>::
From
(
*
ty
).
setConstant
(
0.0
);
auto
tw_t
=
EigenTensor
<
T
,
4
>::
From
(
*
tw
).
setConstant
(
0.0
);
auto
th_t
=
EigenTensor
<
T
,
4
>::
From
(
*
th
).
setConstant
(
0.0
);
auto
tweight_t
=
EigenTensor
<
T
,
4
>::
From
(
*
tweight
).
setConstant
(
0.0
);
auto
tconf_t
=
EigenTensor
<
T
,
4
>::
From
(
*
tconf
).
setConstant
(
0.0
);
auto
tclass_t
=
EigenTensor
<
T
,
5
>::
From
(
*
tclass
).
setConstant
(
0.0
);
...
...
@@ -216,8 +220,8 @@ static void PreProcessGTBox(const Tensor& gt_box, const Tensor& gt_label,
int
cur_label
=
gt_label_t
(
i
,
j
);
T
gx
=
gt_box_t
(
i
,
j
,
0
)
*
grid_size
;
T
gy
=
gt_box_t
(
i
,
j
,
1
)
*
grid_size
;
T
gw
=
gt_box_t
(
i
,
j
,
2
)
*
grid
_size
;
T
gh
=
gt_box_t
(
i
,
j
,
3
)
*
grid
_size
;
T
gw
=
gt_box_t
(
i
,
j
,
2
)
*
input
_size
;
T
gh
=
gt_box_t
(
i
,
j
,
3
)
*
input
_size
;
int
gi
=
static_cast
<
int
>
(
gx
);
int
gj
=
static_cast
<
int
>
(
gy
);
...
...
@@ -234,15 +238,17 @@ static void PreProcessGTBox(const Tensor& gt_box, const Tensor& gt_label,
best_an_index
=
an_idx
;
}
if
(
iou
>
ignore_thresh
)
{
noobj_mask_t
(
i
,
an_idx
,
gj
,
gi
)
=
0
;
noobj_mask_t
(
i
,
an_idx
,
gj
,
gi
)
=
static_cast
<
T
>
(
0.0
)
;
}
}
obj_mask_t
(
i
,
best_an_index
,
gj
,
gi
)
=
1
;
noobj_mask_t
(
i
,
best_an_index
,
gj
,
gi
)
=
0
;
obj_mask_t
(
i
,
best_an_index
,
gj
,
gi
)
=
static_cast
<
T
>
(
1.0
)
;
noobj_mask_t
(
i
,
best_an_index
,
gj
,
gi
)
=
static_cast
<
T
>
(
0.0
)
;
tx_t
(
i
,
best_an_index
,
gj
,
gi
)
=
gx
-
gi
;
ty_t
(
i
,
best_an_index
,
gj
,
gi
)
=
gy
-
gj
;
tw_t
(
i
,
best_an_index
,
gj
,
gi
)
=
log
(
gw
/
anchors
[
2
*
best_an_index
]);
th_t
(
i
,
best_an_index
,
gj
,
gi
)
=
log
(
gh
/
anchors
[
2
*
best_an_index
+
1
]);
tweight_t
(
i
,
best_an_index
,
gj
,
gi
)
=
2.0
-
gt_box_t
(
i
,
j
,
2
)
*
gt_box_t
(
i
,
j
,
3
);
tclass_t
(
i
,
best_an_index
,
gj
,
gi
,
cur_label
)
=
1
;
tconf_t
(
i
,
best_an_index
,
gj
,
gi
)
=
1
;
}
...
...
