提交 089f8e2d 编写于 作者: Y Yibing Liu

Merge branch 'develop' of upstream into multiplex_modify_dev

......@@ -22,5 +22,5 @@ def initHook(settings, height, width, color, num_class, **kwargs):
def process(settings, file_list):
for i in xrange(1024):
img = np.random.rand(1, settings.data_size).reshape(-1, 1).flatten()
lab = random.randint(0, settings.num_class)
lab = random.randint(0, settings.num_class - 1)
yield img.astype('float32'), int(lab)
set -e
unset OMP_NUM_THREADS MKL_NUM_THREADS
export OMP_DYNAMIC="FALSE"
export KMP_AFFINITY="granularity=fine,compact,0,0"
function train() {
topology=$1
bs=$2
use_mkldnn=$3
if [ $3 == "True" ]; then
use_mkldnn=$3
thread=1
log="logs/${topology}-mkldnn-${bs}.log"
elif [ $3 == "False" ]; then
use_mkldnn=$3
thread=`nproc`
log="logs/${topology}-${thread}mklml-${bs}.log"
else
echo "Wrong input $3, use True or False."
fi
args="batch_size=${bs}"
config="${topology}.py"
paddle train --job=time \
--config=$config \
--use_mkldnn=$use_mkldnn \
--use_gpu=False \
--trainer_count=$thread \
--log_period=10 \
--test_period=100 \
--config_args=$args \
2>&1 | tee ${log}
}
if [ ! -d "train.list" ]; then
echo " " > train.list
fi
if [ ! -d "logs" ]; then
mkdir logs
fi
#========= mkldnn =========#
# vgg
train vgg 64 True
train vgg 128 True
train vgg 256 True
#========== mklml ===========#
train vgg 64 False
train vgg 128 False
train vgg 256 False
#!/usr/bin/env python
from paddle.trainer_config_helpers import *
height = 224
width = 224
num_class = 1000
batch_size = get_config_arg('batch_size', int, 64)
layer_num = get_config_arg('layer_num', int, 19)
args = {'height': height, 'width': width, 'color': True, 'num_class': num_class}
define_py_data_sources2(
"train.list", None, module="provider", obj="process", args=args)
settings(
batch_size=batch_size,
learning_rate=0.01 / batch_size,
learning_method=MomentumOptimizer(0.9),
regularization=L2Regularization(0.0005 * batch_size))
img = data_layer(name='image', size=height * width * 3)
def vgg_network(vgg_num=3):
tmp = img_conv_group(
input=img,
num_channels=3,
conv_padding=1,
conv_num_filter=[64, 64],
conv_filter_size=3,
conv_act=ReluActivation(),
pool_size=2,
pool_stride=2,
pool_type=MaxPooling())
tmp = img_conv_group(
input=tmp,
conv_num_filter=[128, 128],
conv_padding=1,
conv_filter_size=3,
conv_act=ReluActivation(),
pool_stride=2,
pool_type=MaxPooling(),
pool_size=2)
channels = []
for i in range(vgg_num):
channels.append(256)
tmp = img_conv_group(
input=tmp,
conv_num_filter=channels,
conv_padding=1,
conv_filter_size=3,
conv_act=ReluActivation(),
pool_stride=2,
pool_type=MaxPooling(),
pool_size=2)
channels = []
for i in range(vgg_num):
channels.append(512)
tmp = img_conv_group(
input=tmp,
conv_num_filter=channels,
conv_padding=1,
conv_filter_size=3,
conv_act=ReluActivation(),
pool_stride=2,
pool_type=MaxPooling(),
pool_size=2)
tmp = img_conv_group(
input=tmp,
conv_num_filter=channels,
conv_padding=1,
conv_filter_size=3,
conv_act=ReluActivation(),
pool_stride=2,
pool_type=MaxPooling(),
pool_size=2)
tmp = fc_layer(
input=tmp,
size=4096,
act=ReluActivation(),
layer_attr=ExtraAttr(drop_rate=0.5))
tmp = fc_layer(
input=tmp,
size=4096,
act=ReluActivation(),
layer_attr=ExtraAttr(drop_rate=0.5))
return fc_layer(input=tmp, size=num_class, act=SoftmaxActivation())
if layer_num == 16:
vgg = vgg_network(3)
elif layer_num == 19:
vgg = vgg_network(4)
else:
print("Wrong layer number.")
lab = data_layer('label', num_class)
loss = cross_entropy(input=vgg, label=lab)
outputs(loss)
......@@ -253,7 +253,7 @@ function(nv_library TARGET_NAME)
foreach(source_file ${nv_library_SRCS})
string(REGEX REPLACE "\\.[^.]*$" "" source ${source_file})
if(EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h)
list(APPEND cc_library_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h)
list(APPEND nv_library_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h)
endif()
endforeach()
add_style_check_target(${TARGET_NAME} ${nv_library_SRCS} ${nv_library_HEADERS})
......
......@@ -97,6 +97,10 @@ function(link_paddle_exe TARGET_NAME)
target_link_libraries(${TARGET_NAME} log)
endif(ANDROID)
if(WITH_MKLDNN AND WITH_MKLML AND MKLDNN_IOMP_DIR)
target_link_libraries(${TARGET_NAME} "-L${MKLDNN_IOMP_DIR} -liomp5 -Wl,--as-needed")
endif()
add_dependencies(${TARGET_NAME} ${external_project_dependencies})
endfunction()
......
......@@ -20,7 +20,7 @@ Docker使用入门
docker pull paddlepaddle/paddle:0.10.0
来下载Docker镜像,paddlepaddle/paddle是从官方镜像源Dockerhub.com下载的,推荐国内用户使用ocker.paddlepaddle.org/paddle下载。
来下载Docker镜像,paddlepaddle/paddle是从官方镜像源Dockerhub.com下载的,推荐国内用户使用docker.paddlepaddle.org/paddle下载。
- *容器*: 如果说一个Docker镜像就是一个程序,那容器就是这个程序运行时产生的“进程”。
实际上,一个容器就是一个操作系统的进程,但是是运行在独立的进程空间,文件系统以及网络之上。
......
