Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
16b1beb2
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
16b1beb2
编写于
10月 10, 2018
作者:
T
Tao Luo
提交者:
GitHub
10月 10, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #13486 from sfraczek/sfraczek/conv-bn-fuse-pass
Sfraczek/conv bn fuse pass
上级
5d5587ff
3fcca409
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
532 addition
and
9 deletion
+532
-9
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+1
-0
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
+327
-0
paddle/fluid/framework/ir/conv_bn_fuse_pass.h
paddle/fluid/framework/ir/conv_bn_fuse_pass.h
+49
-0
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+106
-0
paddle/fluid/framework/ir/graph_pattern_detector.h
paddle/fluid/framework/ir/graph_pattern_detector.h
+38
-0
paddle/fluid/inference/analysis/analyzer.h
paddle/fluid/inference/analysis/analyzer.h
+11
-9
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
16b1beb2
...
...
@@ -38,6 +38,7 @@ pass_library(fc_lstm_fuse_pass inference)
pass_library
(
embedding_fc_lstm_fuse_pass inference
)
pass_library
(
fc_gru_fuse_pass inference
)
pass_library
(
seq_concat_fc_fuse_pass inference
)
pass_library
(
conv_bn_fuse_pass inference
)
cc_library
(
fuse_elewise_add_act_pass SRCS fuse_elewise_add_act_pass.cc DEPS pass graph_pattern_detector
)
...
...
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
0 → 100644
浏览文件 @
16b1beb2
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/conv_bn_fuse_pass.h"
#include <functional>
#include <string>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
#define GET_CONV_BN_NODES(pattern_name) \
/* OPERATORS */
\
GET_IR_NODE_FROM_SUBGRAPH(conv, conv, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(batch_norm, batch_norm, pattern_name); \
/* CONV inputs */
\
GET_IR_NODE_FROM_SUBGRAPH(conv_weight, conv_weight, pattern_name); \
/* CONV outputs */
\
GET_IR_NODE_FROM_SUBGRAPH(conv_out, conv_out, pattern_name); \
/* BN inputs */
\
GET_IR_NODE_FROM_SUBGRAPH(bn_scale, bn_scale, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_bias, bn_bias, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_mean, bn_mean, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_variance, bn_variance, pattern_name); \
/* BN outputs */
\
GET_IR_NODE_FROM_SUBGRAPH(bn_out, bn_out, pattern_name);
/* Out */
\
GET_IR_NODE_FROM_SUBGRAPH(bn_mean_out, bn_mean_out, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_variance_out, bn_variance_out, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name)
template
<
typename
UnaryOperation
>
LoDTensor
tensor_apply
(
const
LoDTensor
&
vec
,
UnaryOperation
f
)
{
LoDTensor
vec_y
;
vec_y
.
Resize
(
vec
.
dims
());
const
float
*
x
=
vec
.
data
<
float
>
();
float
*
y
=
vec_y
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
int64_t
i
=
0
;
i
<
vec
.
numel
();
i
++
)
{
y
[
i
]
=
f
(
x
[
i
]);
}
return
vec_y
;
}
void
tensor_apply_inplace
(
LoDTensor
*
vec
,
float
(
*
f
)(
float
))
{
float
*
data
=
vec
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
int64_t
i
=
0
;
i
<
vec
->
numel
();
i
++
)
{
data
[
i
]
=
f
(
data
[
i
]);
}
}
template
<
typename
BinaryOperation
>
LoDTensor
tensor_apply_eltwise
(
const
LoDTensor
&
vec_a
,
const
LoDTensor
&
vec_b
,
BinaryOperation
f
)
{
PADDLE_ENFORCE_EQ
(
vec_a
.
dims
(),
vec_b
.
dims
());
LoDTensor
vec_y
;
vec_y
.
Resize
(
vec_a
.
dims
());
const
float
*
a
=
vec_a
.
data
<
float
>
();
const
float
*
b
=
vec_b
.
data
<
float
>
();
float
*
y
=
vec_y
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
int64_t
i
=
0
;
i
<
vec_a
.
numel
();
i
++
)
{
y
[
i
]
=
f
(
a
[
i
],
b
[
i
]);
}
return
vec_y
;
}
template
<
typename
BinaryOperation
>
LoDTensor
tensor_apply_eltwise_broadcast
(
const
LoDTensor
&
vec_a
,
const
LoDTensor
&
vec_b
,
BinaryOperation
f
)
{
PADDLE_ENFORCE_EQ
(
vec_a
.
dims
().
size
(),
2
);
PADDLE_ENFORCE_EQ
(
vec_b
.
dims
().
size
(),
2
);
PADDLE_ENFORCE_EQ
(
vec_a
.
dims
()[
0
],
vec_b
.
dims
()[
0
]);
PADDLE_ENFORCE_EQ
(
vec_b
.
dims
()[
1
],
1
);
LoDTensor
vec_y
;
vec_y
.
