Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
0c5202cb
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0c5202cb
编写于
1月 02, 2018
作者:
Y
Yang Yu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Tiny enhance of while_op
上级
90a33ddd
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
21 addition
and
21 deletion
+21
-21
paddle/operators/while_op.cc
paddle/operators/while_op.cc
+21
-21
未找到文件。
paddle/operators/while_op.cc
浏览文件 @
0c5202cb
...
...
@@ -25,12 +25,12 @@ namespace operators {
using
StepScopeVar
=
std
::
vector
<
framework
::
Scope
*>
;
using
LoDTensor
=
framework
::
LoDTensor
;
constexpr
char
kStepBlock
[]
=
"sub_block"
;
constexpr
char
kCondition
[]
=
"Condition"
;
constexpr
char
kStepScopes
[]
=
"StepScopes"
;
constexpr
char
kParameters
[]
=
"X"
;
constexpr
char
kParamGrads
[]
=
"X@GRAD"
;
constexpr
char
kOutputs
[]
=
"Out"
;
static
constexpr
char
kStepBlock
[]
=
"sub_block"
;
static
constexpr
char
kCondition
[]
=
"Condition"
;
static
constexpr
char
kStepScopes
[]
=
"StepScopes"
;
static
constexpr
char
kX
[]
=
"X"
;
static
constexpr
char
kXGRAD
[]
=
"X@GRAD"
;
static
constexpr
char
kOutputs
[]
=
"Out"
;
class
WhileOp
:
public
framework
::
OperatorBase
{
public:
...
...
@@ -67,7 +67,7 @@ class WhileOpMaker : public framework::OpProtoAndCheckerMaker {
public:
WhileOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
k
Parameters
,
AddInput
(
k
X
,
"A set of variables, which are required by operators inside the "
"block of While Op."
)
.
AsDuplicable
();
...
...
@@ -158,8 +158,8 @@ class WhileGradOp : public framework::OperatorBase {
executor
.
Run
(
*
program
,
*
cur_scope_iter
,
block
->
ID
(),
false
);
auto
&
pg_names
=
Outputs
(
k
ParamGrads
);
auto
&
p_names
=
Inputs
(
k
Parameters
);
auto
&
pg_names
=
Outputs
(
k
XGRAD
);
auto
&
p_names
=
Inputs
(
k
X
);
PADDLE_ENFORCE_EQ
(
pg_names
.
size
(),
p_names
.
size
());
for
(
size_t
param_id
=
0
;
param_id
<
pg_names
.
size
();
++
param_id
)
{
if
(
pg_names
[
param_id
]
==
framework
::
kEmptyVarName
)
{
...
...
@@ -213,11 +213,11 @@ class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
grad
=
new
framework
::
OpDesc
();
grad
->
SetType
(
"while_grad"
);
grad
->
SetInput
(
k
Parameters
,
Input
(
kParameters
));
grad
->
SetInput
(
k
X
,
Input
(
kX
));
// Not all of IGs will be generated by inner gradient operators of while op.
// Ignore IGs that is not generated by the inside block.
auto
igs
=
InputGrad
(
k
Parameters
,
/*do not drop empty gradient*/
false
);
auto
igs
=
InputGrad
(
k
X
,
/*do not drop empty gradient*/
false
);
std
::
unordered_set
<
std
::
string
>
all_outs
;
for
(
size_t
i
=
0
;
i
<
grad_block_
[
0
]
->
OpSize
();
++
i
)
{
for
(
auto
&
oname
:
grad_block_
[
0
]
->
Op
(
i
)
->
OutputArgumentNames
())
{
...
...
@@ -231,7 +231,7 @@ class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
}
}
grad
->
SetOutput
(
framework
::
GradVarName
(
k
Parameters
),
igs
);
grad
->
SetOutput
(
framework
::
GradVarName
(
k
X
),
igs
);
grad
->
SetInput
(
kOutputs
,
Output
(
kOutputs
));
...
...
@@ -240,7 +240,7 @@ class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
std
::
unordered_set
<
std
::
string
>
block_ins
;
auto
*
fwd_block
=
this
->
grad_block_
[
0
]
->
ParentBlock
();
{
for
(
auto
&
p
:
Input
(
k
Parameters
))
{
for
(
auto
&
p
:
Input
(
k
X
))
{
block_ins
.
insert
(
p
);
}
for
(
auto
&
o
:
Output
(
kOutputs
))
{
...
...
@@ -288,8 +288,8 @@ class WhileGradOpVarTypeInference : public framework::VarTypeInference {
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
p_names
=
op_desc
.
Input
(
k
Parameters
);
auto
pg_names
=
op_desc
.
Output
(
framework
::
GradVarName
(
k
Parameters
));
auto
p_names
=
op_desc
.
Input
(
k
X
);
auto
pg_names
=
op_desc
.
Output
(
framework
::
GradVarName
(
k
X
));
for
(
size_t
i
=
0
;
i
<
p_names
.
size
();
++
i
)
{
auto
&
p_var
=
detail
::
Ref
(
block
->
FindVarRecursive
(
p_names
[
i
]));
...
...
@@ -307,21 +307,21 @@ class WhileGradOpVarTypeInference : public framework::VarTypeInference {
class
WhileGradOpShapeInference
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
ctx
->
HasInputs
(
k
Parameters
);
ctx
->
HasOutputs
(
framework
::
GradVarName
(
k
Parameters
));
ctx
->
HasInputs
(
k
X
);
ctx
->
HasOutputs
(
framework
::
GradVarName
(
k
X
));
ctx
->
HasInputs
(
kOutputs
);
ctx
->
HasInputs
(
framework
::
GradVarName
(
kOutputs
));
auto
p_names
=
ctx
->
Inputs
(
k
Parameters
);
auto
pg_names
=
ctx
->
Outputs
(
k
ParamGrads
);
auto
var_types
=
ctx
->
GetInputsVarType
(
k
Parameters
);
auto
p_names
=
ctx
->
Inputs
(
k
X
);
auto
pg_names
=
ctx
->
Outputs
(
k
XGRAD
);
auto
var_types
=
ctx
->
GetInputsVarType
(
k
X
);
std
::
vector
<
std
::
string
>
names_to_set
;
std
::
vector
<
framework
::
DDim
>
dims_to_set
;
for
(
size_t
i
=
0
;
i
<
p_names
.
size
();
++
i
)
{
if
(
pg_names
[
i
]
==
framework
::
kEmptyVarName
)
{
continue
;
}
auto
dims
=
ctx
->
GetInputsElementDim
(
k
Parameters
,
i
);
auto
dims
=
ctx
->
GetInputsElementDim
(
k
X
,
i
);
if
(
var_types
[
i
]
==
framework
::
proto
::
VarDesc
::
LOD_TENSOR
)
{
names_to_set
.
push_back
(
pg_names
[
i
]);
dims_to_set
.
push_back
(
dims
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录