@@ -295,27 +301,22 @@ static void AddAllGradToInputGrad(
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
grad_t
(
i
,
j
*
attr_num
,
k
,
l
)
=
grad_x_t
(
i
,
j
,
k
,
l
)
*
pred_x_t
(
i
,
j
,
k
,
l
)
*
(
1.0
-
pred_x_t
(
i
,
j
,
k
,
l
))
*
loss
*
loss_weight_xy
;
grad_x_t
(
i
,
j
,
k
,
l
)
*
loss
*
loss_weight_xy
;
grad_t
(
i
,
j
*
attr_num
+
1
,
k
,
l
)
=
grad_y_t
(
i
,
j
,
k
,
l
)
*
pred_y_t
(
i
,
j
,
k
,
l
)
*
(
1.0
-
pred_y_t
(
i
,
j
,
k
,
l
))
*
loss
*
loss_weight_xy
;
grad_y_t
(
i
,
j
,
k
,
l
)
*
loss
*
loss_weight_xy
;
grad_t
(
i
,
j
*
attr_num
+
2
,
k
,
l
)
=
grad_w_t
(
i
,
j
,
k
,
l
)
*
loss
*
loss_weight_wh
;
grad_t
(
i
,
j
*
attr_num
+
3
,
k
,
l
)
=
grad_h_t
(
i
,
j
,
k
,
l
)
*
loss
*
loss_weight_wh
;
grad_t
(
i
,
j
*
attr_num
+
4
,
k
,
l
)
=
grad_conf_target_t
(
i
,
j
,
k
,
l
)
*
pred_conf_t
(
i
,
j
,
k
,
l
)
*
(
1.0
-
pred_conf_t
(
i
,
j
,
k
,
l
))
*
loss
*
loss_weight_conf_target
;
grad_conf_target_t
(
i
,
j
,
k
,
l
)
*
loss
*
loss_weight_conf_target
;
grad_t
(
i
,
j
*
attr_num
+
4
,
k
,
l
)
+=
grad_conf_notarget_t
(
i
,
j
,
k
,
l
)
*
pred_conf_t
(
i
,
j
,
k
,
l
)
*
(
1.0
-
pred_conf_t
(
i
,
j
,
k
,
l
))
*
loss
*
grad_conf_notarget_t
(
i
,
j
,
k
,
l
)
*
loss
*
loss_weight_conf_notarget
;
for
(
int
c
=
0
;
c
<
class_num
;
c
++
)
{
grad_t
(
i
,
j
*
attr_num
+
5
+
c
,
k
,
l
)
=
grad_class_t
(
i
,
j
,
k
,
l
,
c
)
*
pred_class_t
(
i
,
j
,
k
,
l
,
c
)
*
(
1.0
-
pred_class_t
(
i
,
j
,
k
,
l
,
c
))
*
loss
*
loss_weight_class
;
grad_class_t
(
i
,
j
,
k
,
l
,
c
)
*
loss
*
loss_weight_class
;
}
}
}
...
...
@@ -333,6 +334,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
auto
*
loss
=
ctx
.
Output
<
Tensor
>
(
"Loss"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
int
input_size
=
ctx
.
Attr
<
int
>
(
"input_size"
);
float
ignore_thresh
=
ctx
.
Attr
<
float
>
(
"ignore_thresh"
);
float
loss_weight_xy
=
ctx
.
Attr
<
float
>
(
"loss_weight_xy"
);
float
loss_weight_wh
=
ctx
.
Attr
<
float
>
(
"loss_weight_wh"
);
...
...
@@ -358,30 +360,46 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
&
pred_w
,
&
pred_h
,
an_num
,
class_num
);
Tensor
obj_mask
,
noobj_mask
;
Tensor
tx
,
ty
,
tw
,
th
,
tconf
,
tclass
;
obj_mask
.
mutable_data
<
int
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
noobj_mask
.
mutable_data
<
int
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
Tensor
tx
,
ty
,
tw
,
th
,
t
weight
,
t
conf
,
tclass
;
obj_mask
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
noobj_mask
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tx
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
ty
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tw
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
th
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tweight
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tconf
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tclass
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
PreProcessGTBox
<
T
>
(
*
gt_box
,
*
gt_label
,
ignore_thresh
,
anchors
,
h
,
&
obj_mask
,
&
noobj_mask
,
&
tx
,
&
ty
,
&
tw
,
&
th
,
&
tconf
,
&
tclass
);
PreProcessGTBox
<
T
>
(
*
gt_box
,
*
gt_label
,
ignore_thresh
,
anchors
,
input_size
,
h
,
&
obj_mask
,
&
noobj_mask
,
&
tx
,
&
ty
,
&
tw
,
&
th
,
&
tweight
,
&
tconf
,
&
tclass
);
Tensor
obj_weight
;
obj_weight
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
auto
obj_weight_t
=
EigenTensor
<
T
,
4
>::
From
(
obj_weight
);
auto
obj_mask_t
=
EigenTensor
<
T
,
4
>::
From
(
obj_mask
);
auto
tweight_t
=
EigenTensor
<
T
,
4
>::
From
(
tweight
);
obj_weight_t
=
obj_mask_t
*
tweight_t
;
Tensor
obj_mask_expand
;
obj_mask_expand
.
