Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
09866fb7
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
09866fb7
编写于
11月 15, 2017
作者:
Y
Yan Chunwei
提交者:
GitHub
11月 15, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
feature/beam search op (#5052)
上级
7c3ec220
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
476 addition
and
0 deletion
+476
-0
paddle/operators/beam_search_op.cc
paddle/operators/beam_search_op.cc
+185
-0
paddle/operators/beam_search_op.h
paddle/operators/beam_search_op.h
+226
-0
python/paddle/v2/framework/tests/test_beam_search_op.py
python/paddle/v2/framework/tests/test_beam_search_op.py
+65
-0
未找到文件。
paddle/operators/beam_search_op.cc
0 → 100644
浏览文件 @
09866fb7
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/beam_search_op.h"
#include <map>
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
void
BeamSearch
::
operator
()(
const
framework
::
LoDTensor
&
pre_ids
,
framework
::
LoDTensor
*
selected_ids
,
framework
::
LoDTensor
*
selected_scores
)
{
auto
items
=
SelectTopBeamSizeItems
();
auto
selected_items
=
ToMap
(
items
);
PruneEndidCandidates
(
pre_ids
,
&
selected_items
);
// calculate the output tensor's height
size_t
num_instances
=
std
::
accumulate
(
std
::
begin
(
items
),
std
::
end
(
items
),
0
,
[](
size_t
a
,
std
::
vector
<
Item
>
&
b
)
{
return
a
+
b
.
size
();
});
// the output tensor shape should be [num_instances, 1]
auto
dims
=
framework
::
make_ddim
(
std
::
vector
<
int64_t
>
({
static_cast
<
int
>
(
num_instances
),
1
}));
selected_ids
->
Resize
(
dims
);
selected_scores
->
Resize
(
dims
);
std
::
map
<
size_t
/*offset*/
,
std
::
vector
<
Item
>>
hash
;
framework
::
LoD
new_lod
;
auto
*
ids_data
=
selected_ids
->
mutable_data
<
int
>
(
platform
::
CPUPlace
());
auto
*
scores_data
=
selected_scores
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
// fill in data
std
::
vector
<
size_t
>
low_level
;
size_t
low_offset
=
0
;
for
(
auto
&
items
:
selected_items
)
{
low_level
.
push_back
(
low_offset
);
for
(
auto
&
item
:
items
)
{
ids_data
[
low_offset
]
=
item
.
id
;
scores_data
[
low_offset
]
=
item
.
score
;
low_offset
++
;
}
}
// fill lod
auto
abs_lod
=
framework
::
ToAbsOffset
(
ids_
->
lod
());
auto
&
high_level
=
abs_lod
[
lod_level_
];
framework
::
LoD
lod
(
2
);
lod
[
0
].
assign
(
high_level
.
begin
(),
high_level
.
end
());
lod
[
1
].
assign
(
low_level
.
begin
(),
low_level
.
end
());
selected_ids
->
set_lod
(
lod
);
selected_scores
->
set_lod
(
lod
);
}
void
BeamSearch
::
PruneEndidCandidates
(
const
framework
::
LoDTensor
&
pre_ids
,
std
::
vector
<
std
::
vector
<
Item
>>
*
items
)
{
auto
*
pre_ids_data
=
pre_ids
.
data
<
int
>
();
for
(
size_t
offset
=
0
;
offset
<
items
->
size
();
offset
++
)
{
auto
prefix_id
=
pre_ids_data
[
offset
];
if
(
prefix_id
==
end_id_
)
{
items
->
at
(
offset
).
clear
();
}
}
}
std
::
vector
<
std
::
vector
<
BeamSearch
::
Item
>>
BeamSearch
::
ToMap
(
const
std
::
vector
<
std
::
vector
<
Item
>>
&
items
)
{
std
::
vector
<
std
::
vector
<
Item
>>
result
;
for
(
auto
&
entries
:
items
)
{
for
(
const
auto
&
item
:
entries
)
{
if
(
item
.
offset
>=
result
.
size
())
{
result
.
resize
(
item
.
offset
+
1
);
}
result
[
item
.
offset
].
push_back
(
item
);
}
}
return
result
;
}
std
::
vector
<
std
::
vector
<
BeamSearch
::
Item
>>
BeamSearch
::
SelectTopBeamSizeItems
()
{
std
::
vector
<
std
::
vector
<
Item
>>
result
;
std
::
vector
<
Item
>
items
;
// for each source sentence, select the top beam_size items across all
// candidate sets.
while
(
NextItemSet
(
&
items
))
{
std
::
nth_element
(
std
::
begin
(
items
),
std
::
begin
(
items
)
+
beam_size_
,
std
::
end
(
items
),
[](
const
Item
&
a
,
const
Item
&
b
)
{
// TODO(superjom) make score's comparation customizable.
