未验证 提交 11c39173 编写于 作者: F Feng Ni 提交者: GitHub

[MOT] update pptracking modelzoo (#4677)

* update pptracking modelzoo readme

* fix cfg, test=document_fix
上级 75194b35
......@@ -42,15 +42,16 @@ English | [简体中文](README_cn.md)
| backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config |
| :--------------| :------- | :----: | :----: | :----: | :----: | :----: | :------: | :----: |:-----: |
| DLA-34 | 1088x608 | 75.9 | 74.7 | 1021 | 11425 | 31475 | - |[model](https://paddledet.bj.bcebos.com/models/mot/fairmot_enhance_dla34_60e_1088x608.pdparams) | [config](./fairmot_enhance_dla34_60e_1088x608.yml) |
| HarDNet-85 | 1088x608 | 75.0 | 70.0 | 1050 | 11837 | 32774 | - |[model](https://paddledet.bj.bcebos.com/models/mot/fairmot_enhance_hardnet85_30e_1088x608.pdparams) | [config](./fairmot_enhance_hardnet85_30e_1088x608.yml) |
### Results on MOT-17 Test Set
| backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config |
| :--------------| :------- | :----: | :----: | :----: | :----: | :----: | :------: | :----: |:-----: |
| DLA-34 | 1088x608 | 75.3 | 74.2 | 3270 | 29112 | 106749 | - |[model](https://paddledet.bj.bcebos.com/models/mot/fairmot_enhance_dla34_60e_1088x608.pdparams) | [config](./fairmot_enhance_dla34_60e_1088x608.yml) |
| HarDNet-85 | 1088x608 | 74.7 | 70.7 | 3210 | 29790 | 109914 | - |[model](https://paddledet.bj.bcebos.com/models/mot/fairmot_enhance_hardnet85_30e_1088x608.pdparams) | [config](./fairmot_enhance_hardnet85_30e_1088x608.yml) |
**Notes:**
FairMOT enhance DLA-34 used 8 GPUs for training and mini-batch size as 16 on each GPU,and trained for 60 epoches. The crowdhuman dataset is added to the train-set during training.
FairMOT enhance used 8 GPUs for training, and the crowdhuman dataset is added to the train-set during training. For FairMOT enhance DLA-34 the batch size is 16 on each GPU,and trained for 60 epoches. For FairMOT enhance HarDNet-85 the batch size is 10 on each GPU,and trained for 30 epoches.
### FairMOT light model
### Results on MOT-16 Test Set
......
......@@ -41,14 +41,16 @@
| 骨干网络 | 输入尺寸 | MOTA | IDF1 | IDS | FP | FN | FPS | 下载链接 | 配置文件 |
| :--------------| :------- | :----: | :----: | :----: | :----: | :----: | :------: | :----: |:-----: |
| DLA-34 | 1088x608 | 75.9 | 74.7 | 1021 | 11425 | 31475 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_enhance_dla34_60e_1088x608.pdparams) | [配置文件](./fairmot_enhance_dla34_60e_1088x608.yml) |
| HarDNet-85 | 1088x608 | 75.0 | 70.0 | 1050 | 11837 | 32774 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_enhance_hardnet85_30e_1088x608.pdparams) | [配置文件](./fairmot_enhance_hardnet85_30e_1088x608.yml) |
### 在MOT-17 Test Set上结果
| 骨干网络 | 输入尺寸 | MOTA | IDF1 | IDS | FP | FN | FPS | 下载链接 | 配置文件 |
| :--------------| :------- | :----: | :----: | :----: | :----: | :----: | :------: | :----: |:-----: |
| DLA-34 | 1088x608 | 75.3 | 74.2 | 3270 | 29112 | 106749 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_enhance_dla34_60e_1088x608.pdparams) | [配置文件](./fairmot_enhance_dla34_60e_1088x608.yml) |
| HarDNet-85 | 1088x608 | 74.7 | 70.7 | 3210 | 29790 | 109914 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_enhance_hardnet85_30e_1088x608.pdparams) | [配置文件](./fairmot_enhance_hardnet85_30e_1088x608.yml) |
**注意:**
FairMOT enhance DLA-34使用8个GPU进行训练,每个GPU上batch size为16,训练60个epoch,并且训练集中加入了crowdhuman数据集一起参与训练
FairMOT enhance模型均使用8个GPU进行训练,训练集中加入了crowdhuman数据集一起参与训练。DLA-34骨干网络的每个GPU上batch size为16,训练60个epoch。HarDNet-85骨干网络的每个GPU上batch size为10,训练30个epoch
### FairMOT轻量级模型
......