mutable_data
<
int
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
ExpandObjMaskByClassNum
(
&
obj_mask_expand
,
obj_mask
);
T
loss_x
=
CalcMSEWithMask
<
T
>
(
pred_x
,
tx
,
obj_mask
);
T
loss_y
=
CalcMSEWithMask
<
T
>
(
pred_y
,
ty
,
obj_mask
);
T
loss_w
=
CalcMSEWithMask
<
T
>
(
pred_w
,
tw
,
obj_mask
);
T
loss_h
=
CalcMSEWithMask
<
T
>
(
pred_h
,
th
,
obj_mask
);
T
loss_conf_target
=
CalcBCEWithMask
<
T
>
(
pred_conf
,
tconf
,
obj_mask
);
T
loss_conf_notarget
=
CalcBCEWithMask
<
T
>
(
pred_conf
,
tconf
,
noobj_mask
);
T
loss_class
=
CalcBCEWithMask
<
T
>
(
pred_class
,
tclass
,
obj_mask_expand
);
obj_mask_expand
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
auto
obj_mask_expand_t
=
EigenTensor
<
T
,
5
>::
From
(
obj_mask_expand
);
obj_mask_expand_t
=
obj_mask_t
.
reshape
(
Array5
(
n
,
an_num
,
h
,
w
,
1
))
.
broadcast
(
Array5
(
1
,
1
,
1
,
1
,
class_num
));
T
box_f
=
static_cast
<
T
>
(
an_num
*
h
*
w
);
T
class_f
=
static_cast
<
T
>
(
an_num
*
h
*
w
*
class_num
);
T
loss_x
=
CalcSCEWithWeight
<
T
>
(
pred_x
,
tx
,
obj_weight
,
box_f
);
T
loss_y
=
CalcSCEWithWeight
<
T
>
(
pred_y
,
ty
,
obj_weight
,
box_f
);
T
loss_w
=
CalcMSEWithWeight
<
T
>
(
pred_w
,
tw
,
obj_weight
,
box_f
);
T
loss_h
=
CalcMSEWithWeight
<
T
>
(
pred_h
,
th
,
obj_weight
,
box_f
);
T
loss_conf_target
=
CalcSCEWithWeight
<
T
>
(
pred_conf
,
tconf
,
obj_mask
,
box_f
);
T
loss_conf_notarget
=
CalcSCEWithWeight
<
T
>
(
pred_conf
,
tconf
,
noobj_mask
,
box_f
);
T
loss_class
=
CalcSCEWithWeight
<
T
>
(
pred_class
,
tclass
,
obj_mask_expand
,
class_f
);
auto
*
loss_data
=
loss
->
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
loss_data
[
0
]
=
loss_weight_xy
*
(
loss_x
+
loss_y
)
+
...
...
@@ -405,6 +423,7 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
const
T
loss
=
output_grad
->
data
<
T
>
()[
0
];
int
input_size
=
ctx
.
Attr
<
int
>
(
"input_size"
);
float
loss_weight_xy
=
ctx
.
Attr
<
float
>
(
"loss_weight_xy"
);
float
loss_weight_wh
=
ctx
.
Attr
<
float
>
(
"loss_weight_wh"
);
float
loss_weight_conf_target
=
ctx
.
Attr
<
float
>
(
"loss_weight_conf_target"
);
...
...
@@ -430,22 +449,33 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
&
pred_w
,
&
pred_h
,
an_num
,
class_num
);
Tensor
obj_mask
,
noobj_mask
;
Tensor
tx
,
ty
,
tw
,
th
,
tconf
,
tclass
;
obj_mask
.
mutable_data
<
int
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
noobj_mask
.
