提交 06c7c8c8 编写于 作者: Y yangyaming

Add CPU kernel.

上级 efc2464f
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
namespace paddle {
namespace operators {
class PrecisionRecallOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
// may contains weights and StatesInfo
PADDLE_ENFORCE(ctx->HasInput("Predictions"),
"Input(Predictions) should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Labels"),
"Input(Labels) should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("BatchMetrics"),
"Output(BatchMetrics) should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("AccumMetrics"),
"Output(AccumMetrics) should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("AccumStatesInfo"),
"Output(AccumStatesInfo) should not be null.");
auto predictions_dims = ctx->GetInputDim("Predictions");
auto labels_dims = ctx->GetInputDim("Labels");
if (ctx->HasInput("Weights")) {
auto weights_dims = ctx->GetInputDim("Weights");
PADDLE_ENFORCE_EQ(weights_dims, {predictions_dims[0], 1},
"The shape of Input(Weights) should be "
"[batch_size, 1].");
}
if (ctx->HasInput("StatesInfo")) {
auto states_dims = ctx->GetInputDim("StatesInfo");
PADDLE_ENFORCE_EQ(states_dims, {predictions_dims[1], 4},
"The shape of Input(StatesInfo) should be "
"[class_number, 4].");
}
PADDLE_ENFORCE_EQ(predictions_dims[0], labels_dims[0],
"The 1st dimension of Input(Predictions) and "
"Input(Labels) both are batch_size and the shape should "
"be the same.");
PADDLE_ENFORCE_EQ(labels_dims[1], 1,
"The 2nd dimension of Input(Labels) "
"contains instance label and the shape should be equal "
"to 1");
PADDLE_ENFORCE_GE(predictions_dims[1], 1,
"The shape of Input(Predictions)'s 2nd dimension is "
"equal to class number and should be at least 1.");
// Layouts of BatchMetrics and AccumMetrics both are:
// [
// macro average precision, macro average recall, macro average F1 score,
// micro average precision, micro average recall, micro average F1 score
// ]
ctx->SetOutputDim("BatchMetrics", {6});
ctx->SetOutputDim("AccumMetrics", {6});
// Shape of AccumStatesInfo is [class_number, 4]
// The layout of each row is:
// [ TP, FP, TN, FN ]
ctx->SetOutputDim("AccumStatesInfo", {predictions_dims[1], 4});
}
};
class PrecisionRecallOpMaker : public framework::OpProtoAndCheckerMaker {
public:
PrecisionRecallOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Predictions",
"(Tensor, default Tensor<float>), a 2-D tensor with shape N x D, "
"where N is the batch size and D is the number of classes. "
"Each row contains probabilities for an instance which computed "
"by the previous operator.");
AddInput("Labels",
"(Tensor, default Tensor<int>), a 2-D tensor with shape N x 1, "
"where N is the batch size. Each element is a label and the "
"value should be in [0, class_number - 1].");
AddInput("Weights",
"(Tensor, default Tensor<float>), a 2-D tensor with shape N x 1, "
"where N is the batch size. This input is optional. If provided, "
"weight of instance would be considered when computing metrics.")
.AsDispensable();
AddInput("StatesInfo",
"(Tensor, default Tensor<int>), a 2-D tensor with shape D x 4, "
"where D is the number of classes. This input is optional. If "
"provided, current state will be accumulated to this state and "
"the accumulation state will be as the output state.")
