Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
0a33f170
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0a33f170
编写于
3月 01, 2017
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add stacked lstm network
上级
803da664
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
72 addition
and
2 deletion
+72
-2
demo/sentiment/train_v2.py
demo/sentiment/train_v2.py
+72
-2
未找到文件。
demo/sentiment/train_v2.py
浏览文件 @
0a33f170
from
os.path
import
join
as
join_path
from
os.path
import
join
as
join_path
import
paddle.trainer_config_helpers.attrs
as
attrs
from
paddle.trainer_config_helpers.poolings
import
MaxPooling
import
paddle.v2
as
paddle
import
paddle.v2
as
paddle
import
paddle.v2.layer
as
layer
import
paddle.v2.layer
as
layer
import
paddle.v2.activation
as
activation
import
paddle.v2.activation
as
activation
...
@@ -115,7 +117,73 @@ def convolution_net(input_dim,
...
@@ -115,7 +117,73 @@ def convolution_net(input_dim,
output
=
layer
.
fc
(
input
=
[
conv_3
,
conv_4
],
output
=
layer
.
fc
(
input
=
[
conv_3
,
conv_4
],
size
=
class_dim
,
size
=
class_dim
,
act
=
activation
.
Softmax
())
act
=
activation
.
Softmax
())
lbl
=
layer
.
data
(
"label"
,
data_type
.
integer_value
(
1
))
lbl
=
layer
.
data
(
"label"
,
data_type
.
integer_value
(
2
))
cost
=
layer
.
classification_cost
(
input
=
output
,
label
=
lbl
)
return
cost
def
stacked_lstm_net
(
input_dim
,
class_dim
=
2
,
emb_dim
=
128
,
hid_dim
=
512
,
stacked_num
=
3
,
is_predict
=
False
):
"""
A Wrapper for sentiment classification task.
This network uses bi-directional recurrent network,
consisting three LSTM layers. This configure is referred to
the paper as following url, but use fewer layrs.
http://www.aclweb.org/anthology/P15-1109
input_dim: here is word dictionary dimension.
class_dim: number of categories.
emb_dim: dimension of word embedding.
hid_dim: dimension of hidden layer.
stacked_num: number of stacked lstm-hidden layer.
is_predict: is predicting or not.
Some layers is not needed in network when predicting.
"""
assert
stacked_num
%
2
==
1
layer_attr
=
attrs
.
ExtraLayerAttribute
(
drop_rate
=
0.5
)
fc_para_attr
=
attrs
.
ParameterAttribute
(
learning_rate
=
1e-3
)
lstm_para_attr
=
attrs
.
ParameterAttribute
(
initial_std
=
0.
,
learning_rate
=
1.
)
para_attr
=
[
fc_para_attr
,
lstm_para_attr
]
bias_attr
=
attrs
.
ParameterAttribute
(
initial_std
=
0.
,
l2_rate
=
0.
)
relu
=
activation
.
Relu
()
linear
=
activation
.
Linear
()
data
=
layer
.
data
(
"word"
,
data_type
.
integer_value_sequence
(
input_dim
))
emb
=
layer
.
embedding
(
input
=
data
,
size
=
emb_dim
)
fc1
=
layer
.
fc
(
input
=
emb
,
size
=
hid_dim
,
act
=
linear
,
bias_attr
=
bias_attr
)
lstm1
=
layer
.
lstmemory
(
input
=
fc1
,
act
=
relu
,
bias_attr
=
bias_attr
,
layer_attr
=
layer_attr
)
inputs
=
[
fc1
,
lstm1
]
for
i
in
range
(
2
,
stacked_num
+
1
):
fc
=
layer
.
fc
(
input
=
inputs
,
size
=
hid_dim
,
act
=
linear
,
param_attr
=
para_attr
,
bias_attr
=
bias_attr
)
lstm
=
layer
.
lstmemory
(
input
=
fc
,
reverse
=
(
i
%
2
)
==
0
,
act
=
relu
,
bias_attr
=
bias_attr
,
layer_attr
=
layer_attr
)
inputs
=
[
fc
,
lstm
]
fc_last
=
layer
.
pooling
(
input
=
inputs
[
0
],
pooling_type
=
MaxPooling
())
lstm_last
=
layer
.
pooling
(
input
=
inputs
[
1
],
pooling_type
=
MaxPooling
())
output
=
layer
.
fc
(
input
=
[
fc_last
,
lstm_last
],
size
=
class_dim
,
act
=
activation
.
Softmax
(),
bias_attr
=
bias_attr
,
param_attr
=
para_attr
)
lbl
=
layer
.
data
(
"label"
,
data_type
.
integer_value
(
2
))
cost
=
layer
.
classification_cost
(
input
=
output
,
label
=
lbl
)
cost
=
layer
.
classification_cost
(
input
=
output
,
label
=
lbl
)
return
cost
return
cost
...
@@ -177,7 +245,9 @@ if __name__ == '__main__':
...
@@ -177,7 +245,9 @@ if __name__ == '__main__':
paddle
.
init
(
use_gpu
=
True
,
trainer_count
=
4
)
paddle
.
init
(
use_gpu
=
True
,
trainer_count
=
4
)
# network config
# network config
cost
=
convolution_net
(
dict_dim
,
class_dim
=
class_dim
,
is_predict
=
is_predict
)
# cost = convolution_net(dict_dim, class_dim=class_dim, is_predict=is_predict)
cost
=
stacked_lstm_net
(
dict_dim
,
class_dim
=
class_dim
,
stacked_num
=
3
,
is_predict
=
is_predict
)
# create parameters
# create parameters
parameters
=
paddle
.
parameters
.
create
(
cost
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录