# How to write a new operator
- [Background](#Background)
- [Implementing C++ Types](#Implementing_C++_Types)
- [Defining ProtoMaker](#Defining_ProtoMaker)
- [Defining Operator](#Defining_Operator)
- [Registering Operator](#Registering_Operator)
- [Compilation](#Compilation)
- [Python Binding](#Python_Binding)
- [Unit Tests](#Unit_Tests)
## Background
Here are the base types needed. For details, please refer to the design docs.
- `framework::OperatorBase`: Operator (Op)base class.
- `framework::OpKernel`: Base class for Op computation.
- `framework::OperatorWithKernel`: Inherited from OperatorBase, describing an operator with computation.
- `class OpProtoAndCheckerMaker`: Describes an Operator's input, output, attributes and description, mainly used to interface with Python API.
An operator can be differentiated by whether in has kernel methods. An operator with kernel inherits from `OperatorWithKernel` while the ones without inherit from `OperatorBase`. This tutorial focuses on implementing operators with kernels. In short, an operator includes the following information:
Information | Where is it defined
-------------- | :----------------------
OpProtoMake definition | `.cc`files, Backward Op does not need an OpProtoMake interface.
Op definition | `.cc` files
Kernel implementation | The kernel methods shared between CPU and GPU are defined in `.h` files. CPU-specific kernels live in `.cc` files, while GPU-specific kernels are implemented in `.cu`files.
Registering the Op | Ops are registered in `.cc` files; For Kernel registration, `.cc` files contain the CPU implementation, while `.cu` files contain the GPU implementation.
New Operator implementations are added to the list [paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators), with file names in the format `*_op.h` (if applicable), `*_op.cc`, `*_op.cu` (if applicable).** The system will use the naming scheme to automatically build operators and their corresponding Python extensions. **
Let's take matrix multiplication operator, [MulOp](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc), as an example to introduce the writing of an Operator with Kernel.
## Implementing C++ Types
### 1. Defining Class ProtoMaker
Matrix Multiplication can be written as $Out = X * Y$, meaning that the operation consists of two inputs and pne output.
First, define `ProtoMaker` to describe the Operator's input, output, and additional comments:
```cpp
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
public:
MulOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "(Tensor), 2D tensor of size (M x K)");
AddInput("Y", "(Tensor), 2D tensor of size (K x N)");
AddOutput("Out", "(Tensor), 2D tensor of size (M x N)");
AddComment(R"DOC(
Two Element Mul Operator.
The equation is: Out = X * Y
)DOC");
}
};
```
[`MulOpMaker`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L43)is inherited from`framework::OpProtoAndCheckerMaker`, consisting of 2 variables in the constructor:
- `framework::OpProto` stores Operator input and variable attribute, used for generating Python API interfaces.
- `framework::OpAttrChecker` is used to validate variable attributes.
The constructor utilizes `AddInput`, `AddOutput`, and `AddComment`, so that the corresponding information will be added to `OpProto`.
The code above adds two inputs `X` and `Y` to `MulOp`, an output `Out`, and their corresponding descriptions, in accordance to Paddle's [naming convention](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/name_convention.md).
An additional example [`ScaleOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37) is implemented as follows:
```cpp
template <typename AttrType>
class ScaleOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ScaleOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The input tensor of scale operator.").NotInGradient();
AddOutput("Out", "The output tensor of scale operator.").NotInGradient();
AddComment(R"DOC(Scale operator
The equation is: Out = scale*X
)DOC");
AddAttr<AttrType>("scale", "scale of scale operator.").SetDefault(1.0);
}
};
```
There are two changes in this example:
- `AddInput("X","...").NotInGradient()` expresses that input `X` is not involved in `ScaleOp`'s corresponding computation. If an input to an operator is not participating in back-propagation, please explicitly set `.NotInGradient()`.
- `AddAttr<AttrType>("scale", "...").SetDefault(1.0);` adds `scale`constant as an attribute, and sets the default value to 1.0.
### 2. Defining Operator
The following code defines the interface for MulOp:
```cpp
class MulOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto dim0 = ctx.Input<Tensor>("X")->dims();
auto dim1 = ctx.Input<Tensor>("Y")->dims();
PADDLE_ENFORCE_EQ(dim0.size(), 2,
"input X(%s) should be a tensor with 2 dims, a matrix",
ctx.op_.Input("X"));
PADDLE_ENFORCE_EQ(dim1.size(), 2,
"input Y(%s) should be a tensor with 2 dims, a matrix",
ctx.op_.Input("Y"));
PADDLE_ENFORCE_EQ(
dim0[1], dim1[0],
"First matrix's width must be equal with second matrix's height.");
ctx.Output<Tensor>("Out")->Resize({dim0[0], dim1[1]});
}
};
```
[`MulOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L22) is inherited from `OperatorWithKernel`. Its `public` member
```cpp
using framework::OperatorWithKernel::OperatorWithKernel;
```
expresses an operator constructor using base class `OperatorWithKernel`, alternatively written as
```cpp
MulOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
```
`InferShape` interface needs to be re-written.`InferShape` is a constant method and cannot modify Op's member variables, its constant member `const framework::InferShapeContext &ctx` can be used to extract input, output, and attributes. It functions to
- 1). validate and error out early: it checks input data dimensions and types.
- 2). configures the tensor shape in the output.
Usually `OpProtoMaker` and `Op`'s type definitions are written in `.cc` files, which also include the registration methods introduced later.
