Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
0a21649f
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0a21649f
编写于
5月 17, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update the SRL demo to add infering.
上级
2e527ad3
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
116 addition
and
53 deletion
+116
-53
demo/semantic_role_labeling/api_train_v2.py
demo/semantic_role_labeling/api_train_v2.py
+116
-53
未找到文件。
demo/semantic_role_labeling/api_train_v2.py
浏览文件 @
0a21649f
import
sys
import
math
import
math
import
numpy
as
np
import
numpy
as
np
import
paddle.v2
as
paddle
import
gzip
import
logging
import
paddle.v2.dataset.conll05
as
conll05
import
paddle.v2.dataset.conll05
as
conll05
import
paddle.v2.evaluator
as
evaluator
import
paddle.v2
as
paddle
logger
=
logging
.
getLogger
(
'paddle'
)
logger
.
setLevel
(
logging
.
WARN
)
def
db_lstm
():
word_dict
,
verb_dict
,
label_dict
=
conll05
.
get_dict
()
word_dict
,
verb_dict
,
label_dict
=
conll05
.
get_dict
()
word_dict_len
=
len
(
word_dict
)
word_dict_len
=
len
(
word_dict
)
label_dict_len
=
len
(
label_dict
)
label_dict_len
=
len
(
label_dict
)
pred_len
=
len
(
verb_dict
)
pred_len
=
len
(
verb_dict
)
mark_dict_len
=
2
mark_dict_len
=
2
word_dim
=
32
word_dim
=
32
mark_dim
=
5
mark_dim
=
5
hidden_dim
=
512
hidden_dim
=
512
depth
=
8
depth
=
8
default_std
=
1
/
math
.
sqrt
(
hidden_dim
)
/
3.0
mix_hidden_lr
=
1e-3
#8 features
def
d_type
(
size
):
return
paddle
.
data_type
.
integer_value_sequence
(
size
)
def
d_type
(
size
):
return
paddle
.
data_type
.
integer_value_sequence
(
size
)
def
db_lstm
():
#8 features
word
=
paddle
.
layer
.
data
(
name
=
'word_data'
,
type
=
d_type
(
word_dict_len
))
word
=
paddle
.
layer
.
data
(
name
=
'word_data'
,
type
=
d_type
(
word_dict_len
))
predicate
=
paddle
.
layer
.
data
(
name
=
'verb_data'
,
type
=
d_type
(
pred_len
))
predicate
=
paddle
.
layer
.
data
(
name
=
'verb_data'
,
type
=
d_type
(
pred_len
))
...
@@ -31,11 +39,7 @@ def db_lstm():
...
@@ -31,11 +39,7 @@ def db_lstm():
ctx_p2
=
paddle
.
layer
.
data
(
name
=
'ctx_p2_data'
,
type
=
d_type
(
word_dict_len
))
ctx_p2
=
paddle
.
layer
.
data
(
name
=
'ctx_p2_data'
,
type
=
d_type
(
word_dict_len
))
mark
=
paddle
.
layer
.
data
(
name
=
'mark_data'
,
type
=
d_type
(
mark_dict_len
))
mark
=
paddle
.
layer
.
data
(
name
=
'mark_data'
,
type
=
d_type
(
mark_dict_len
))
target
=
paddle
.
layer
.
data
(
name
=
'target'
,
type
=
d_type
(
label_dict_len
))
emb_para
=
paddle
.
attr
.
Param
(
name
=
'emb'
,
initial_std
=
0.
,
is_static
=
True
)
default_std
=
1
/
math
.
sqrt
(
hidden_dim
)
/
3.0
emb_para
=
paddle
.
attr
.
Param
(
name
=
'emb'
,
initial_std
=
0.
,
learning_rate
=
0.
)
std_0
=
paddle
.
attr
.
Param
(
initial_std
=
0.
)
std_0
=
paddle
.
attr
.
Param
(
initial_std
=
0.
)
std_default
=
paddle
.
attr
.
Param
(
initial_std
=
default_std
)
std_default
=
paddle
.
attr
.
