提交 1456b8ec 编写于 作者: M minqiyang

Add unittest for clip_by_norm_op with SelectedRows

test=develop
上级 bcd8c2cc
......@@ -61,6 +61,7 @@ class ClipByNormKernel : public framework::OpKernel<T> {
output_selected_rows->set_height(merged_input->height());
output = output_selected_rows->mutable_value();
output->Resize(merged_input->value().dims());
output->mutable_data<T>(context.GetPlace());
} else {
PADDLE_THROW("Unexpected branch, input variable type is %s",
in_var->Type().name());
......
......@@ -18,6 +18,7 @@ import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
import paddle.fluid.core as core
......@@ -65,39 +66,57 @@ class TestCase3(TestClipByNormOp):
class TestClipByNormOpWithSelectedRows(OpTest):
def setUp(self):
self.initTestCase()
self.max_relative_error = 0.006
def check_with_place(self, place):
self.config_test_case()
scope = core.Scope()
# set input
x_selected_rows = scope.var('X').get_selected_rows()
x_selected_rows.set_rows([1, 1, 2, 0])
x_selected_rows.set_rows(self.grad_rows)
x_tensor = x_selected_rows.get_tensor()
x_tensor = np.random.random((4, 1)).astype("float32")
x_tensor[np.abs(x_tensor) < self.max_relative_error] = 0.5
self.op_type = "clip_by_norm"
self.inputs = {'X': x_selected_rows, }
self.attrs = {}
self.attrs['max_norm'] = self.max_norm
y_tensor = np.zeros((3, 1))
y_tensor[0::1] = np.sum(x_tensor[0::1], x_tensor[1::1])
y_tensor[1::1] = x_tensor[2::1]
y_tensor[2::1] = x_tensor[3::1]
norm = np.sqrt(np.sum(np.square(y_tensor)))
x_np = np.random.random(self.grad_shape).astype("float32")
x_np[np.abs(x_np) < self.max_relative_error] = 0.5
x_tensor.set(x_np, place)
# set output
out_selected_rows = scope.var('Out').get_selected_rows()
# run clip_by_norm_op
clip_by_norm_op = fluid.op.Operator(
"clip_by_norm", max_norm=self.max_norm, X='X', Out='Out')
clip_by_norm_op.run(scope, place)
# check output
self.assertEqual(out_selected_rows.rows(), self.grad_clipped_rows)
out_tensor = out_selected_rows.get_tensor()
y_np = np.zeros(self.grad_clipped_shape)
y_np[0] = np.sum(x_np[0:2])
y_np[1] = x_np[2]
y_np[2] = x_np[3]
norm = np.sqrt(np.sum(np.square(y_np)))
if norm > self.max_norm:
output = self.max_norm * y_tensor / norm
output = self.max_norm * y_np / norm
else:
output = y_tensor
self.outputs = {'Out': output}
output = y_np
self.assertTrue(
np.allclose(
np.array(out_tensor), output, atol=1e-5, equal_nan=False))
def test_check_output(self):
self.check_output()
def test_clip_by_norm_with_selected_ros(self):
places = [core.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(core.CUDAPlace(0))
def initTestCase(self):
self.shape = (100, )
for place in places:
self.check_with_place(place)
def config_test_case(self):
self.max_norm = 1.0
self.max_relative_error = 0.006
self.grad_shape = (4, 1)
self.grad_clipped_shape = (3, 1)
self.grad_rows = [0, 0, 1, 2]
self.grad_clipped_rows = [0, 1, 2]
if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册