### 3. Defining OpKernel
`MulKernel` inherits `framework::OpKernel`, which includes the following templates:
- `typename Place` denotes device type. When different devices, namely the CPU and the GPU, share the same kernel, this template needs to be added. If they don't share kernels, this must not be added. An example of a non-sharing kernel is [`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43).
- `typename T` denotes data type, such as `float` or `double`.
`MulKernel` types need to rewrite the interface for `Compute`.
- `Compute` takes one input variable `const framework::ExecutionContext& context`.
- Compared with `InferShapeContext`, `ExecutionContext` includes device types, and can similarly extract input, output, and attribute variables.
- `Compute` implements the computation logics of an `OpKernel`.
`MulKernel`'s implementation of `Compute` is as follows:
```cpp
template <typename Place, typename T>
class MulKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<Tensor>("X");
auto* Y = context.Input<Tensor>("Y");
auto* Z = context.Output<Tensor>("Out");
Z->mutable_data<T>(context.GetPlace());
auto* device_context =
const_cast<platform::DeviceContext*>(context.device_context_);
math::matmul<Place, T>(*X, false, *Y, false, 1, Z, 0, device_context);
}
};
```
Note that **different devices (CPU, GPU)share an Op definition; whether or not they share the same `OpKernel` depends on whether `Compute` calls functions that support both devices.**
`MulOp`'s CPU and GPU share the same `Kernel`. A non-sharing `OpKernel` example can be seen in [`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43).
To ease the writing of `OpKernel` compute, and for reusing code cross-device, `Eigen unsupported Tensor` module is used to implement `Compute` interface. To learn about how the Eigen library is used in PaddlePaddle, please see [usage document](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/use_eigen_cn.md).
This concludes the forward implementation of an operator. Next its operation and kernel need to be registered in a `.cc` file.
The definition of its corresponding backward operator, if applicable, is similar to that of an forward operator. **Note that a backward operator does not include a `ProtoMaker`**.
### 4. Registering Operator
- In `.cc` files, register forward and backward operator classes and the CPU kernel.
```cpp
namespace ops = paddle::operators;
REGISTER_OP(mul, ops::MulOp, ops::MulOpMaker, mul_grad, ops::MulOpGrad);
REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(mul_grad,
ops::MulGradKernel<paddle::platform::CPUPlace, float>);
```
In that code block,
- `REGISTER_OP` registers the `ops::MulOp` class, type named `mul`, its type `ProtoMaker` is `ops::MulOpMaker`, registering `ops::MulOpGrad` as `mul_grad`.
- `REGISTER_OP_WITHOUT_GRADIENT` registers an operator without gradient.
- `REGISTER_OP_CPU_KERNEL` registers `ops::MulKernel` class and specialized template types `paddle::platform::CPUPlace` and `float`, which also registers `ops::MulKernel`.
- Registering GPU Kernel in `.cu` files
- Note that if GPU Kernel is implemented using the `Eigen unsupported` module, then on top of `.cu`, a macro definition `#define EIGEN_USE_GPU` is needed, such as
```cpp
// if use Eigen unsupported module before include head files
#define EIGEN_USE_GPU
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(mul, ops::MulKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(mul_grad,
ops::MulGradKernel<paddle::platform::GPUPlace, float>);
```
### 5. Compilation
Run the following commands to compile.
```
make mul_op
```
## Python Binding
The system will automatically bind to Python and link it to a generated library.
## Unit Tests
Unit tests include comparing a forward operator's implementations on different devices, comparing a backward operator's implementation on different devices, and a scaling test for the backward operator. Here, we introduce the [unit tests for `MulOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/test_mul_op.py).
......@@ -28,47 +28,6 @@ ProgramDesc& GetProgramDesc() {
return *g_program_desc;
}
template <>
AttrType AttrTypeID<bool>() {
return BOOLEAN;
}
template <>
AttrType AttrTypeID<int>() {
return INT;
}
template <>
AttrType AttrTypeID<float>() {
return FLOAT;
}
template <>
AttrType AttrTypeID<std::string>() {
return STRING;
}
template <>
AttrType AttrTypeID<std::vector<bool>>() {
return BOOLEANS;
}
template <>
AttrType AttrTypeID<std::vector<int>>() {
return INTS;
}
template <>
AttrType AttrTypeID<std::vector<float>>() {
return FLOATS;
}
template <>
AttrType AttrTypeID<std::vector<std::string>>() {
return STRINGS;
}
template <>
AttrType AttrTypeID<std::vector<std::pair<int, int>>>() {
return INT_PAIRS;
}
template <>
AttrType AttrTypeID<BlockDesc>() {
return BLOCK;
}
Attribute GetAttrValue(const OpDesc::Attr& attr_desc) {
switch (attr_desc.type()) {
case framework::AttrType::BOOLEAN: {
......@@ -111,14 +70,6 @@ Attribute GetAttrValue(const OpDesc::Attr& attr_desc) {
}
return val;
}
case framework::AttrType::INT_PAIRS: {
std::vector<std::pair<int, int>> val(attr_desc.int_pairs_size());
for (int i = 0; i < attr_desc.int_pairs_size(); ++i) {
val[i].first = attr_desc.int_pairs(i).first();
val[i].second = attr_desc.int_pairs(i).second();
}
return val;
}
case framework::AttrType::BLOCK: {
return GetProgramDesc().mutable_blocks(attr_desc.block_idx());
}
......