Resize
(
vec_a
.
dims
());
const
float
*
a
=
vec_a
.
data
<
float
>
();
const
float
*
b
=
vec_b
.
data
<
float
>
();
float
*
y
=
vec_y
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
size_t
a_height
=
vec_a
.
dims
()[
0
];
size_t
a_width
=
vec_a
.
dims
()[
1
];
for
(
size_t
h
=
0
;
h
<
a_height
;
h
++
)
{
for
(
size_t
w
=
0
;
w
<
a_width
;
++
w
)
{
*
(
y
++
)
=
f
(
*
(
a
++
),
b
[
h
]);
}
}
return
vec_y
;
}
// reshape to two dimensions {A, B * C * ...}
void
make_tensor_2d
(
LoDTensor
*
tensor_to_reshape
)
{
auto
dims_count
=
tensor_to_reshape
->
dims
().
size
();
PADDLE_ENFORCE_GT
(
dims_count
,
0
);
int
size2
=
1
;
for
(
int
i
=
1
;
i
<
dims_count
;
i
++
)
{
size2
*=
tensor_to_reshape
->
dims
()[
i
];
}
tensor_to_reshape
->
Resize
(
make_ddim
({
tensor_to_reshape
->
dims
()[
0
],
size2
}));
}
void
recompute_conv_weights
(
LoDTensor
*
weights
,
LoDTensor
*
tmp
)
{
// remember the weights tensor shape {A, B, C, ...}
auto
weights_shape
=
weights
->
dims
();
// reduce the weights to 2d {A, B * C * ...}
make_tensor_2d
(
weights
);
// make tmp tensor 2d by adding 1 as second dim {A, 1}
make_tensor_2d
(
tmp
);
*
weights
=
tensor_apply_eltwise_broadcast
(
*
weights
,
*
tmp
,
std
::
multiplies
<
float
>
());
// reshape weights to the original dims {A, B, C, ...}
weights
->
Resize
(
weights_shape
);
}
void
recompute_bias_and_weights
(
const
Scope
*
scope
,
ir
::
Node
*
conv_weight
,
//
const
ir
::
Node
&
bn_scale
,
//
const
LoDTensor
&
bn_bias_tensor
,
//
const
ir
::
Node
&
bn_mean
,
//
const
ir
::
Node
&
bn_variance
,
//
LoDTensor
*
eltwise_y_in_tensor
,
//
float
epsilon
)
{
// Re-compute bias of conv2d from BN
PADDLE_ENFORCE_EQ
(
eltwise_y_in_tensor
->
dims
(),
bn_bias_tensor
.
dims
());
auto
*
scale_tensor
=
scope
->
FindVar
(
bn_scale
.
Name
())
->
GetMutable
<
LoDTensor
>
();
auto
*
variance_tensor
=
scope
->
FindVar
(
bn_variance
.
Name
())
->
GetMutable
<
LoDTensor
>
();
auto
*
mean_tensor
=
scope
->
FindVar
(
bn_mean
.
Name
())
->
GetMutable
<
LoDTensor
>
();
auto
std_tensor
=
LoDTensor
();
std_tensor
.
Resize
(
bn_bias_tensor
.
dims
());
std_tensor
=
tensor_apply
(
*
variance_tensor
,
[
&
](
float
x
)
{
return
x
+
epsilon
;
});
using
EigenVectorArrayMap
=
Eigen
::
Map
<
Eigen
::
Array
<
float
,
Eigen
::
Dynamic
,
1
>>
;
EigenVectorArrayMap
std_vec
(
std_tensor
.