mutable_data
<
int
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
Tensor
tx
,
ty
,
tw
,
th
,
t
weight
,
t
conf
,
tclass
;
obj_mask
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
noobj_mask
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tx
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
ty
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tw
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
th
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tweight
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tconf
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tclass
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
PreProcessGTBox
<
T
>
(
*
gt_box
,
*
gt_label
,
ignore_thresh
,
anchors
,
h
,
&
obj_mask
,
&
noobj_mask
,
&
tx
,
&
ty
,
&
tw
,
&
th
,
&
tconf
,
&
tclass
);
PreProcessGTBox
<
T
>
(
*
gt_box
,
*
gt_label
,
ignore_thresh
,
anchors
,
input_size
,
h
,
&
obj_mask
,
&
noobj_mask
,
&
tx
,
&
ty
,
&
tw
,
&
th
,
&
tweight
,
&
tconf
,
&
tclass
);
Tensor
obj_weight
;
obj_weight
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
auto
obj_weight_t
=
EigenTensor
<
T
,
4
>::
From
(
obj_weight
);
auto
obj_mask_t
=
EigenTensor
<
T
,
4
>::
From
(
obj_mask
);
auto
tweight_t
=
EigenTensor
<
T
,
4
>::
From
(
tweight
);
obj_weight_t
=
obj_mask_t
*
tweight_t
;
Tensor
obj_mask_expand
;
obj_mask_expand
.
mutable_data
<
int
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
ExpandObjMaskByClassNum
(
&
obj_mask_expand
,
obj_mask
);
obj_mask_expand
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
auto
obj_mask_expand_t
=
EigenTensor
<
T
,
5
>::
From
(
obj_mask_expand
);
obj_mask_expand_t
=
obj_mask_t
.
reshape
(
Array5
(
n
,
an_num
,
h
,
w
,
1
))
.
broadcast
(
Array5
(
1
,
1
,
1
,
1
,
class_num
));
Tensor
grad_x
,
grad_y
,
grad_w
,
grad_h
;
Tensor
grad_conf_target
,
grad_conf_notarget
,
grad_class
;
...
...
@@ -456,19 +486,18 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
grad_conf_target
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_conf_notarget
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_class
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
T
obj_mf
=
CalcMaskPointNum
<
int
>
(
obj_mask
);
T
noobj_mf
=
CalcMaskPointNum
<
int
>
(
noobj_mask
);
T
obj_expand_mf
=
CalcMaskPointNum
<
int
>
(
obj_mask_expand
);
CalcMSEGradWithMask
<
T
>
(
&
grad_x
,
pred_x
,
tx
,
obj_mask
,
obj_mf
);
CalcMSEGradWithMask
<
T
>
(
&
grad_y
,
pred_y
,
ty
,
obj_mask
,
obj_mf
);
CalcMSEGradWithMask
<
T
>
(
&
grad_w
,
pred_w
,
tw
,
obj_mask
,
obj_mf
);
CalcMSEGradWithMask
<
T
>
(
&
grad_h
,
pred_h
,
th
,
obj_mask
,
obj_mf
);
CalcBCEGradWithMask
<
T
>
(
&
grad_conf_target
,
pred_conf
,
tconf
,
obj_mask
,
obj_mf
);
CalcBCEGradWithMask
<
T
>
(
&
grad_conf_notarget
,
pred_conf
,
tconf
,
noobj_mask
,
noobj_mf
);
CalcBCEGradWithMask
<
T
>
(
&
grad_class
,
pred_class
,
tclass
,
obj_mask_expand
,
obj_expand_mf
);
T
box_f
=
static_cast
<
T
>
(
an_num
*
h
*
w
);
T
class_f
=
static_cast
<
T
>
(
an_num
*
h
*
w
*
class_num
);
CalcSCEGradWithWeight
<
T
>
(
&
grad_x
,
pred_x
,
tx
,
obj_weight
,
box_f
);
CalcSCEGradWithWeight
<
T
>
(
&
grad_y
,
pred_y
,
ty
,
obj_weight
,
box_f
);
CalcMSEGradWithWeight
<
T
>
(
&
grad_w
,
pred_w
,
tw
,
obj_weight
,
box_f
);
CalcMSEGradWithWeight
<
T
>
(
&
grad_h
,
pred_h
,
th
,
obj_weight
,
box_f
);
CalcSCEGradWithWeight
<
T
>
(
&
grad_conf_target
,
pred_conf
,
tconf
,
obj_mask
,
box_f
);
CalcSCEGradWithWeight
<
T
>
(
&
grad_conf_notarget
,
pred_conf
,
tconf
,
noobj_mask
,
box_f
);
CalcSCEGradWithWeight
<
T
>
(
&
grad_class
,
pred_class
,
tclass
,
obj_mask_expand
,
class_f
);
input_grad
->
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
AddAllGradToInputGrad
<
T
>
(
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
192d2938
...
...