.AsDispensable();
AddComment(R"DOC(
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(precision_recall, ops::PrecisionRecallOp,
ops::PrecisionRecallOpMaker);
REGISTER_OP_CPU_KERNEL(
precision_recall,
ops::PrecisionRecallKernel<paddle::platform::CPUPlace, float>,
ops::PrecisionRecallKernel<paddle::platform::CPUPlace, int>,
ops::PrecisionRecallKernel<paddle::platform::CPUPlace, double>,
ops::PrecisionRecallKernel<paddle::platform::CPUPlace, int64_t>,
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
enum StateVariable { TP = 0, FP, TN, FN };
template <typename Place, typename T>
class PrecisionRecallKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* in0 = ctx.Input<Tensor>("Predictions");
auto* in1 = ctx.Input<Tensor>("Labels");
auto* in2 = ctx.Input<Tensor>("Weights");
auto* in3 = ctx.Input<Tensor>("StatesInfo");
auto* out0 = ctx.Output<Tensor>("BatchMetrics");
auto* out1 = ctx.Output<Tensor>("AccumMetrics");
auto* out2 = ctx.Output<Tensor>("AccumStatesInfo");
const T* predictions_data = in0->data<T>();
const T* labels_data = in1->data<T>();
const T* weights_data = in2 ? in2->data<T>() : nullptr;
const T* states_data = in3 ? in3->data<T>() : nullptr;
T* batch_metrics_data = out0->mutable_data<T>(ctx.GetPlace());
T* accum_metrics_data = out1->mutable_data<T>(ctx.GetPlace());
out2->mutable_data<T>(ctx.GetPlace());
auto accum_states = EigenMatrix<T>::From(*out2);
accum_states.setZero();
T* accum_states_data = out2->data<T>(ctx.GetPlace());
size_t sample_num = in0->dims()[0];
size_t class_dim = in0->dims()[1];
size_t state_var_num = 4; // TP FP TN FN
// get states info for current batch
for (size_t i = 0; i < sample_num; ++i) {
size_t max_idx = 0;
T max_val = predictions_data[i * class_dim];
for (size_t j = 1; j < class_dim; ++j) {
if (max_val < predictions_data[i * class_dim + j]) {
max_idx = j;
max_val = predictions_data[i * class_dim + j];
}
}
T w = weights_data ? weights_data[i] : 1.0;
if (max_idx == labels_data[i]) {
accum_states_data[max_idx * state_var_num + TP] += w;
for (size_t j = 0; j < class_dim; ++j) {
accum_states_data[j * state_var_num + TN] += w;
}
accum_states_data[max_idx * state_var_num + TN] -= w;
} else {
accum_states_data[labels_data[i] * state_var_num + FN] += w;
accum_states_data[max_idx * state_var_num + FP] += w;
for (size_t j = 0; j < class_dim; ++j) {
accum_states_data[j * state_var_num + TN] += w;
}
accum_states_data[max_idx * state_var_num + TN] -= w;
accum_states_data[labels_data[j] * state_var_num + TN] -= w;
}
}
ComputeMetrics(accum_states_data, batch_metrics_data, state_var_num,
class_dim);
if (states_data) {
for (size_t i = 0; i < class_dim; ++i) {
for (size_t j = 0; j < state_var_num; ++j) {
size_t idx = i * state_var_num + j;
accum_states_data[idx] += states_data[idx];
}
}
}
ComputeMetrics(accum_states_data, accum_metrics_data, state_var_num,
class_dim);
}
// expose to be reused
static inline T CalcPrecision(T tp_count, T fp_count) {
if (tp_count > 0.0 || fp_count > 0.0) {
return tp_count / (tp_count + fp_count);
}
return 1.0;
}
static inline T CalcRecall(T tp_count, T fn_count) {
if (tp_count > 0.0 || fn_count > 0.0) {
return tp_count / (tp_count + fn_count);
}
return 1.0
}
static inline T CalcF1Score(T precision, T recall) {
if (precision > 0.0 || recall > 0.0) {
return 2 * precision * recall / (precision + recall);
}
return 0.0;
}
protected:
void ComputeMetrics(const T* states_data, T* metrics_data,
size_t state_var_num, size_t class_dim) {
T total_tp_count = 0;
T total_fp_count = 0;
T total_fn_count = 0;
T macro_avg_precision = 0.0;
T macro_avg_recall = 0.0;
for (size_t i = 0; i < class_dim; ++i) {
T tp_count = states_data[i * state_var_num + TP];
T fp_count = states_data[i * state_var_num + FP];
T fn_count = states_data[i * state_var_num + FN];
total_tp_count += tp_count;
total_fp_count += fp_count;
total_fn_count += fn_count;
macro_avg_precision += CalcPrecision(tp_count, fp_count);
macro_avg_recall += CalcRecall(tp_count, fn_count);
}
macro_avg_precision /= class_dim;
macro_avg_recall /= class_dim;
T macro_f1_score = CalcF1Score(macro_avg_precision, macro_avg_recall);
T micro_avg_precision = CalcPrecision(total_tp_count, total_fp_count);
T micro_avg_recall = CalcRecall(total_tp_count, total_fn_count);
T micro_f1_score = CalcRecall(micro_avg_precision, micro_avg_recall);
// fill metrics data
metrics_data[0] = macro_avg_precision;
metrics_data[1] = macro_avg_recall;
metrics_data[2] = macro_f1_score;
metrics_data[3] = micro_avg_precision;
metrics_data[4] = micro_avg_recall;
metrics_data[5] = micro_f1_score;
}
};
} // namespace operators
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册