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
std_tensor
.
numel
(),
1
);
std_vec
=
std_vec
.
sqrt
();
auto
tmp_tensor
=
tensor_apply_eltwise
(
*
scale_tensor
,
std_tensor
,
std
::
divides
<
float
>
());
auto
tensor_minus
=
tensor_apply_eltwise
(
*
eltwise_y_in_tensor
,
*
mean_tensor
,
std
::
minus
<
float
>
());
auto
tensor_mul
=
tensor_apply_eltwise
(
tensor_minus
,
tmp_tensor
,
std
::
multiplies
<
float
>
());
*
eltwise_y_in_tensor
=
tensor_apply_eltwise
(
tensor_mul
,
bn_bias_tensor
,
std
::
plus
<
float
>
());
// Re-compute weight of conv2d from BN
auto
*
current_param
=
scope
->
FindVar
(
conv_weight
->
Name
())
->
GetMutable
<
LoDTensor
>
();
recompute_conv_weights
(
current_param
,
&
tmp_tensor
);
}
std
::
unique_ptr
<
ir
::
Graph
>
ConvBNFusePass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
PADDLE_ENFORCE
(
graph
.
get
());
FusePassBase
::
Init
(
name_scope_
,
graph
.
get
());
auto
*
scope
=
param_scope
();
PADDLE_ENFORCE
(
scope
);
GraphPatternDetector
gpd
;
auto
*
conv_input
=
gpd
.
mutable_pattern
()
->
NewNode
(
patterns
::
PDNodeName
(
name_scope_
,
"conv_input"
))
->
AsInput
()
->
assert_is_op_input
(
"conv2d"
,
"Input"
);
patterns
::
ConvBN
conv_bn_pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
conv_bn_pattern
(
conv_input
,
false
/*with_eltwise_add*/
);
int
found_conv_bn_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
VLOG
(
4
)
<<
"handle ConvBN fuse"
;
// conv, batch_norm,
// conv_weight, conv_out,
// bn_scale, bn_bias, bn_mean, bn_variance,
// bn_out, bn_mean_out, bn_variance_out, bn_saved_mean, bn_saved_variance
GET_CONV_BN_NODES
(
conv_bn_pattern
);
// Create eltwise_y (conv bias) variable
VarDesc
eltwise_y_in_desc
(
patterns
::
PDNodeName
(
name_scope_
,
"eltwise_y_in"
));
auto
*
eltwise_y_in_node
=
g
->
CreateVarNode
(
&
eltwise_y_in_desc
);
auto
*
eltwise_y_in_tensor
=
scope
->
Var
(
eltwise_y_in_node
->
Name
())
->
GetMutable
<
LoDTensor
>
();
// Get batch norm bias
auto
*
bn_bias_tensor
=
scope
->
FindVar
(
bn_bias
->
Name
())
->
GetMutable
<
LoDTensor
>
();
// Initialize eltwise_y
eltwise_y_in_tensor
->
Resize
(
bn_bias_tensor
->
dims
());
std
::
fill_n
(
eltwise_y_in_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
eltwise_y_in_tensor
->
numel
(),
0.0
f
);
// update weights and biases
float
epsilon
=
boost
::
get
<
float
>
(
batch_norm
->
Op
()
->
GetAttr
(
"epsilon"
));
recompute_bias_and_weights
(
scope
,
conv_weight
,
*
bn_scale
,
*
bn_bias_tensor
,
*
bn_mean
,
*
bn_variance
,
eltwise_y_in_tensor
,
epsilon
);
// Create an elementwise add node
OpDesc
desc
;
desc
.
SetInput
(
"X"
,
std
::
vector
<
std
::
string
>
({
conv_out
->
Name
()}));
desc
.
SetInput
(
"Y"
,
std
::
vector
<
std
::
string
>
({
eltwise_y_in_node
->
Name
()}));
desc
.
SetOutput
(
"Out"
,
std
::
vector
<
std
::
string
>
({
bn_out
->
Name
()}));
desc
.
SetType
(
"elementwise_add"
);
desc
.
SetAttr
(
"axis"
,
1
);
bool
a
=
boost
::
get
<
bool
>
(
conv
->
Op
()
->
GetAttr
(
"use_mkldnn"
));
desc
.
SetAttr
(
"use_mkldnn"
,
a
);
auto
eltwise_op
=
g
->
CreateOpNode
(
&
desc
);
// OpDesc will be copied.