// partial sort in descending order
return
a
.
score
>
b
.
score
;
});
// prune the top beam_size items.
if
(
items
.
size
()
>
beam_size_
)
{
items
.
resize
(
beam_size_
);
}
result
.
emplace_back
(
items
);
}
return
result
;
}
// the candidates of a source
bool
BeamSearch
::
NextItemSet
(
std
::
vector
<
BeamSearch
::
Item
>
*
items
)
{
if
(
sent_offset_
>=
ids_
->
NumElements
(
lod_level_
))
{
return
false
;
}
// find the current candidates
auto
ids
=
*
ids_
;
auto
scores
=
*
scores_
;
auto
source_abs_two_level_lod
=
framework
::
SliceInLevel
(
ids
.
lod
(),
lod_level_
,
sent_offset_
,
sent_offset_
+
1
);
source_abs_two_level_lod
=
framework
::
ToAbsOffset
(
source_abs_two_level_lod
);
auto
abs_lod
=
framework
::
ToAbsOffset
(
ids
.
lod
());
PADDLE_ENFORCE_GE
(
source_abs_two_level_lod
.
size
(),
2UL
);
auto
*
ids_data
=
ids
.
data
<
int
>
();
auto
*
scores_data
=
scores
.
data
<
float
>
();
size_t
instance_dim
=
1
;
for
(
int
i
=
1
;
i
<
ids
.
dims
().
size
();
i
++
)
{
instance_dim
*=
ids
.
dims
()[
i
];
}
items
->
clear
();
items
->
reserve
(
framework
::
product
(
ids
.
dims
()));
for
(
size_t
offset
=
abs_lod
[
lod_level_
][
sent_offset_
];
offset
<
abs_lod
[
lod_level_
][
sent_offset_
+
1
];
offset
++
)
{
for
(
int
d
=
0
;
d
<
instance_dim
;
d
++
)
{
const
size_t
dim_offset
=
offset
*
instance_dim
+
d
;
items
->
emplace_back
(
offset
,
ids_data
[
dim_offset
],
scores_data
[
dim_offset
]);
}
}
sent_offset_
++
;
return
true
;
}
class
BeamSearchProtoAndCheckerMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
BeamSearchProtoAndCheckerMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
// inputs and outputs stored in proto
AddInput
(
"pre_ids"
,
"ids in previous step"
);
AddInput
(
"ids"
,
"a LoDTensor of shape of [None,k]"
);
AddInput
(
"scores"
,
"a LoDTensor that has the same shape and LoD with `ids`"
);
AddOutput
(
"selected_ids"
,
"a LoDTensor that stores the IDs selected by beam search"
);
AddOutput
(
"selected_scores"
,
"a LoDTensor that has the same shape and LoD with `selected_ids`"
);
// Attributes stored in AttributeMap
AddAttr
<
int
>
(
"level"
,
"the level of LoDTensor"
);
AddAttr
<
int
>
(
"beam_size"
,
"beam size for beam search"
);
AddAttr
<
int
>
(
"end_id"
,
"the token id which indicates the end of a sequence"
);
AddComment
(
"This is a beam search operator that help to generate sequences."
);
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OP_WITHOUT_GRADIENT
(
beam_search
,
paddle
::
operators
::
BeamSearchOp
,
paddle
::
operators
::
BeamSearchProtoAndCheckerMaker
);
paddle/operators/beam_search_op.h
0 → 100644
浏览文件 @
09866fb7
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifdef PADDLE_WITH_TESTING
#include "gtest/gtest.h"
#endif
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/operator.h"
namespace
paddle
{
namespace
operators
{
/*
* This is an implementation of beam search.
*
* To explain the details, lets take machine translation task for example, in
* this task, one source sentence is translated to multiple target sentences,
* during this period, one sentence will be translated to multiple translation
* prefixes(target sentence that have not ended), in each time step a prefix
* will have some candidates, input the candidate ids and their corresponding
* scores (probabilities), it will sort and select the top beam_size candidates
* for each source sentence, and store the selected candidates's score and their
* corresponding ids to LoDTensors.