......@@ -27,10 +27,10 @@ limitations under the License. */
namespace paddle {
namespace framework {
typedef boost::variant<boost::blank, bool, int, float, std::string,
std::vector<bool>, std::vector<int>, std::vector<float>,
std::vector<std::string>,
std::vector<std::pair<int, int>>, BlockDesc*>
// The order should be as same as framework.proto
typedef boost::variant<boost::blank, int, float, std::string, std::vector<int>,
std::vector<float>, std::vector<std::string>, bool,
std::vector<bool>, BlockDesc*>
Attribute;
typedef std::unordered_map<std::string, Attribute> AttributeMap;
......@@ -38,7 +38,10 @@ typedef std::unordered_map<std::string, Attribute> AttributeMap;
ProgramDesc& GetProgramDesc();
template <typename T>
AttrType AttrTypeID();
inline AttrType AttrTypeID() {
Attribute tmp = T();
return static_cast<AttrType>(tmp.which() - 1);
}
Attribute GetAttrValue(const OpDesc::Attr& attr_desc);
......
......@@ -22,17 +22,11 @@ enum AttrType {
INTS = 3;
FLOATS = 4;
STRINGS = 5;
INT_PAIRS = 6;
BOOLEAN = 7;
BOOLEANS = 8;
BLOCK = 9;
BOOLEAN = 6;
BOOLEANS = 7;
BLOCK = 8;
}
message IntPair {
required int32 first = 1;
required int32 second = 2;
};
// OpDesc describes an instance of a C++ framework::OperatorBase
// derived class type.
message OpDesc {
......@@ -46,7 +40,6 @@ message OpDesc {
repeated int32 ints = 6;
repeated float floats = 7;
repeated string strings = 8;
repeated IntPair int_pairs = 9;
optional bool b = 10;
repeated bool bools = 11;
optional int32 block_idx = 12;
......
......@@ -100,6 +100,7 @@ public:
if (cnt_ == act.value->getElementCnt()) {
return;
}
VLOG(MKLDNN_BASE) << getName() << " reset mkldnn forward";
cnt_ = act.value->getElementCnt();
stream_.reset(new MKLDNNStream());
auto eng = CPUEngine::Instance().getEngine();
......@@ -110,7 +111,6 @@ public:
float alpha = getAlpha();
float beta = getBeta();
/// forward
pipelineFwd_.clear();
val_ = std::dynamic_pointer_cast<MKLDNNMatrix>(act.value);
if (val_ == nullptr) {
......@@ -152,6 +152,7 @@ public:
if (!needResetBwd_) {
return;
}
VLOG(MKLDNN_BASE) << getName() << " reset mkldnn backward";
needResetBwd_ = false;
mkldnn::algorithm algo = getAlgo(this->getName());
float alpha = getBwdAlpha();
......
......@@ -64,7 +64,7 @@ bool MKLDNNConvLayer::init(const LayerMap& layerMap,
// create biases
if (biasParameter_.get() != NULL) {
biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_));
biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_, 0));
}
return true;
}
......@@ -251,22 +251,31 @@ void MKLDNNConvLayer::resetInValue(
// create buffer and reorder if input value do not match
cpuInVal_ = nullptr;
cvtInVal_ = nullptr;
if (inputIsOnlyMKLDNN()) {
MKLDNNMatrixPtr dnnIn = std::dynamic_pointer_cast<MKLDNNMatrix>(inMat);
CHECK(dnnIn) << "Input should be MKLDNNMatrix";
if (dnnIn->getPrimitiveDesc() != in->getPrimitiveDesc()) {
CHECK_EQ(dnnIn->getFormat(), format::nc);
MKLDNNMatrixPtr dnnIn = std::dynamic_pointer_cast<MKLDNNMatrix>(inMat);
CHECK_EQ(inputIsOnlyMKLDNN(), dnnIn != nullptr);
if (dnnIn != nullptr && dnnIn->getPrimitiveDesc() == in->getPrimitiveDesc()) {
in = dnnIn;
return;
}
if (dnnIn) {
if (dnnIn->getFormat() == format::nc) {
CHECK(ih_ == 1 && iw_ == 1) << "when input is nc format";
// create a new one with nchw format and same data
memory::dims inDims = memory::dims{bs_, ic_, 1, 1};
dnnIn = MKLDNNMatrix::create(inMat, inDims, format::nchw, engine_);
CHECK(dnnIn->getPrimitiveDesc() == in->getPrimitiveDesc());
}
in = dnnIn;
if (dnnIn->getPrimitiveDesc() == in->getPrimitiveDesc()) {
in = dnnIn;
return;
}
cpuInVal_ = dnnIn;
in = MKLDNNMatrix::create(nullptr, pd->src_primitive_desc());
cvtInVal_ = MKLDNNMatrix::createReorder(cpuInVal_, in);
CHECK(cvtInVal_) << "should not be emptry";
} else {
const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE);
memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_};
cpuInVal_ = MKLDNNMatrix::create(cpuIn, inDims, format::nchw, engine_);
cpuInVal_ = MKLDNNMatrix::create(inMat, inDims, format::nchw, engine_);
if (cpuInVal_->getPrimitiveDesc() != in->getPrimitiveDesc()) {
// create new mkldnn matrix
in = MKLDNNMatrix::create(nullptr, pd->src_primitive_desc());
......@@ -535,7 +544,7 @@ void MKLDNNConvLayer::resetWgtValBwdData(
} else {
wgtValBwdData_ = wgtVal_;
}
VLOG(MKLDNN_FMTS) << "weight value format for backward data"
VLOG(MKLDNN_FMTS) << "weight value format for backward data: "
<< wgtValBwdData_->getFormat();
}
......