GraphSafeRemoveNodes
(
graph
.
get
(),
{
bn_scale
,
bn_bias
,
bn_mean
,
bn_variance
,
batch_norm
,
bn_mean_out
,
bn_variance_out
,
bn_saved_mean
,
bn_saved_variance
});
PADDLE_ENFORCE
(
subgraph
.
count
(
conv_input
));
IR_NODE_LINK_TO
(
conv_out
,
eltwise_op
);
IR_NODE_LINK_TO
(
eltwise_y_in_node
,
eltwise_op
);
IR_NODE_LINK_TO
(
eltwise_op
,
bn_out
);
found_conv_bn_count
++
;
};
gpd
(
graph
.
get
(),
handler
);
AddStatis
(
found_conv_bn_count
);
return
graph
;
}
std
::
unique_ptr
<
ir
::
Graph
>
ConvEltwiseAddBNFusePass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
PADDLE_ENFORCE
(
graph
.
get
());
FusePassBase
::
Init
(
name_scope_
,
graph
.
get
());
auto
*
scope
=
param_scope
();
PADDLE_ENFORCE
(
scope
);
GraphPatternDetector
gpd
;
auto
*
conv_input
=
gpd
.
mutable_pattern
()
->
NewNode
(
patterns
::
PDNodeName
(
name_scope_
,
"conv_input"
))
->
AsInput
()
->
assert_is_op_input
(
"conv2d"
,
"Input"
);
patterns
::
ConvBN
conv_bn_pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
conv_bn_pattern
(
conv_input
,
true
/*with_eltwise_add*/
);
int
found_conv_bn_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
VLOG
(
4
)
<<
"handle ConvBN fuse"
;
// conv, batch_norm,
// conv_weight, conv_out,
// bn_scale, bn_bias, bn_mean, bn_variance,
// bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,bn_saved_variance
GET_CONV_BN_NODES
(
conv_bn_pattern
);
// OPERATORS
GET_IR_NODE_FROM_SUBGRAPH
(
eltwise
,
eltwise
,
conv_bn_pattern
);
// BIAS inputs
GET_IR_NODE_FROM_SUBGRAPH
(
eltwise_y_in
,
eltwise_y_in
,
conv_bn_pattern
);
// BIAS outputs
GET_IR_NODE_FROM_SUBGRAPH
(
eltwise_out
,
eltwise_out
,
conv_bn_pattern
);
// Get eltwise_y (conv bias) variable
auto
*
eltwise_y_in_tensor
=
scope
->
FindVar
(
eltwise_y_in
->
Name
())
->
GetMutable
<
LoDTensor
>
();
// Get batch norm bias
auto
*
bn_bias_tensor
=
scope
->
FindVar
(
bn_bias
->
Name
())
->
GetMutable
<
LoDTensor
>
();
// update weights and biases
float
epsilon
=
boost
::
get
<
float
>
(
batch_norm
->
Op
()
->
GetAttr
(
"epsilon"
));
recompute_bias_and_weights
(
scope
,
conv_weight
,
*
bn_scale
,
*
bn_bias_tensor
,
*
bn_mean
,
*
bn_variance
,
eltwise_y_in_tensor
,
epsilon
);
// Update the elementwise_add node
eltwise
->
Op
()
->
SetAttr
(
"axis"
,
1
);
eltwise
->
Op
()
->
SetOutput
(
"Out"
,
std
::
vector
<
std
::
string
>
({
bn_out
->
Name
()}));
GraphSafeRemoveNodes
(
graph
.
get
(),
{
bn_scale
,
bn_bias
,
bn_mean
,
bn_variance
,
batch_norm
,
bn_mean_out
,
bn_variance_out
,
bn_saved_mean
,
bn_saved_variance
,
eltwise_out
});
PADDLE_ENFORCE
(
subgraph
.
count
(
conv_input
));
IR_NODE_LINK_TO
(
eltwise
,
bn_out
);
found_conv_bn_count
++
;
};
gpd
(
graph
.
get
(),
handler
);
AddStatis
(
found_conv_bn_count
);
return
graph
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
conv_bn_fuse_pass
,
paddle
::
framework
::
ir
::
ConvBNFusePass
);
REGISTER_PASS
(
conv_eltwiseadd_bn_fuse_pass
,
paddle
::
framework
::
ir
::
ConvEltwiseAddBNFusePass
);
paddle/fluid/framework/ir/conv_bn_fuse_pass.h
0 → 100644
浏览文件 @
16b1beb2
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
/*
* Fuse the Conv and BatchNorm to a ConvBNMKLDNNOp.