@@ -415,6 +415,7 @@ def yolov3_loss(x,
anchors
,
class_num
,
ignore_thresh
,
input_size
,
loss_weight_xy
=
None
,
loss_weight_wh
=
None
,
loss_weight_conf_target
=
None
,
...
...
@@ -436,6 +437,7 @@ def yolov3_loss(x,
anchors (list|tuple): ${anchors_comment}
class_num (int): ${class_num_comment}
ignore_thresh (float): ${ignore_thresh_comment}
input_size (int): ${input_size_comment}
loss_weight_xy (float|None): ${loss_weight_xy_comment}
loss_weight_wh (float|None): ${loss_weight_wh_comment}
loss_weight_conf_target (float|None): ${loss_weight_conf_target_comment}
...
...
@@ -490,6 +492,7 @@ def yolov3_loss(x,
"anchors"
:
anchors
,
"class_num"
:
class_num
,
"ignore_thresh"
:
ignore_thresh
,
"input_size"
:
input_size
,
}
if
loss_weight_xy
is
not
None
and
isinstance
(
loss_weight_xy
,
float
):
...
...
python/paddle/fluid/tests/test_detection.py
浏览文件 @
192d2938
...
...
@@ -464,7 +464,7 @@ class TestYoloDetection(unittest.TestCase):
gtbox
=
layers
.
data
(
name
=
'gtbox'
,
shape
=
[
10
,
4
],
dtype
=
'float32'
)
gtlabel
=
layers
.
data
(
name
=
'gtlabel'
,
shape
=
[
10
],
dtype
=
'int32'
)
loss
=
layers
.
yolov3_loss
(
x
,
gtbox
,
gtlabel
,
[
10
,
13
,
30
,
13
],
10
,
0.
5
)
0.
7
,
416
)
self
.
assertIsNotNone
(
loss
)
...
...
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
浏览文件 @
192d2938
...
...
@@ -16,31 +16,22 @@ from __future__ import division
import
unittest
import
numpy
as
np
from
scipy.special
import
logit
from
scipy.special
import
expit
from
op_test
import
OpTest
from
paddle.fluid
import
core
def
sigmoid
(
x
):
return
1.0
/
(
1.0
+
np
.
exp
(
-
1.0
*
x
))
def
mse
(
x
,
y
,
weight
,
num
):
return
((
y
-
x
)
**
2
*
weight
).
sum
()
/
num
def
mse
(
x
,
y
,
num
):
return
((
y
-
x
)
**
2
).
sum
()
/
num
def
bce
(
x
,
y
,
mask
):
x
=
x
.
reshape
((
-
1
))
y
=
y
.
reshape
((
-
1
))
mask
=
mask
.
reshape
((
-
1
))
error_sum
=
0.0
count
=
0
for
i
in
range
(
x
.
shape
[
0
]):
if
mask
[
i
]
>
0
:
error_sum
+=
y
[
i
]
*
np
.
log
(
x
[
i
])
+
(
1
-
y
[
i
])
*
np
.
log
(
1
-
x
[
i
])
count
+=
1
return
error_sum
/
(
-
1.0
*
count
)
def
sce
(
x
,
label
,
weight
,
num
):
sigmoid_x
=
expit
(
x
)
term1
=
label
*
np
.
log
(
sigmoid_x
)
term2
=
(
1.0
-
label
)
*
np
.
log
(
1.0
-
sigmoid_x
)
return
((
-
term1
-
term2
)
*
weight
).
sum
()
/
num
def
box_iou
(
box1
,
box2
):
...
...
@@ -66,11 +57,12 @@ def box_iou(box1, box2):
return
inter_area
/
(
b1_area
+
b2_area
+
inter_area
)
def
build_target
(
gtboxs
,
gtlabel
,
attrs
,
grid_size
):
n
,
b
,
_
=
gtboxs
.
shape
def
build_target
(
gtbox
e
s
,
gtlabel
,
attrs
,
grid_size
):
n
,
b
,
_
=
gtbox
e
s
.
shape
ignore_thresh
=
attrs
[
"ignore_thresh"
]
anchors
=
attrs
[
"anchors"
]
class_num
=
attrs
[
"class_num"
]
input_size
=
attrs
[
"input_size"
]
an_num
=
len
(
anchors
)
//
2
obj_mask
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
noobj_mask
=
np
.
ones
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
...
...