*
* A detailed example:
*
* Input
*
* ids:
* LoD (should have 2 levels)
* first level: [0, 1, 4]
* second level: [0, 1, 2, 3, 4]
*
* tensor's data
* [
* [4, 2, 5]
* [2, 1, 3]
* [3, 5, 2]
* [8, 2, 1]
* ]
*
* scores:
* LoD same as `ids`
* tensor's data
* [
* [0.5, 0.3, 0.2]
* [0.6, 0.3, 0.1]
* [0.9, 0.5, 0.1]
* [0.7, 0.5, 0.1]
* ]
*
* the inputs means that there are 2 source sentences to translate, and the
* first source has 1 prefix, the second source has 2 prefix.
*
* lets assume beam size is 2, and the beam search's output should be
* LoD
* first level:
* [0, 1, 2]
* second level:
* [0, 2, 4]
*
* tensor's data
* [[
* 0.5,
* 0.3,
* 0.9,
* 0.7
* ]]
*
* TODO all the prune operations should be in the beam search, so it is better
* to split the beam search algorithm into a sequence of smaller operators, and
* the prune operators can be inserted in this sequence.
*/
class
BeamSearch
{
public:
// TODO(superjom) make type customizable
using
id_t
=
size_t
;
using
score_t
=
float
;
/*
* Input the arguments that needed by this class.
*/
BeamSearch
(
const
framework
::
LoDTensor
&
ids
,
const
framework
::
LoDTensor
&
scores
,
size_t
level
,
size_t
beam_size
,
int
end_id
)
:
beam_size_
(
beam_size
),
ids_
(
&
ids
),
scores_
(
&
scores
),
lod_level_
(
level
),
end_id_
(
end_id
)
{}
/*
* The main function of beam search.
*
* @selected_ids: a [None, 1]-shaped tensor with LoD.
* In a machine translation model, it might be the candidate term id sets,
* each set stored as a varience-length sequence.
* The format might be described with a two-level LoD
* - [[0 1]
* - [0 1 2]]
* - [[]
* - [0 1]]
* the first level of LoD tells that there are two source sentences. The
* second level describes the details of the candidate id set's offsets in
* the
* source sentences.
*
* @selected_scores: a LoD tensor with the same shape and LoD with
* selected_ids.
* It stores the corresponding scores of candidate ids in selected_ids.
*
* Return false if all the input tensor is empty, in machine translation task
* that means no candidates is provided, and the task will stop running.
*/
void
operator
()(
const
framework
::
LoDTensor
&
pre_ids
,
framework
::
LoDTensor
*
selected_ids
,
framework
::
LoDTensor
*
selected_scores
);
protected:
/*
* The basic items help to sort.
*/
struct
Item
{
Item
()
{}
Item
(
size_t
offset
,
size_t
id
,
float
score
)
:
offset
(
offset
),
id
(
id
),
score
(
score
)
{}
// offset in the lod_level_+1
size_t
offset
;
// the candidate id
id_t
id
;
// the corresponding score
score_t
score
;
};
void
PruneEndidCandidates
(
const
framework
::
LoDTensor
&
pre_ids
,
std
::
vector
<
std
::
vector
<
Item
>>*
items
);
/*
* Transform the items into a map whose key is offset, value is the items.
* NOTE low performance
*/
std
::
vector
<
std
::
vector
<
Item
>>
ToMap
(
const
std
::
vector
<
std
::
vector
<
Item
>>&
inputs
);
/*
* For each source, select top beam_size records.
*/
std
::
vector
<
std
::
vector
<
Item
>>
SelectTopBeamSizeItems
();
/*
* Get the items of next source sequence, return false if no remaining items.
*/
bool
NextItemSet
(
std
::
vector
<
Item
>*
items
);
private:
size_t
beam_size_
;
const
framework
::
LoDTensor
*
ids_
;
const
framework
::
LoDTensor
*
scores_
;
size_t
lod_level_
{
0
};
size_t
sent_offset_
{
0
};
int
end_id_
{
0
};
};
class
BeamSearchOp
:
public
framework
::
OperatorBase
{
public:
BeamSearchOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
BeamSearchOp
(
const
BeamSearchOp
&
o
)
:
framework
::
OperatorBase
(
static_cast
<
const
framework
::
OperatorBase
&>
(
o
))
{
PADDLE_THROW
(
"Not Implemented"
);
}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{
LOG
(
INFO
)
<<
"run beam search op"
;
auto
ids_var
=
scope
.
FindVar
(
Input
(
"ids"
));
auto
scores_var
=
scope
.
FindVar
(
Input
(
"scores"
));
auto
pre_ids_var
=
scope
.
