提交 0a33f170 编写于 作者: H hedaoyuan

Add stacked lstm network

上级 803da664
from os.path import join as join_path from os.path import join as join_path
import paddle.trainer_config_helpers.attrs as attrs
from paddle.trainer_config_helpers.poolings import MaxPooling
import paddle.v2 as paddle import paddle.v2 as paddle
import paddle.v2.layer as layer import paddle.v2.layer as layer
import paddle.v2.activation as activation import paddle.v2.activation as activation
...@@ -115,7 +117,73 @@ def convolution_net(input_dim, ...@@ -115,7 +117,73 @@ def convolution_net(input_dim,
output = layer.fc(input=[conv_3, conv_4], output = layer.fc(input=[conv_3, conv_4],
size=class_dim, size=class_dim,
act=activation.Softmax()) act=activation.Softmax())
lbl = layer.data("label", data_type.integer_value(1)) lbl = layer.data("label", data_type.integer_value(2))
cost = layer.classification_cost(input=output, label=lbl)
return cost
def stacked_lstm_net(input_dim,
class_dim=2,
emb_dim=128,
hid_dim=512,
stacked_num=3,
is_predict=False):
"""
A Wrapper for sentiment classification task.
This network uses bi-directional recurrent network,
consisting three LSTM layers. This configure is referred to
the paper as following url, but use fewer layrs.
http://www.aclweb.org/anthology/P15-1109
input_dim: here is word dictionary dimension.
class_dim: number of categories.
emb_dim: dimension of word embedding.
hid_dim: dimension of hidden layer.
stacked_num: number of stacked lstm-hidden layer.
is_predict: is predicting or not.
Some layers is not needed in network when predicting.
"""
assert stacked_num % 2 == 1
layer_attr = attrs.ExtraLayerAttribute(drop_rate=0.5)
fc_para_attr = attrs.ParameterAttribute(learning_rate=1e-3)
lstm_para_attr = attrs.ParameterAttribute(initial_std=0., learning_rate=1.)
para_attr = [fc_para_attr, lstm_para_attr]
bias_attr = attrs.ParameterAttribute(initial_std=0., l2_rate=0.)
relu = activation.Relu()
linear = activation.Linear()
data = layer.data("word", data_type.integer_value_sequence(input_dim))
emb = layer.embedding(input=data, size=emb_dim)
fc1 = layer.fc(input=emb, size=hid_dim, act=linear, bias_attr=bias_attr)
lstm1 = layer.lstmemory(
input=fc1, act=relu, bias_attr=bias_attr, layer_attr=layer_attr)
inputs = [fc1, lstm1]
for i in range(2, stacked_num + 1):
fc = layer.fc(input=inputs,
size=hid_dim,
act=linear,
param_attr=para_attr,
bias_attr=bias_attr)
lstm = layer.lstmemory(
input=fc,
reverse=(i % 2) == 0,
act=relu,
bias_attr=bias_attr,
layer_attr=layer_attr)
inputs = [fc, lstm]
fc_last = layer.pooling(input=inputs[0], pooling_type=MaxPooling())
lstm_last = layer.pooling(input=inputs[1], pooling_type=MaxPooling())
output = layer.fc(input=[fc_last, lstm_last],
size=class_dim,
act=activation.Softmax(),
bias_attr=bias_attr,
param_attr=para_attr)
lbl = layer.data("label", data_type.integer_value(2))
cost = layer.classification_cost(input=output, label=lbl) cost = layer.classification_cost(input=output, label=lbl)
return cost return cost
...@@ -177,7 +245,9 @@ if __name__ == '__main__': ...@@ -177,7 +245,9 @@ if __name__ == '__main__':
paddle.init(use_gpu=True, trainer_count=4) paddle.init(use_gpu=True, trainer_count=4)
# network config # network config
cost = convolution_net(dict_dim, class_dim=class_dim, is_predict=is_predict) # cost = convolution_net(dict_dim, class_dim=class_dim, is_predict=is_predict)
cost = stacked_lstm_net(
dict_dim, class_dim=class_dim, stacked_num=3, is_predict=is_predict)
# create parameters # create parameters
parameters = paddle.parameters.create(cost) parameters = paddle.parameters.create(cost)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册