未验证 提交 1072e9f7 编写于 作者: F Feng Ni 提交者: GitHub

[cherry-pick] fix name of pretrain weights in backbone for dcn (#2584)

* fix name of pretrain weights

* format, test=document_fix
上级 dc2ca7de
......@@ -21,7 +21,9 @@ import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable
from paddle.regularizer import L2Decay
from paddle.nn.initializer import Uniform
from ppdet.modeling.layers import DeformableConvV2
from paddle import ParamAttr
from paddle.nn.initializer import Constant
from paddle.vision.ops import DeformConv2D
from .name_adapter import NameAdapter
from ..shape_spec import ShapeSpec
......@@ -53,8 +55,9 @@ class ConvNormLayer(nn.Layer):
assert norm_type in ['bn', 'sync_bn']
self.norm_type = norm_type
self.act = act
self.dcn_v2 = dcn_v2
if not dcn_v2:
if not self.dcn_v2:
self.conv = nn.Conv2D(
in_channels=ch_in,
out_channels=ch_out,
......@@ -62,25 +65,37 @@ class ConvNormLayer(nn.Layer):
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=paddle.ParamAttr(learning_rate=lr),
weight_attr=ParamAttr(learning_rate=lr),
bias_attr=False)
else:
self.conv = DeformableConvV2(
self.offset_channel = 2 * filter_size**2
self.mask_channel = filter_size**2
self.conv_offset = nn.Conv2D(
in_channels=ch_in,
out_channels=3 * filter_size**2,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
weight_attr=ParamAttr(initializer=Constant(0.)),
bias_attr=ParamAttr(initializer=Constant(0.)))
self.conv = DeformConv2D(
in_channels=ch_in,
out_channels=ch_out,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
dilation=1,
groups=groups,
weight_attr=paddle.ParamAttr(learning_rate=lr),
weight_attr=ParamAttr(learning_rate=lr),
bias_attr=False)
norm_lr = 0. if freeze_norm else lr
param_attr = paddle.ParamAttr(
param_attr = ParamAttr(
learning_rate=norm_lr,
regularizer=L2Decay(norm_decay),
trainable=False if freeze_norm else True)
bias_attr = paddle.ParamAttr(
bias_attr = ParamAttr(
learning_rate=norm_lr,
regularizer=L2Decay(norm_decay),
trainable=False if freeze_norm else True)
......@@ -103,7 +118,17 @@ class ConvNormLayer(nn.Layer):
param.stop_gradient = True
def forward(self, inputs):
out = self.conv(inputs)
if not self.dcn_v2:
out = self.conv(inputs)
else:
offset_mask = self.conv_offset(inputs)
offset, mask = paddle.split(
offset_mask,
num_or_sections=[self.offset_channel, self.mask_channel],
axis=1)
mask = F.sigmoid(mask)
out = self.conv(inputs, offset, mask=mask)
if self.norm_type in ['bn', 'sync_bn']:
out = self.norm(out)
if self.act:
......
......@@ -157,7 +157,7 @@ def load_pretrain_weight(model, pretrain_weight):
weights_path = path + '.pdparams'
param_state_dict = paddle.load(weights_path)
ignore_set = set()
lack_backbone_weights_cnt = 0
lack_modules = set()
for name, weight in model_dict.items():
if name in param_state_dict.keys():
......@@ -168,7 +168,13 @@ def load_pretrain_weight(model, pretrain_weight):
param_state_dict.pop(name, None)
else:
lack_modules.add(name.split('.')[0])
logger.debug('Lack weights: {}'.format(name))
if name.find('backbone') >= 0:
logger.info('Lack backbone weights: {}'.format(name))
lack_backbone_weights_cnt += 1
if lack_backbone_weights_cnt > 0:
logger.info('Lack {} weights in backbone.'.format(
lack_backbone_weights_cnt))
if len(lack_modules) > 0:
logger.info('Lack weights of modules: {}'.format(', '.join(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册