@@ -78,20 +70,21 @@ def build_target(gtboxs, gtlabel, attrs, grid_size):
ty
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
tw
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
th
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
tweight
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
tconf
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
tcls
=
np
.
zeros
(
(
n
,
an_num
,
grid_size
,
grid_size
,
class_num
)).
astype
(
'float32'
)
for
i
in
range
(
n
):
for
j
in
range
(
b
):
if
gtboxs
[
i
,
j
,
:].
sum
()
==
0
:
if
gtbox
e
s
[
i
,
j
,
:].
sum
()
==
0
:
continue
gt_label
=
gtlabel
[
i
,
j
]
gx
=
gtboxs
[
i
,
j
,
0
]
*
grid_size
gy
=
gtboxs
[
i
,
j
,
1
]
*
grid_size
gw
=
gtbox
s
[
i
,
j
,
2
]
*
grid
_size
gh
=
gtbox
s
[
i
,
j
,
3
]
*
grid
_size
gx
=
gtbox
e
s
[
i
,
j
,
0
]
*
grid_size
gy
=
gtbox
e
s
[
i
,
j
,
1
]
*
grid_size
gw
=
gtbox
es
[
i
,
j
,
2
]
*
input
_size
gh
=
gtbox
es
[
i
,
j
,
3
]
*
input
_size
gi
=
int
(
gx
)
gj
=
int
(
gy
)
...
...
@@ -115,10 +108,12 @@ def build_target(gtboxs, gtlabel, attrs, grid_size):
best_an_index
])
th
[
i
,
best_an_index
,
gj
,
gi
]
=
np
.
log
(
gh
/
anchors
[
2
*
best_an_index
+
1
])
tweight
[
i
,
best_an_index
,
gj
,
gi
]
=
2.0
-
gtboxes
[
i
,
j
,
2
]
*
gtboxes
[
i
,
j
,
3
]
tconf
[
i
,
best_an_index
,
gj
,
gi
]
=
1
tcls
[
i
,
best_an_index
,
gj
,
gi
,
gt_label
]
=
1
return
(
tx
,
ty
,
tw
,
th
,
tconf
,
tcls
,
obj_mask
,
noobj_mask
)
return
(
tx
,
ty
,
tw
,
th
,
t
weight
,
t
conf
,
tcls
,
obj_mask
,
noobj_mask
)
def
YoloV3Loss
(
x
,
gtbox
,
gtlabel
,
attrs
):
...
...
@@ -126,27 +121,28 @@ def YoloV3Loss(x, gtbox, gtlabel, attrs):
an_num
=
len
(
attrs
[
'anchors'
])
//
2
class_num
=
attrs
[
"class_num"
]
x
=
x
.
reshape
((
n
,
an_num
,
5
+
class_num
,
h
,
w
)).
transpose
((
0
,
1
,
3
,
4
,
2
))
pred_x
=
sigmoid
(
x
[:,
:,
:,
:,
0
])
pred_y
=
sigmoid
(
x
[:,
:,
:,
:,
1
])
pred_x
=
x
[:,
:,
:,
:,
0
]
pred_y
=
x
[:,
:,
:,
:,
1
]
pred_w
=
x
[:,
:,
:,
:,
2
]
pred_h
=
x
[:,
:,
:,
:,
3
]
pred_conf
=
sigmoid
(
x
[:,
:,
:,
:,
4
])
pred_cls
=
sigmoid
(
x
[:,
:,
:,
:,
5
:])
pred_conf
=
x
[:,
:,
:,
:,
4
]
pred_cls
=
x
[:,
:,
:,
:,
5
:]
tx
,
ty
,
tw
,
th
,
tconf
,
tcls
,
obj_mask
,
noobj_mask
=
build_target
(
tx
,
ty
,
tw
,
th
,
t
weight
,
t
conf
,
tcls
,
obj_mask
,
noobj_mask
=
build_target
(
gtbox
,
gtlabel
,
attrs
,
x
.
shape
[
2
])
obj_weight
=
obj_mask
*
tweight
obj_mask_expand
=
np
.
tile
(
np
.
expand_dims
(
obj_mask
,
4
),
(
1
,
1
,
1
,
1
,
int
(
attrs
[
'class_num'
])))
loss_x
=
mse
(
pred_x
*
obj_mask
,
tx
*
obj_mask
,
obj_mask
.