......@@ -49,7 +49,7 @@ bool MKLDNNFcLayer::init(const LayerMap& layerMap,
// create biases
if (biasParameter_.get() != NULL) {
biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_));
biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_, 0));
}
return true;
}
......@@ -161,9 +161,16 @@ void MKLDNNFcLayer::resetInValue(MKLDNNMatrixPtr& in) {
void MKLDNNFcLayer::resetWgtBiasValue(MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias) {
format wgtFmt = format::oihw;
if (inVal_->getFormat() == format::nChw8c) {
wgtFmt = format::oIhw8i;
} else if (inVal_->getFormat() == format::nChw16c) {
wgtFmt = format::oIhw16i;
}
wgt = MKLDNNMatrix::create(
weight_->getW(), {oc_, ic_, ih_, iw_}, format::oihw, engine_);
weight_->getW(), {oc_, ic_, ih_, iw_}, wgtFmt, engine_);
wgt->downSpatial();
VLOG(MKLDNN_FMTS) << "Weight value format: " << wgt->getFormat();
bias = (biases_ && biases_->getW())
? MKLDNNMatrix::create(biases_->getW(), {oc_}, format::x, engine_)
......
......@@ -115,6 +115,7 @@ public:
copySeqInfoToOutputs();
size_t elemenCnt = inputLayers_[0]->getOutput().value->getElementCnt();
if (inputElemenCnt_ != elemenCnt) {
VLOG(MKLDNN_BASE) << getName() << " reset mkldnn forward";
// reset when input total sizes changed, not only the batchsize
inputElemenCnt_ = elemenCnt;
reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_);
......@@ -142,6 +143,7 @@ public:
void backward(const UpdateCallback& callback) override {
if (needResetBwd_) {
VLOG(MKLDNN_BASE) << getName() << " reset mkldnn backward";
resetBwd(pipelineBwd_, inGrad_, wgtGrad_, biasGrad_, outGrad_);
needResetBwd_ = false;
}
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/lstm_unit_op.h"
namespace paddle {
namespace operators {
class LstmUnitOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of LSTM should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("C_prev"),
"Input(C_prev) of LSTM should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("C"),
"Output(C) of LSTM should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("H"),
"Output(H) of LSTM should not be null.");
auto *x = ctx.Input<framework::Tensor>("X");
auto *c_prev = ctx.Input<framework::Tensor>("C_prev");
PADDLE_ENFORCE_EQ(x->dims().size(), 2, "Input(X)'s rank must be 2.");
PADDLE_ENFORCE(x->dims()[0] == c_prev->dims()[0],
"Batch size of inputs and states must be equal");
PADDLE_ENFORCE(x->dims()[1] == c_prev->dims()[1] * 4,
"Dimension of FC should equal to prev state * 4");
int b_size = c_prev->dims()[0]; // batch size
int s_dim = c_prev->dims()[1]; // state dim
ctx.Output<framework::LoDTensor>("C")->Resize({b_size, s_dim});
ctx.Output<framework::LoDTensor>("H")->Resize({b_size, s_dim});
}
};
template <typename AttrType>
class LstmUnitOpMaker : public framework::OpProtoAndCheckerMaker {
public:
LstmUnitOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "FC input before the non-linear activation.");
AddInput(
"C_prev",
"The cell state tensor of last time-step in the Lstm Unit operator.");
AddOutput("C", "The cell tensor of Lstm Unit operator.");
AddOutput("H", "The hidden state tensor of Lstm Unit operator.");
AddComment(R"DOC(Lstm-Unit Operator
Equation:
i, f, o, j = split(X)
C = C_prev * sigm(f + forget_bias) + sigm(i) * tanh(j)
H = C * sigm(o)
)DOC");
AddAttr<AttrType>("forget_bias", "The forget bias of Lstm Unit.")
.SetDefault(0.0);
}
};
class LstmUnitGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("C")),
"Input(C@GRAD) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("H")),
"Input(H@GRAD) should not be null");
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"))
->Resize(ctx.Input<Tensor>("X")->dims());
ctx.Output<framework::LoDTensor>(framework::GradVarName("C_prev"))
->Resize(ctx.Input<Tensor>("C_prev")->dims());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(lstm_unit, ops::LstmUnitOp, ops::LstmUnitOpMaker<float>,
lstm_unit_grad, ops::LstmUnitGradOp);
REGISTER_OP_CPU_KERNEL(lstm_unit,
ops::LstmUnitKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
lstm_unit_grad, ops::LstmUnitGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/op_registry.h"
#include "paddle/operators/cross_entropy_op.h"
#include "paddle/platform/assert.h"
#include "paddle/platform/hostdevice.h"
namespace paddle {
namespace operators {
#define CUDA_1D_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
i += blockDim.x * gridDim.x)
template <typename Dtype>
__device__ Dtype cuda_sigmoid(const Dtype x) {
return Dtype(1) / (Dtype(1) + exp(-x));
}
template <typename Dtype>
__device__ Dtype cuda_tanh(const Dtype x) {
return Dtype(1 - exp(-2. * x)) / (Dtype(1) + exp(-2. * x));
}
template <typename T>
__global__ void LSTMUnitKernel(const int nthreads, const int dim,
const T* C_prev, const T* X, T* C, T* H,
const T forget_bias) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
const int n = index / dim;
const int d = index % dim;
