提交 05ece848 编写于 作者: F fengjiayi 提交者: GitHub

Trainable conv net of MNIST (#4960)

* Init file

* Update

* Update

* Complete conv net of MNIST
上级 07ea9ade
......@@ -7,18 +7,21 @@ def simple_img_conv_pool(input,
pool_size,
pool_stride,
act,
program=None):
program=None,
init_program=None):
conv_out = layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
act=act,
program=program)
program=program,
init_program=init_program)
pool_out = layers.pool2d(
input=conv_out,
pool_size=pool_size,
pool_type='max',
pool_stride=pool_stride,
program=program)
program=program,
init_program=init_program)
return pool_out
import paddle.v2 as paddle
import paddle.v2.framework.layers as layers
import paddle.v2.framework.nets as nets
import paddle.v2.framework.core as core
import paddle.v2.framework.optimizer as optimizer
from paddle.v2.framework.framework import Program, g_program
from paddle.v2.framework.executor import Executor
import numpy as np
init_program = Program()
program = Program()
images = layers.data(
name='pixel',
shape=[1, 28, 28],
data_type='float32',
program=program,
init_program=init_program)
label = layers.data(
name='label',
shape=[1],
data_type='int32',
program=program,
init_program=init_program)
conv_pool_1 = nets.simple_img_conv_pool(
input=images,
filter_size=5,
num_filters=20,
pool_size=2,
pool_stride=2,
act="relu",
program=program,
init_program=init_program)
conv_pool_2 = nets.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
pool_size=2,
pool_stride=2,
act="relu",
program=program,
init_program=init_program)
predict = layers.fc(input=conv_pool_2,
size=10,
act="softmax",
program=program,
init_program=init_program)
cost = layers.cross_entropy(
input=predict, label=label, program=program, init_program=init_program)
avg_cost = layers.mean(x=cost, program=program)
sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
opts = sgd_optimizer.minimize(avg_cost)
BATCH_SIZE = 50
PASS_NUM = 1
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=500),
batch_size=BATCH_SIZE)
place = core.CPUPlace()
exe = Executor(place)
exe.run(init_program, feed={}, fetch_list=[])
for pass_id in range(PASS_NUM):
count = 0
for data in train_reader():
img_data = np.array(map(lambda x: x[0].reshape([1, 28, 28]),
data)).astype("float32")
y_data = np.array(map(lambda x: x[1], data)).astype("int32")
y_data = y_data.reshape([BATCH_SIZE, 1])
tensor_img = core.LoDTensor()
tensor_y = core.LoDTensor()
tensor_img.set(img_data, place)
tensor_y.set(y_data, place)
outs = exe.run(program,
feed={"pixel": tensor_img,
"label": tensor_y},
fetch_list=[avg_cost])
loss = np.array(outs[0])
if loss < 10.0:
exit(0) # if avg cost less than 10.0, we think our code is good.
exit(1)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册