Param
(
initial_std
=
default_std
)
...
@@ -63,7 +67,6 @@ def db_lstm():
...
@@ -63,7 +67,6 @@ def db_lstm():
input
=
emb
,
param_attr
=
std_default
)
for
emb
in
emb_layers
input
=
emb
,
param_attr
=
std_default
)
for
emb
in
emb_layers
])
])
mix_hidden_lr
=
1e-3
lstm_para_attr
=
paddle
.
attr
.
Param
(
initial_std
=
0.0
,
learning_rate
=
1.0
)
lstm_para_attr
=
paddle
.
attr
.
Param
(
initial_std
=
0.0
,
learning_rate
=
1.0
)
hidden_para_attr
=
paddle
.
attr
.
Param
(
hidden_para_attr
=
paddle
.
attr
.
Param
(
initial_std
=
default_std
,
learning_rate
=
mix_hidden_lr
)
initial_std
=
default_std
,
learning_rate
=
mix_hidden_lr
)
...
@@ -111,6 +114,33 @@ def db_lstm():
...
@@ -111,6 +114,33 @@ def db_lstm():
input
=
input_tmp
[
1
],
param_attr
=
lstm_para_attr
)
input
=
input_tmp
[
1
],
param_attr
=
lstm_para_attr
)
],
)
],
)
return
feature_out
def
load_parameter
(
file_name
,
h
,
w
):
with
open
(
file_name
,
'rb'
)
as
f
:
f
.
read
(
16
)
# skip header.
return
np
.
fromfile
(
f
,
dtype
=
np
.
float32
).
reshape
(
h
,
w
)
def
test_a_batch
(
inferer
,
test_data
,
tag_dict
):
probs
=
inferer
.
infer
(
input
=
test_data
,
field
=
'id'
)
assert
len
(
probs
)
==
sum
(
len
(
x
[
0
])
for
x
in
test_data
)
for
test_sample
in
test_data
:
start_id
=
0
pre_lab
=
[
tag_dict
[
probs
[
start_id
+
i
]]
for
i
in
xrange
(
len
(
test_sample
[
0
]))
]
print
pre_lab
start_id
+=
len
(
test_sample
[
0
])
def
main
(
is_predict
=
False
):
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
# define network topology
feature_out
=
db_lstm
()
target
=
paddle
.
layer
.
data
(
name
=
'target'
,
type
=
d_type
(
label_dict_len
))
crf_cost
=
paddle
.
layer
.
crf
(
size
=
label_dict_len
,
crf_cost
=
paddle
.
layer
.
crf
(
size
=
label_dict_len
,
input
=
feature_out
,
input
=
feature_out
,
label
=
target
,
label
=
target
,
...
@@ -120,29 +150,20 @@ def db_lstm():
...
@@ -120,29 +150,20 @@ def db_lstm():
learning_rate
=
mix_hidden_lr
))
learning_rate
=
mix_hidden_lr
))
crf_dec
=
paddle
.
layer
.
crf_decoding
(
crf_dec
=
paddle
.
layer
.
crf_decoding
(
name
=
'crf_dec_l'
,
size
=
label_dict_len
,
size
=
label_dict_len
,
input
=
feature_out
,
input
=
feature_out
,
label
=
target
,
label
=
target
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
'crfw'
))
param_attr
=
paddle
.
attr
.
Param
(
name
=
'crfw'
))
evaluator
.
sum
(
input
=
crf_dec
)
return
crf_cost
,
crf_dec
evaluator
.
chunk
(
input
=
crf_dec
,
label
=
target
,
def
load_parameter
(
file_name
,
h
,
w
):
chunk_scheme
=
"IOB"
,
with
open
(
file_name
,
'rb'
)
as
f
:
num_chunk_types
=
label_dict_len
/
2
)
f
.
read
(
16
)
# skip header.
return
np
.
fromfile
(
f
,
dtype
=
np
.
float32
).
reshape
(
h
,
w
)
def
main
():
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
# define network topology
crf_cost
,
crf_dec
=
db_lstm
()
# create parameters
# create parameters
parameters
=
paddle
.
parameters
.
create
([
crf_cost
,
crf_dec
])
parameters
=
paddle
.
parameters
.
create
(
crf_cost
)
parameters
.
set
(
'emb'
,
load_parameter
(
conll05
.
get_embedding
(),
44068
,
32
))
# create optimizer
# create optimizer
optimizer
=
paddle
.
optimizer
.