const T* X_offset = X + 4 * dim * n;
const T i = cuda_sigmoid(X_offset[d]);
const T f = cuda_sigmoid(X_offset[1 * dim + d] + forget_bias);
const T o = cuda_sigmoid(X_offset[2 * dim + d]);
const T g = cuda_tanh(X_offset[3 * dim + d]);
const T c_prev = C_prev[index];
const T c = f * c_prev + i * g;
C[index] = c;
const T tanh_c = cuda_tanh(c);
H[index] = o * tanh_c;
}
}
template <typename T>
__global__ void LSTMUnitGradientKernel(const int nthreads, const int dim,
const T* C_prev, const T* X, const T* C,
const T* H, const T* C_diff,
const T* H_diff, T* C_prev_diff,
T* X_diff, const T forget_bias) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
const int n = index / dim;
const int d = index % dim;
const T* X_offset = X + 4 * dim * n;
T* c_prev_diff = C_prev_diff + index;
T* X_diff_offset = X_diff + 4 * dim * n;
T* i_diff = X_diff_offset + d;
T* f_diff = X_diff_offset + 1 * dim + d;
T* o_diff = X_diff_offset + 2 * dim + d;
T* g_diff = X_diff_offset + 3 * dim + d;
const T i = cuda_sigmoid(X_offset[d]);
const T f = cuda_sigmoid(X_offset[1 * dim + d] + forget_bias);
const T o = cuda_sigmoid(X_offset[2 * dim + d]);
const T g = cuda_tanh(X_offset[3 * dim + d]);
const T c_prev = C_prev[index];
const T c = C[index];
const T tanh_c = cuda_tanh(c);
const T c_term_diff =
C_diff[index] + H_diff[index] * o * (1 - tanh_c * tanh_c);
*c_prev_diff = c_term_diff * f;
*i_diff = c_term_diff * g * i * (1 - i);
*f_diff = c_term_diff * c_prev * f * (1 - f);
*o_diff = H_diff[index] * tanh_c * o * (1 - o);
*g_diff = c_term_diff * i * (1 - g * g);
}
}
template <typename T, typename AttrType = T>
class LstmUnitOpCUDAKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use GPUPlace.");
auto* x_tensor = ctx.Input<framework::Tensor>("X");
auto* c_prev_tensor = ctx.Input<framework::Tensor>("C_prev");
auto* c_tensor = ctx.Output<framework::Tensor>("C");
auto* h_tensor = ctx.Output<framework::Tensor>("H");
auto forget_bias = static_cast<T>(ctx.Attr<AttrType>("forget_bias"));
int b_size = c_tensor->dims()[0];
int D = c_tensor->dims()[1];
const T* X = x_tensor->data<T>();
const T* C_prev = c_prev_tensor->data<T>();
T* C = c_tensor->mutable_data<T>(ctx.GetPlace());
T* H = h_tensor->mutable_data<T>(ctx.GetPlace());
int block = 512;
int n = b_size * D;
int grid = (n + block - 1) / block;
LSTMUnitKernel<T><<<grid, block>>>(n, D, C_prev, X, C, H, forget_bias);
}
};
template <typename T, typename AttrType = T>
class LstmUnitGradOpCUDAKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use GPUPlace.");
auto x_tensor = ctx.Input<Tensor>("X");
auto c_prev_tensor = ctx.Input<Tensor>("C_prev");
auto c_tensor = ctx.Input<Tensor>("C");
auto h_tensor = ctx.Input<Tensor>("H");
auto hdiff_tensor = ctx.Input<Tensor>(framework::GradVarName("H"));
auto cdiff_tensor = ctx.Input<Tensor>(framework::GradVarName("C"));
auto xdiff_tensor = ctx.Output<Tensor>(framework::GradVarName("X"));
auto c_prev_diff_tensor =
ctx.Output<Tensor>(framework::GradVarName("C_prev"));
auto* X = x_tensor->data<T>();
auto* C_prev = c_prev_tensor->data<T>();
auto* C = c_tensor->data<T>();
auto* H = h_tensor->data<T>();
auto* H_diff = hdiff_tensor->data<T>();
auto* C_diff = cdiff_tensor->data<T>();
auto* C_prev_diff = c_prev_diff_tensor->mutable_data<T>(ctx.GetPlace());
auto* X_diff = xdiff_tensor->mutable_data<T>(ctx.GetPlace());
int N = c_tensor->dims()[0];
int D = c_tensor->dims()[1];
auto forget_bias = static_cast<T>(ctx.Attr<AttrType>("forget_bias"));
int block = 512;
int n = N * D;
int grid = (n + block - 1) / block;
LSTMUnitGradientKernel<T><<<grid, block>>>(n, D, C_prev, X, C, H, C_diff,
H_diff, C_prev_diff, X_diff,
forget_bias);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(lstm_unit, ops::LstmUnitOpCUDAKernel<float>);
REGISTER_OP_GPU_KERNEL(lstm_unit_grad, ops::LstmUnitGradOpCUDAKernel<float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "glog/logging.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using framework::LoDTensor;
using framework::Tensor;
template <typename T>
inline T sigmoid(T x) {
return 1. / (1. + exp(-x));
}
template <typename T>
inline T tanh(T x) {
return 2. * sigmoid(2. * x) - 1.;
}
template <typename Place, typename T, typename AttrType = T>
class LstmUnitKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
auto* x_tensor = ctx.Input<framework::Tensor>("X");
auto* c_prev_tensor = ctx.Input<framework::Tensor>("C_prev");
auto* c_tensor = ctx.Output<framework::Tensor>("C");
auto* h_tensor = ctx.Output<framework::Tensor>("H");
auto forget_bias = static_cast<T>(ctx.Attr<AttrType>("forget_bias"));
int b_size = c_tensor->dims()[0];
int D = c_tensor->dims()[1];
T* C = c_tensor->mutable_data<T>(ctx.GetPlace());
T* H = h_tensor->mutable_data<T>(ctx.GetPlace());
const T* X = x_tensor->data<T>();
const T* C_prev = c_prev_tensor->data<T>();
for (int n = 0; n < b_size; ++n) {
for (int d = 0; d < D; ++d) {
const T i = sigmoid(X[d]);