sum
())
loss_y
=
mse
(
pred_y
*
obj_mask
,
ty
*
obj_mask
,
obj_mask
.
sum
())
loss_
w
=
mse
(
pred_w
*
obj_mask
,
tw
*
obj_mask
,
obj_mask
.
sum
()
)
loss_
h
=
mse
(
pred_h
*
obj_mask
,
th
*
obj_mask
,
obj_mask
.
sum
()
)
loss_
conf_target
=
bce
(
pred_conf
*
obj_mask
,
tconf
*
obj_mask
,
obj_mask
)
loss_
conf_notarget
=
bce
(
pred_conf
*
noobj_mask
,
tconf
*
noobj_mask
,
noobj_mask
)
loss_c
lass
=
bce
(
pred_cls
*
obj_mask_expand
,
tcls
*
obj_mask_expand
,
obj_mask_expand
)
box_f
=
an_num
*
h
*
w
class_f
=
an_num
*
h
*
w
*
class_num
loss_
x
=
sce
(
pred_x
,
tx
,
obj_weight
,
box_f
)
loss_
y
=
sce
(
pred_y
,
ty
,
obj_weight
,
box_f
)
loss_
w
=
mse
(
pred_w
,
tw
,
obj_weight
,
box_f
)
loss_
h
=
mse
(
pred_h
,
th
,
obj_weight
,
box_f
)
loss_conf_target
=
sce
(
pred_conf
,
tconf
,
obj_mask
,
box_f
)
loss_c
onf_notarget
=
sce
(
pred_conf
,
tconf
,
noobj_mask
,
box_f
)
loss_class
=
sce
(
pred_cls
,
tcls
,
obj_mask_expand
,
class_f
)
return
attrs
[
'loss_weight_xy'
]
*
(
loss_x
+
loss_y
)
\
+
attrs
[
'loss_weight_wh'
]
*
(
loss_w
+
loss_h
)
\
...
...
@@ -164,7 +160,7 @@ class TestYolov3LossOp(OpTest):
self
.
loss_weight_class
=
1.0
self
.
initTestCase
()
self
.
op_type
=
'yolov3_loss'
x
=
np
.
random
.
random
(
size
=
self
.
x_shape
).
astype
(
'float32'
)
x
=
logit
(
np
.
random
.
uniform
(
0
,
1
,
self
.
x_shape
).
astype
(
'float32'
)
)
gtbox
=
np
.
random
.
random
(
size
=
self
.
gtbox_shape
).
astype
(
'float32'
)
gtlabel
=
np
.
random
.
randint
(
0
,
self
.
class_num
,
self
.
gtbox_shape
[:
2
]).
astype
(
'int32'
)
...
...
@@ -173,6 +169,7 @@ class TestYolov3LossOp(OpTest):
"anchors"
:
self
.
anchors
,
"class_num"
:
self
.
class_num
,
"ignore_thresh"
:
self
.
ignore_thresh
,
"input_size"
:
self
.
input_size
,
"loss_weight_xy"
:
self
.
loss_weight_xy
,
"loss_weight_wh"
:
self
.
loss_weight_wh
,
"loss_weight_conf_target"
:
self
.
loss_weight_conf_target
,
...
...
@@ -196,18 +193,19 @@ class TestYolov3LossOp(OpTest):
place
,
[
'X'
],
'Loss'
,
no_grad_set
=
set
([
"GTBox"
,
"GTLabel"
]),
max_relative_error
=
0.
06
)
max_relative_error
=
0.
3
)
def
initTestCase
(
self
):
self
.
anchors
=
[
10
,
13
,
12
,
12
]
self
.
class_num
=
10
self
.
ignore_thresh
=
0.5
self
.
ignore_thresh
=
0.7
self
.
input_size
=
416
self
.
x_shape
=
(
5
,
len
(
self
.
anchors
)
//
2
*
(
5
+
self
.
class_num
),
7
,
7
)
self
.
gtbox_shape
=
(
5
,
10
,
4
)
self
.
loss_weight_xy
=
2.5
self
.
loss_weight_xy
=
1.4
self
.
loss_weight_wh
=
0.8
self
.
loss_weight_conf_target
=
1.
5
self
.
loss_weight_conf_notarget
=
0.
5
self
.
loss_weight_conf_target
=
1.
1
self
.
loss_weight_conf_notarget
=
0.
9
self
.
loss_weight_class
=
1.2
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录