Momentum
(
optimizer
=
paddle
.
optimizer
.
Momentum
(
...
@@ -152,18 +173,12 @@ def main():
...
@@ -152,18 +173,12 @@ def main():
model_average
=
paddle
.
optimizer
.
ModelAverage
(
model_average
=
paddle
.
optimizer
.
ModelAverage
(
average_window
=
0.5
,
max_average_window
=
10000
),
)
average_window
=
0.5
,
max_average_window
=
10000
),
)
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
100
==
0
:
print
"Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
crf_cost
,
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
crf_cost
,
parameters
=
parameters
,
parameters
=
parameters
,
update_equation
=
optimizer
)
update_equation
=
optimizer
,
parameters
.
set
(
'emb'
,
load_parameter
(
conll05
.
get_embedding
(),
44068
,
32
)
)
extra_layers
=
crf_dec
)
trn_
reader
=
paddle
.
batch
(
reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
reader
.
shuffle
(
conll05
.
test
(),
buf_size
=
8192
),
batch_size
=
10
)
conll05
.
test
(),
buf_size
=
8192
),
batch_size
=
10
)
...
@@ -179,12 +194,60 @@ def main():
...
@@ -179,12 +194,60 @@ def main():
'target'
:
8
'target'
:
8
}
}
trainer
.
train
(
def
event_handler
(
event
):
reader
=
trn_reader
,
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
event_handler
=
event_handler
,
if
event
.
batch_id
%
100
==
0
:
num_passes
=
10000
,
print
"Pass %d, Batch %d, Cost %f, %s"
%
(
feeding
=
feeding
)
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
if
event
.
batch_id
%
1000
==
0
:
result
=
trainer
.
test
(
reader
=
reader
,
feeding
=
feeding
)
print
"
\n
Test with Pass %d, Batch %d, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
result
.
metrics
)
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
# save parameters
with
gzip
.
open
(
'params_pass_%d.tar.gz'
%
event
.
pass_id
,
'w'
)
as
f
:
parameters
.
to_tar
(
f
)
result
=
trainer
.
test
(
reader
=
reader
,
feeding
=
feeding
)
print
"
\n
Test with Pass %d, %s"
%
(
event
.
pass_id
,
result
.
metrics
)
if
not
is_predict
:
trainer
.
train
(
reader
=
reader
,
event_handler
=
event_handler
,
num_passes
=
10
,
feeding
=
feeding
)
else
:
labels_reverse
=
{}
for
(
k
,
v
)
in
label_dict
.
items
():
labels_reverse
[
v
]
=
k
test_creator
=
paddle
.
dataset
.
conll05
.
test
()
predict
=
paddle
.
layer
.
crf_decoding
(
size
=
label_dict_len
,
input
=
feature_out
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
'crfw'
))
test_pass
=
0
with
gzip
.
open
(
'params_pass_%d.tar.gz'
%
(
test_pass
))
as
f
:
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
f
)
inferer
=
paddle
.
inference
.
Inference
(
output_layer
=
predict
,
parameters
=
parameters
)
# prepare test data
test_data
=
[]
test_batch_size
=
50
for
idx
,
item
in
enumerate
(
test_creator
()):
test_data
.
append
(
item
[
0
:
8
])
if
idx
and
(
not
idx
%
test_batch_size
):
test_a_batch
(
inferer
,
test_data
,
labels_reverse
)
test_data
=
[]
test_a_batch
(
inferer
,
test_data
,
labels_reverse
)
test_data
=
[]
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
main
()
main
(
is_predict
=
True
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录