const T f = sigmoid(X[1 * D + d] + forget_bias);
const T o = sigmoid(X[2 * D + d]);
const T g = tanh(X[3 * D + d]);
const T c_prev = C_prev[d];
const T c = f * c_prev + i * g;
C[d] = c;
const T tanh_c = tanh(c);
H[d] = o * tanh_c;
}
C_prev += D;
X += 4 * D;
C += D;
H += D;
}
}
};
template <typename Place, typename T, typename AttrType = T>
class LstmUnitGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
auto x_tensor = ctx.Input<Tensor>("X");
auto c_prev_tensor = ctx.Input<Tensor>("C_prev");
auto c_tensor = ctx.Input<Tensor>("C");
auto h_tensor = ctx.Input<Tensor>("H");
auto hdiff_tensor = ctx.Input<Tensor>(framework::GradVarName("H"));
auto cdiff_tensor = ctx.Input<Tensor>(framework::GradVarName("C"));
auto xdiff_tensor = ctx.Output<Tensor>(framework::GradVarName("X"));
auto c_prev_diff_tensor =
ctx.Output<Tensor>(framework::GradVarName("C_prev"));
auto* X = x_tensor->data<T>();
auto* C_prev = c_prev_tensor->data<T>();
auto* C = c_tensor->data<T>();
auto* H = h_tensor->data<T>();
auto* H_diff = hdiff_tensor->data<T>();
auto* C_diff = cdiff_tensor->data<T>();
auto* C_prev_diff = c_prev_diff_tensor->mutable_data<T>(ctx.GetPlace());
auto* X_diff = xdiff_tensor->mutable_data<T>(ctx.GetPlace());
int N = c_tensor->dims()[0];
int D = c_tensor->dims()[1];
auto forget_bias = static_cast<T>(ctx.Attr<AttrType>("forget_bias"));
for (int n = 0; n < N; ++n) {
for (int d = 0; d < D; ++d) {
T* c_prev_diff = C_prev_diff + d;
T* i_diff = X_diff + d;
T* f_diff = X_diff + 1 * D + d;
T* o_diff = X_diff + 2 * D + d;
T* g_diff = X_diff + 3 * D + d;
const T i = sigmoid(X[d]);
const T f = sigmoid(X[1 * D + d] + forget_bias);
const T o = sigmoid(X[2 * D + d]);
const T g = tanh(X[3 * D + d]);
const T c_prev = C_prev[d];
const T c = C[d];
const T tanh_c = tanh(c);
const T c_term_diff = C_diff[d] + H_diff[d] * o * (1 - tanh_c * tanh_c);
*c_prev_diff = c_term_diff * f;
*i_diff = c_term_diff * g * i * (1 - i);
*f_diff = c_term_diff * c_prev * f * (1 - f);
*o_diff = H_diff[d] * tanh_c * o * (1 - o);
*g_diff = c_term_diff * i * (1 - g * g);
}
C_prev += D;
X += 4 * D;
C += D;
H += D;
C_diff += D;
H_diff += D;
X_diff += 4 * D;
C_prev_diff += D;
}
}
};
} // namespace operators
} // namespace paddle
......@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include "ParameterOptimizer.h"
#include "ParameterUpdateFunctions.h"
#include "Regularizer.h"
namespace paddle {
......@@ -37,6 +38,15 @@ public:
real torch_learningRate = optConfig_.learning_method() == "torch_momentum"
? 1.0 - paraConfig.momentum()
: 1.0;
#ifdef PADDLE_USE_MKLDNN
sgdUpdate(learningRate_ * paraConfig.learning_rate() *
(firstTime_ ? 1.0 : torch_learningRate),
paraConfig.momentum(),
applyDecay_ ? paraConfig.decay_rate() : 0,
vecs[PARAMETER_VALUE].get(),
vecs[PARAMETER_GRADIENT].get(),
vecs[PARAMETER_MOMENTUM].get());
#else
vecs[PARAMETER_VALUE]->sgdUpdate(
*vecs[PARAMETER_GRADIENT],
*vecs[PARAMETER_MOMENTUM],
......@@ -44,6 +54,7 @@ public:
(firstTime_ ? 1.0 : torch_learningRate),
paraConfig.momentum(),
applyDecay_ ? paraConfig.decay_rate() : 0);
#endif
}
virtual void finishBatch() { firstTime_ = false; }
};
......
......@@ -30,6 +30,9 @@ void sgdUpdateCpu(real learningRate,
const real* grad,
real* momentumVec) {
decayRate *= learningRate;
#ifdef PADDLE_USE_MKLDNN
#pragma omp parallel for
#endif
for (size_t i = 0; i < size; ++i) {
momentumVec[i] = momentum * momentumVec[i] - learningRate * grad[i] -
decayRate * value[i];
......
......@@ -34,13 +34,14 @@ class DeviceContext {
template <typename DeviceType>
DeviceType* get_eigen_device() const;
virtual void Wait() const {}
};
class CPUDeviceContext : public DeviceContext {
public:
CPUDeviceContext();
explicit CPUDeviceContext(CPUPlace place);
virtual ~CPUDeviceContext() {}
Eigen::DefaultDevice* eigen_device() const;
......@@ -59,7 +60,7 @@ class CUDADeviceContext : public DeviceContext {
virtual ~CUDADeviceContext();
/*! \brief Wait for all operations completion in the stream. */
void Wait() const;
void Wait() const override;
/*! \brief Return place in the device context. */
Place GetPlace() const override;
......
......@@ -36,7 +36,7 @@ int GetCurrentDeviceId();
//! Set the GPU device id for next execution.
void SetDeviceId(int device_id);
//Get the memory usage of current GPU device.
//! Get the memory usage of current GPU device.
void GpuMemoryUsage(size_t &available, size_t &total);
//! Get the maximum allocation size of current GPU device.
......
......@@ -237,7 +237,13 @@ All parameter, weight, gradient are variables in Paddle.
return Backward(forwardOp, no_grad_vars).release();
})
.def("infer_shape", &OperatorBase::InferShape)
.def("run", &OperatorBase::Run)
.def("run",
[](OperatorBase &self,
const Scope &scope,
const platform::DeviceContext &dev_ctx) {
self.Run(scope, dev_ctx);
dev_ctx.Wait();
})
.def("type",
[](const OperatorBase &op) -> std::string { return op.Type(); })
.def("outputs",
......