_BASE_: [
'../../datasets/mot.yml',
'../../runtime.yml',
'_base_/optimizer_30e.yml',
'_base_/fairmot_hardnet85.yml',
'_base_/fairmot_reader_1088x608.yml',
]
norm_type: sync_bn
use_ema: true
ema_decay: 0.9998
# add crowdhuman
TrainDataset:
!MOTDataSet
dataset_dir: dataset/mot
image_lists: ['mot17.train', 'caltech.all', 'cuhksysu.train', 'prw.train', 'citypersons.train', 'eth.train', 'crowdhuman.train', 'crowdhuman.val']
data_fields: ['image', 'gt_bbox', 'gt_class', 'gt_ide']
worker_num: 4
TrainReader:
inputs_def:
image_shape: [3, 608, 1088]
sample_transforms:
- Decode: {}
- RGBReverse: {}
- AugmentHSV: {}
- LetterBoxResize: {target_size: [608, 1088]}
- MOTRandomAffine: {reject_outside: False}
- RandomFlip: {}
- BboxXYXY2XYWH: {}
- NormalizeBox: {}
- NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1]}
- RGBReverse: {}
- Permute: {}
batch_transforms:
- Gt2FairMOTTarget: {}
batch_size: 10
shuffle: True
drop_last: True
use_shared_memory: True
epoch: 30
LearningRate:
base_lr: 0.0001
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [20,]
use_warmup: False
OptimizerBuilder:
optimizer:
type: Adam
regularizer: NULL
weights: output/fairmot_enhance_hardnet85_30e_1088x608/model_final
......@@ -14,14 +14,18 @@
| 骨干网络 | 输入尺寸 | MOTA | IDF1 | IDS | FP | FN | FPS | 下载链接 | 配置文件 |
| :--------------| :------- | :----: | :----: | :---: | :----: | :---: | :------: | :----: |:----: |
| DLA-34 | 1088x608 | 64.7 | 69.0 | 8533 | 148817 | 234970 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_headtracking21.pdparams) | [配置文件](./fairmot_dla34_30e_1088x608_headtracking21.yml) |
| HRNetv2-W18 | 1088x608 | 57.2 | 58.4 | 30950 | 188260 | 256580 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_1088x608_headtracking21.pdparams) | [配置文件](./fairmot_hrnetv2_w18_dlafpn_30e_1088x608_headtracking21.yml) |
### FairMOT在HT-21 Test Set上结果
| 骨干网络 | 输入尺寸 | MOTA | IDF1 | IDS | FP | FN | FPS | 下载链接 | 配置文件 |
| :--------------| :------- | :----: | :----: | :----: | :----: | :----: |:-------: | :----: | :----: |
| DLA-34 | 1088x608 | 60.8 | 62.8 | 12781 | 118109 | 198896 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_headtracking21.pdparams) | [配置文件](./fairmot_dla34_30e_1088x608_headtracking21.yml) |
| HRNetv2-W18 | 1088x608 | 41.2 | 47.1 | 48809 | 241683 | 204346 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_headtracking21.pdparams) | [配置文件](./fairmot_dla34_30e_1088x608_headtracking21.yml) |
**注意:**
FairMOT DLA-34使用2个GPU进行训练,每个GPU上batch size为6,训练30个epoch。目前MOTA精度位于MOT官网[Head Tracking 21](https://motchallenge.net/results/Head_Tracking_21)榜单榜首。
FairMOT HRNetv2-W18使用4个GPU进行训练,每个GPU上batch size为8,训练30个epoch。
## 快速开始
......
......@@ -13,7 +13,7 @@ English | [简体中文](README_cn.md)
MCFairMOT is the Multi-class extended version of [FairMOT](https://arxiv.org/abs/2004.01888).
## Model Zoo
### MCFairMOT DLA-34 Results on VisDrone2019 Val Set
### MCFairMOT Results on VisDrone2019 Val Set
| backbone | input shape | MOTA | IDF1 | IDS | FPS | download | config |
| :--------------| :------- | :----: | :----: | :---: | :------: | :----: |:----: |
| DLA-34 | 1088x608 | 24.3 | 41.6 | 2314 | - |[model](https://paddledet.bj.bcebos.com/models/mot/mcfairmot_dla34_30e_1088x608_visdrone.pdparams) | [config](./mcfairmot_dla34_30e_1088x608_visdrone.yml) |
......@@ -23,14 +23,15 @@ MCFairMOT is the Multi-class extended version of [FairMOT](https://arxiv.org/abs
**Notes:**
MOTA is the average MOTA of 10 catecories in the VisDrone2019 MOT dataset, and its value is also equal to the average MOTA of all the evaluated video sequences.