*/
class
ConvBNFusePass
:
public
FusePassBase
{
public:
virtual
~
ConvBNFusePass
()
{}
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
;
const
std
::
string
name_scope_
{
"conv_bn_fuse"
};
};
class
ConvEltwiseAddBNFusePass
:
public
FusePassBase
{
public:
virtual
~
ConvEltwiseAddBNFusePass
()
{}
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
;
const
std
::
string
name_scope_
{
"conv_eltwiseadd_bn_fuse"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
16b1beb2
...
...
@@ -626,6 +626,112 @@ bool VarLinksFromOp(Node *node, const std::string &op_type) {
return
false
;
}
PDNode
*
patterns
::
ConvBN
::
operator
()(
paddle
::
framework
::
ir
::
PDNode
*
conv_input
,
bool
with_eltwise_add
)
{
// Create Operators
conv_input
->
assert_is_op_input
(
"conv2d"
,
"Input"
);
auto
*
conv_op
=
pattern
->
NewNode
(
conv_repr
())
->
assert_is_op
(
"conv2d"
);
PDNode
*
eltwise_op
=
nullptr
;
if
(
with_eltwise_add
)
{
eltwise_op
=
pattern
->
NewNode
(
eltwise_repr
())
->
assert_is_op
(
"elementwise_add"
);
}
auto
*
batch_norm_op
=
pattern
->
NewNode
(
batch_norm_repr
())
->
assert_is_op
(
"batch_norm"
);
// Create variables
// Conv Filter
auto
*
conv_weight_var
=
pattern
->
NewNode
(
conv_weight_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"conv2d"
,
"Filter"
);
auto
*
conv_out_var
=
pattern
->
NewNode
(
conv_out_repr
())
->
AsIntermediate
()
->
assert_is_only_output_of_op
(
"conv2d"
);
PDNode
*
eltwise_y_in_var
=
nullptr
;
PDNode
*
eltwise_out_var
=
nullptr
;
if
(
with_eltwise_add
)
{
// Conv output as Bias input
conv_out_var
->
assert_is_op_input
(
"elementwise_add"
,
"X"
);
// Bias
eltwise_y_in_var
=
pattern
->
NewNode
(
eltwise_y_in_repr
())
->
assert_is_op_input
(
"elementwise_add"
,
"Y"
)
->
AsInput
();
eltwise_out_var
=
pattern
->
NewNode
(
eltwise_out_repr
())
->
AsIntermediate
()
->
assert_is_only_output_of_op
(
"elementwise_add"
);
}
else
{
// Conv output as BN input
conv_out_var
->
assert_is_op_input
(
"batch_norm"
,
"X"
);
}
// BN Scale
auto
*
bn_scale_var
=
pattern
->
NewNode
(
bn_scale_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"batch_norm"
,
"Scale"
);
// BN Bias
auto
*
bn_bias_var
=
pattern
->
NewNode
(
bn_bias_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"batch_norm"
,
"Bias"
);
// BN Mean
auto
*
bn_mean_var
=
pattern
->
NewNode
(
bn_mean_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"batch_norm"
,
"Mean"
);
// BN Variance
auto
*
bn_variance_var
=
pattern
->
NewNode
(
bn_variance_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"batch_norm"
,
"Variance"
);
// BN output
auto
*
bn_out_var
=
pattern
->
NewNode
(
bn_out_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"batch_norm"
);
auto
*
bn_mean_out_var
=
pattern
->
NewNode
(
bn_mean_out_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"batch_norm"
,
"MeanOut"
);
auto
*
bn_variance_out_var
=
pattern
->
NewNode
(
bn_variance_out_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"batch_norm"
,
"VarianceOut"
);
auto
*
bn_saved_mean_var
=
pattern
->
NewNode
(
bn_saved_mean_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"batch_norm"
,
"SavedMean"
);
auto
*
bn_saved_variance_var
=
pattern
->
NewNode
(
bn_saved_variance_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"batch_norm"
,
"SavedVariance"
);
conv_op
->
LinksFrom
({
conv_input
,
conv_weight_var
}).
LinksTo
({
conv_out_var
});
if
(
with_eltwise_add
)
{
eltwise_op
->
LinksFrom
({
conv_out_var
,
eltwise_y_in_var
})
.
LinksTo
({
eltwise_out_var
});
batch_norm_op
->
LinksFrom
({
eltwise_out_var
,
bn_scale_var
,
bn_bias_var
,
bn_mean_var
,
bn_variance_var
})
.