......@@ -37,6 +37,19 @@ add_test(NAME test_CompareTwoNets
--config_file_a=trainer/tests/sample_trainer_config_qb_rnn.conf --config_file_b=trainer/tests/sample_trainer_config_rnn.conf
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/)
################ test_CompareMKLDNNandCPU ######################
if(WITH_MKLDNN)
add_unittest_without_exec(test_CompareMKLDNNandCPU
test_CompareTwoNets.cpp)
add_test(NAME test_CompareMKLDNNandCPU
COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/
${CMAKE_CURRENT_BINARY_DIR}/test_CompareMKLDNNandCPU
--config_file_a=trainer/tests/sample_trainer_config_simple_net.conf --use_mkldnn_a=True
--config_file_b=trainer/tests/sample_trainer_config_simple_net.conf --use_mkldnn_b=False
--use_gpu=False
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/)
endif()
############### test_CompareTwoOpts ###################
add_unittest_without_exec(test_CompareTwoOpts
test_CompareTwoOpts.cpp)
......
# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
################################### Data Configuration ###################################
TrainData(ProtoData(files = "trainer/tests/mnist.list"))
################################### Algorithm Configuration ###################################
settings(batch_size = 1000,
learning_method = MomentumOptimizer(momentum=0.5, sparse=False))
################################### Network Configuration ###################################
data = data_layer(name ="input", size=784)
tmp = img_conv_layer(input=data,
num_channels=1,
filter_size=3,
num_filters=32,
padding=1,
shared_biases=True,
act=ReluActivation())
tmp = img_pool_layer(input=tmp,
pool_size=3,
stride=2,
padding=1,
pool_type=AvgPooling())
tmp = img_conv_layer(input=tmp,
filter_size=3,
num_filters=64,
padding=1,
shared_biases=True,
act=ReluActivation())
tmp = img_pool_layer(input=tmp,
pool_size=3,
stride=2,
padding=1,
pool_type=MaxPooling())
tmp = fc_layer(input=tmp, size=64,
bias_attr=True,
act=ReluActivation())
output = fc_layer(input=tmp, size=10,
bias_attr=True,
act=SoftmaxActivation())
lbl = data_layer(name ="label", size=10)
cost = classification_cost(input=output, label=lbl)
outputs(cost)
......@@ -26,12 +26,15 @@ DECLARE_int32(gpu_id);
DECLARE_bool(local);
DECLARE_bool(use_gpu);
DECLARE_bool(use_mkldnn);
DECLARE_string(config);
DECLARE_string(nics);
DEFINE_string(config_file_a, "", "config of one network to compare");
DEFINE_string(config_file_b, "", "config of another network to compare");
DEFINE_bool(use_mkldnn_a, false, "whether to use mkldnn to run config_file_a");
DEFINE_bool(use_mkldnn_b, false, "whether to use mkldnn to run config_file_b");
DEFINE_bool(need_high_accuracy,
false,
"whether need to run in double accuracy");
......@@ -128,6 +131,12 @@ void compareGradient(ComData& comDataA, ComData& comDataB) {
matA.getWidth());
}
if (FLAGS_use_mkldnn_a || FLAGS_use_mkldnn_b) {
// some format of mkldnn parameter is different with cpu
// test_MKLDNN will check the parameters
return;
}
vector<ParameterPtr>& parametersA = comDataA.parameters;
vector<ParameterPtr>& parametersB = comDataB.parameters;
......@@ -167,10 +176,12 @@ void compareGradient(ComData& comDataA, ComData& comDataB) {
TEST(Trainer, create) {
ComData dataA;
FLAGS_use_mkldnn = FLAGS_use_mkldnn_a;
calcGradient(dataA, FLAGS_config_file_a);
LOG(INFO) << "\n\nforwardBackward of Network A is finished\n\n";
ComData dataB;
FLAGS_use_mkldnn = FLAGS_use_mkldnn_b;
calcGradient(dataB, FLAGS_config_file_b);
LOG(INFO) << "\n\nforwardBackward of the Network B is finished\n\n";
......
import unittest
import numpy as np
from op_test import OpTest
def sigmoid_np(x):
return 1. / (1. + np.exp(-x))
def tanh_np(x):
return 2 * sigmoid_np(2. * x) - 1.
class LstmUnitTest(OpTest):
def setUp(self):
self.op_type = "lstm_unit"
x_np = np.random.normal(size=(5, 16)).astype("float32")
c_np = np.random.normal(size=(5, 4)).astype("float32")
i_np, f_np, o_np, j_np = np.split(x_np, 4, axis=1)
forget_bias_np = 0.
self.attrs = {'forget_bias': 0.}
new_c = c_np * sigmoid_np(f_np + forget_bias_np) + sigmoid_np(
i_np) * tanh_np(j_np)
new_h = tanh_np(new_c) * sigmoid_np(o_np)
self.inputs = {'X': x_np, 'C_prev': c_np}
self.outputs = {'C': new_c, 'H': new_h}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X', 'C_prev'], ['C', 'H'], max_relative_error=0.01)
if __name__ == "__main__":
unittest.main()
......@@ -7,6 +7,14 @@ class PReluTest(OpTest):
def setUp(self):
self.op_type = "prelu"
x_np = np.random.normal(size=(10, 10)).astype("float32")
for pos, val in np.ndenumerate(x_np):
# Since zero point in prelu is not differentiable, avoid randomize
# zero.
while abs(val) < 1e-3:
x_np[pos] = np.random.normal()
val = x_np[pos]
x_np_sign = np.sign(x_np)
x_np = x_np_sign * np.maximum(x_np, .005)
alpha_np = np.array([.1])
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册