MCFairMOT used 4 GPUs for training 30 epoches. The batch size is 6 on each GPU for MCFairMOT DLA-34, and 4 for MCFairMOT HRNetV2-W18.
## Getting Start
### 1. Training
Training MCFairMOT on 8 GPUs with following command
Training MCFairMOT on 4 GPUs with following command
```bash
python -m paddle.distributed.launch --log_dir=./mcfairmot_dla34_30e_1088x608_visdrone/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/mot/mcfairmot/mcfairmot_dla34_30e_1088x608_visdrone.yml
python -m paddle.distributed.launch --log_dir=./mcfairmot_dla34_30e_1088x608_visdrone/ --gpus 0,1,2,3 tools/train.py -c configs/mot/mcfairmot/mcfairmot_dla34_30e_1088x608_visdrone.yml
```
### 2. Evaluation
......
......@@ -14,7 +14,7 @@ MCFairMOT是[FairMOT](https://arxiv.org/abs/2004.01888)的多类别扩展版本
## 模型库
### MCFairMOT DLA-34 在VisDrone2019 MOT val-set上结果
### MCFairMOT 在VisDrone2019 MOT val-set上结果
| 骨干网络 | 输入尺寸 | MOTA | IDF1 | IDS | FPS | 下载链接 | 配置文件 |
| :--------------| :------- | :----: | :----: | :---: | :------: | :----: |:----: |
| DLA-34 | 1088x608 | 24.3 | 41.6 | 2314 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/mcfairmot_dla34_30e_1088x608_visdrone.pdparams) | [配置文件](./mcfairmot_dla34_30e_1088x608_visdrone.yml) |
......@@ -24,13 +24,14 @@ MCFairMOT是[FairMOT](https://arxiv.org/abs/2004.01888)的多类别扩展版本
**注意:**
MOTA是VisDrone2019 MOT数据集10类目标的平均MOTA, 其值也等于所有评估的视频序列的平均MOTA。
MCFairMOT enhance模型均使用4个GPU进行训练,训练30个epoch。DLA-34骨干网络的每个GPU上batch size为6,HRNetV2-W18骨干网络的每个GPU上batch size为4。
## 快速开始
### 1. 训练
使用8个GPU通过如下命令一键式启动训练
使用4个GPU通过如下命令一键式启动训练
```bash
python -m paddle.distributed.launch --log_dir=./mcfairmot_dla34_30e_1088x608_visdrone/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/mot/mcfairmot/mcfairmot_dla34_30e_1088x608_visdrone.yml
python -m paddle.distributed.launch --log_dir=./mcfairmot_dla34_30e_1088x608_visdrone/ --gpus 0,1,2,3 tools/train.py -c configs/mot/mcfairmot/mcfairmot_dla34_30e_1088x608_visdrone.yml
```
### 2. 评估
......
......@@ -283,11 +283,10 @@ class TransitionUp(nn.Layer):
def __init__(self, in_channels, out_channels):
super().__init__()
def forward(self, x, skip, concat=True):
def forward(self, x, skip):
w, h = skip.shape[2], skip.shape[3]
out = F.interpolate(x, size=(w, h), mode="bilinear", align_corners=True)
if concat:
out = paddle.concat([out, skip], 1)
out = paddle.concat([out, skip], 1)
return out
......@@ -391,16 +390,17 @@ class CenterNetHarDNetFPN(nn.Layer):
for i in range(3):
skip_x = body_feats[3 - i]
x = self.transUpBlocks[i](x, skip_x, (i < self.skip_lv))
x = self.conv1x1_up[i](x)
x_up = self.transUpBlocks[i](x, skip_x)
x_ch = self.conv1x1_up[i](x_up)
if self.SC[i] > 0:
end = x.shape[1]
x_sc.append(x[:, end - self.SC[i]:, :, :])
x = x[:, :end - self.SC[i], :, :]
x2 = self.avg9x9(x)
x3 = x / (x.sum((2, 3), keepdim=True) + 0.1)
x = paddle.concat([x, x2, x3], 1)
x = self.denseBlocksUp[i](x)
end = x_ch.shape[1]
new_st = end - self.SC[i]
x_sc.append(x_ch[:, new_st:, :, :])
x_ch = x_ch[:, :new_st, :, :]
x2 = self.avg9x9(x_ch)
x3 = x_ch / (x_ch.sum((2, 3), keepdim=True) + 0.1)
x_new = paddle.concat([x_ch, x2, x3], 1)
x = self.denseBlocksUp[i](x_new)
scs = [x]
for i in range(3):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册