LinksTo
({
bn_out_var
,
bn_mean_out_var
,
bn_variance_out_var
,
bn_saved_mean_var
,
bn_saved_variance_var
});
}
else
{
batch_norm_op
->
LinksFrom
({
conv_out_var
,
bn_scale_var
,
bn_bias_var
,
bn_mean_var
,
bn_variance_var
})
.
LinksTo
({
bn_out_var
,
bn_mean_out_var
,
bn_variance_out_var
,
bn_saved_mean_var
,
bn_saved_variance_var
});
}
return
bn_out_var
;
}
PDNode
*
patterns
::
ConvReLU
::
operator
()(
paddle
::
framework
::
ir
::
PDNode
*
conv_input
)
{
// Create Operators
...
...
paddle/fluid/framework/ir/graph_pattern_detector.h
浏览文件 @
16b1beb2
...
...
@@ -375,6 +375,44 @@ struct PatternBase {
size_t
id_
;
};
// Conv with batch norm
// op: conv + (elementwise_add +) batch_norm
// named nodes:
// conv_weight, conv_out, conv,
// bn_x, bn_scale, bn_bias, bn_mean, bn_variance,
// bn_batch_norm, bn_y, bn_mean_out, bn_variance_out,
// bn_saved_mean, bn_saved_variance
struct
ConvBN
:
public
PatternBase
{
ConvBN
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"conv_bn"
)
{}
PDNode
*
operator
()(
PDNode
*
conv_input
,
bool
with_eltwise_add
);
// declare operator node's name
PATTERN_DECL_NODE
(
conv
);
PATTERN_DECL_NODE
(
batch_norm
);
PATTERN_DECL_NODE
(
eltwise
);
// ELEMENTWISE_ADD
// CONV inputs
PATTERN_DECL_NODE
(
conv_weight
);
// Filter
// CONV outputs
PATTERN_DECL_NODE
(
conv_out
);
// tmp
// ELTWISE inputs
PATTERN_DECL_NODE
(
eltwise_y_in
);
// ELTWISE outputs
PATTERN_DECL_NODE
(
eltwise_out
);
// tmp
// BN inputs
PATTERN_DECL_NODE
(
bn_scale
);
PATTERN_DECL_NODE
(
bn_bias
);
PATTERN_DECL_NODE
(
bn_mean
);
PATTERN_DECL_NODE
(
bn_variance
);
// BN outputs
PATTERN_DECL_NODE
(
bn_out
);
// Out
PATTERN_DECL_NODE
(
bn_mean_out
);
PATTERN_DECL_NODE
(
bn_variance_out
);
PATTERN_DECL_NODE
(
bn_saved_mean
);
PATTERN_DECL_NODE
(
bn_saved_variance
);
};
// CONV with ReLU
// op: conv + relu
// named nodes:
...
...
paddle/fluid/inference/analysis/analyzer.h
浏览文件 @
16b1beb2
...
...
@@ -64,15 +64,17 @@ class Analyzer : public OrderedRegistry<PassManager> {
// larger fusion.
const
std
::
vector
<
std
::
string
>
all_ir_passes_
{{
// Manual update the passes here.
"infer_clean_graph_pass"
,
//
"attention_lstm_fuse_pass"
,
//
"embedding_fc_lstm_fuse_pass"
,
//
"fc_lstm_fuse_pass"
,
//
"mul_lstm_fuse_pass"
,
//
"fc_gru_fuse_pass"
,
//
"mul_gru_fuse_pass"
,
//
"seq_concat_fc_fuse_pass"
,
//
"fc_fuse_pass"
,
//
"infer_clean_graph_pass"
,
//
"attention_lstm_fuse_pass"
,
//
"embedding_fc_lstm_fuse_pass"
,
//
"fc_lstm_fuse_pass"
,
//
"mul_lstm_fuse_pass"
,
//
"fc_gru_fuse_pass"
,
//
"mul_gru_fuse_pass"
,
//
"seq_concat_fc_fuse_pass"
,
//
"fc_fuse_pass"
,
//
"conv_bn_fuse_pass"
,
//
"conv_eltwiseadd_bn_fuse_pass"
,
//
#ifdef PADDLE_WITH_MKLDNN
"conv_relu_mkldnn_fuse_pass"
,
//
#endif
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录