FindVar
(
Input
(
"pre_ids"
));
PADDLE_ENFORCE_NOT_NULL
(
ids_var
);
PADDLE_ENFORCE_NOT_NULL
(
scores_var
);
PADDLE_ENFORCE_NOT_NULL
(
pre_ids_var
);
auto
&
ids
=
ids_var
->
Get
<
framework
::
LoDTensor
>
();
auto
&
scores
=
scores_var
->
Get
<
framework
::
LoDTensor
>
();
auto
&
pre_ids
=
pre_ids_var
->
Get
<
framework
::
LoDTensor
>
();
size_t
level
=
Attr
<
int
>
(
"level"
);
size_t
beam_size
=
Attr
<
int
>
(
"beam_size"
);
int
end_id
=
Attr
<
int
>
(
"end_id"
);
LOG
(
INFO
)
<<
"init beam search"
;
BeamSearch
alg
(
ids
,
scores
,
level
,
beam_size
,
end_id
);
LOG
(
INFO
)
<<
"after beam search"
;
auto
selected_ids_var
=
scope
.
FindVar
(
Output
(
"selected_ids"
));
auto
selected_scores_var
=
scope
.
FindVar
(
Output
(
"selected_scores"
));
PADDLE_ENFORCE_NOT_NULL
(
selected_ids_var
);
PADDLE_ENFORCE_NOT_NULL
(
selected_scores_var
);
auto
&
selected_ids_tensor
=
*
selected_ids_var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
&
selected_scores_tensor
=
*
selected_scores_var
->
GetMutable
<
framework
::
LoDTensor
>
();
LOG
(
INFO
)
<<
"run beam search"
;
alg
(
pre_ids
,
&
selected_ids_tensor
,
&
selected_scores_tensor
);
LOG
(
INFO
)
<<
"finish beam search"
;
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/v2/framework/tests/test_beam_search_op.py
0 → 100644
浏览文件 @
09866fb7
import
logging
from
paddle.v2.framework.op
import
Operator
,
DynamicRecurrentOp
import
paddle.v2.framework.core
as
core
import
unittest
import
numpy
as
np
def
create_tensor
(
scope
,
name
,
np_data
):
tensor
=
scope
.
var
(
name
).
get_tensor
()
tensor
.
set
(
np_data
,
core
.
CPUPlace
())
return
tensor
class
BeamSearchOpTester
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
scope
=
core
.
Scope
()
self
.
ctx
=
core
.
DeviceContext
.
create
(
core
.
CPUPlace
())
self
.
_create_ids
()
self
.
_create_scores
()
self
.
_create_pre_ids
()
self
.
scope
.
var
(
'selected_ids'
)
self
.
scope
.
var
(
'selected_scores'
)
def
test_run
(
self
):
op
=
Operator
(
'beam_search'
,
pre_ids
=
"pre_ids"
,
ids
=
'ids'
,
scores
=
'scores'
,
selected_ids
=
'selected_ids'
,
selected_scores
=
'selected_scores'
,
level
=
0
,
beam_size
=
2
,
end_id
=
0
,
)
op
.
run
(
self
.
scope
,
self
.
ctx
)
selected_ids
=
self
.
scope
.
find_var
(
"selected_ids"
).
get_tensor
()
print
'selected_ids'
,
np
.
array
(
selected_ids
)
print
'lod'
,
selected_ids
.
lod
()
def
_create_pre_ids
(
self
):
np_data
=
np
.
array
([[
1
,
2
,
3
,
4
]],
dtype
=
'int32'
)
tensor
=
create_tensor
(
self
.
scope
,
"pre_ids"
,
np_data
)
def
_create_ids
(
self
):
self
.
lod
=
[[
0
,
1
,
4
],
[
0
,
1
,
2
,
3
,
4
]]
np_data
=
np
.
array
(
[[
4
,
2
,
5
],
[
2
,
1
,
3
],
[
3
,
5
,
2
],
[
8
,
2
,
1
]],
dtype
=
'int32'
)
tensor
=
create_tensor
(
self
.
scope
,
"ids"
,
np_data
)
tensor
.
set_lod
(
self
.
lod
)
def
_create_scores
(
self
):
np_data
=
np
.
array
(
[
[
0.5
,
0.3
,
0.2
],
[
0.6
,
0.3
,
0.1
],
[
0.9
,
0.5
,
0.1
],
[
0.7
,
0.5
,
0.1
],
],
dtype
=
'float32'
)
tensor
=
create_tensor
(
self
.
scope
,
"scores"
,
np_data
)
tensor
.
set_lod
(
self
.
lod
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录