Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
03fe3109
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
03fe3109
编写于
1月 15, 2019
作者:
X
Xin Pan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add static GAN
上级
b29eca3b
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
155 addition
and
8 deletion
+155
-8
python/paddle/fluid/imperative/nn.py
python/paddle/fluid/imperative/nn.py
+15
-3
python/paddle/fluid/tests/unittests/test_imperative_base.py
python/paddle/fluid/tests/unittests/test_imperative_base.py
+6
-5
python/paddle/fluid/tests/unittests/test_imperative_gan.py
python/paddle/fluid/tests/unittests/test_imperative_gan.py
+134
-0
未找到文件。
python/paddle/fluid/imperative/nn.py
浏览文件 @
03fe3109
...
...
@@ -209,14 +209,22 @@ class FC(layers.Layer):
def
__init__
(
self
,
size
,
param_attr
=
None
,
bias_attr
=
None
,
num_flatten_dims
=
1
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
):
dtype
=
core
.
VarDesc
.
VarType
.
FP32
,
act
=
None
,
name
=
None
):
super
(
FC
,
self
).
__init__
()
self
.
_size
=
size
self
.
_num_flatten_dims
=
num_flatten_dims
self
.
_dtype
=
dtype
from
..layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
'FC'
,
param_attr
=
param_attr
)
self
.
_helper
=
LayerHelper
(
'FC'
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
act
=
act
,
name
=
name
)
def
_build_once
(
self
,
input
):
input_shape
=
input
.
shape
...
...
@@ -247,4 +255,8 @@ class FC(layers.Layer):
inputs
=
{
"X"
:
[
tmp
]},
outputs
=
{
"Out"
:
out
},
attrs
=
{
"use_mkldnn"
:
False
})
return
out
# add bias
pre_activation
=
self
.
_helper
.
append_bias_op
(
out
,
dim_start
=
self
.
_num_flatten_dims
)
# add activation
return
self
.
_helper
.
append_activation
(
pre_activation
)
python/paddle/fluid/tests/unittests/test_imperative_base.py
浏览文件 @
03fe3109
...
...
@@ -21,10 +21,11 @@ from paddle.fluid import core
@
contextlib
.
contextmanager
def
new_program_scope
():
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
scope
=
fluid
.
core
.
Scope
()
def
new_program_scope
(
main
=
None
,
startup
=
None
,
scope
=
None
):
prog
=
main
if
main
else
fluid
.
Program
()
startup_prog
=
startup
if
startup
else
fluid
.
Program
()
scope
=
scope
if
scope
else
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
with
fluid
.
program_guard
(
prog
,
startup_prog
):
yield
with
fluid
.
unique_name
.
guard
():
yield
python/paddle/fluid/tests/unittests/test_imperative_gan.py
0 → 100644
浏览文件 @
03fe3109
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
contextlib
import
unittest
import
numpy
as
np
import
six
import
sys
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.imperative.nn
import
Conv2D
,
Pool2D
,
FC
from
test_imperative_base
import
new_program_scope
class
Discriminator
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
super
(
Discriminator
,
self
).
__init__
()
self
.
_fc1
=
FC
(
size
=
32
,
act
=
'elu'
,
name
=
"d_fc1"
)
self
.
_fc2
=
FC
(
size
=
1
,
name
=
"d_fc2"
)
def
forward
(
self
,
inputs
):
x
=
self
.
_fc1
(
inputs
)
return
self
.
_fc2
(
x
)
class
Generator
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
super
(
Generator
,
self
).
__init__
()
self
.
_fc1
=
FC
(
size
=
64
,
act
=
'elu'
,
name
=
"g_fc1"
)
self
.
_fc2
=
FC
(
size
=
64
,
act
=
'elu'
,
name
=
"g_fc2"
)
self
.
_fc3
=
FC
(
size
=
1
,
name
=
"g_fc3"
)
def
forward
(
self
,
inputs
):
x
=
self
.
_fc1
(
inputs
)
x
=
self
.
_fc2
(
x
)
return
self
.
_fc3
(
x
)
class
TestImperativeMnist
(
unittest
.
TestCase
):
def
test_mnist_cpu_float32
(
self
):
seed
=
90
startup
=
fluid
.
Program
()
startup
.
random_seed
=
seed
discriminate_p
=
fluid
.
Program
()
scope
=
fluid
.
core
.
Scope
()
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
with
new_program_scope
(
main
=
discriminate_p
,
startup
=
startup
,
scope
=
scope
):
fluid
.
default_main_program
().
random_seed
=
seed
discriminator
=
Discriminator
()
generator
=
Generator
()
img
=
fluid
.
layers
.
data
(
name
=
"img"
,
shape
=
[
2
,
1
],
append_batch_size
=
False
)
noise
=
fluid
.
layers
.
data
(
name
=
"noise"
,
shape
=
[
2
,
2
],
append_batch_size
=
False
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
2
,
1
],
dtype
=
'float32'
,
append_batch_size
=
False
)
d_real
=
discriminator
(
img
)
d_loss_real
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
d_real
,
label
=
label
))
d_fake
=
discriminator
(
generator
(
noise
))
d_loss_fake
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
d_fake
,
label
=
label
))
d_loss
=
d_loss_real
+
d_loss_fake
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
sgd
.
minimize
(
d_loss
)
generate_p
=
fluid
.
Program
()
with
new_program_scope
(
main
=
generate_p
,
startup
=
startup
,
scope
=
scope
):
fluid
.
default_main_program
().
random_seed
=
seed
discriminator
=
Discriminator
()
generator
=
Generator
()
noise
=
fluid
.
layers
.
data
(
name
=
"noise"
,
shape
=
[
2
,
2
],
append_batch_size
=
False
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
2
,
1
],
dtype
=
'float32'
,
append_batch_size
=
False
)
d_fake
=
discriminator
(
generator
(
noise
))
g_loss
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
d_fake
,
label
=
label
))
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
sgd
.
minimize
(
g_loss
)
img
=
np
.
ones
([
2
,
1
],
np
.
float32
)
label
=
np
.
ones
([
2
,
1
],
np
.
float32
)
noise
=
np
.
ones
([
2
,
2
],
np
.
float32
)
exe
.
run
(
startup
)
d_loss_val
=
exe
.
run
(
discriminate_p
,
feed
=
{
'img'
:
img
,
'noise'
:
noise
,
'label'
:
label
},
fetch_list
=
[
d_loss
])[
0
]
g_loss_val
=
exe
.
run
(
generate_p
,
feed
=
{
'noise'
:
noise
,
'label'
:
label
},
fetch_list
=
[
g_loss
])[
0
]
sys
.
stderr
.
write
(
'd_loss %s, g_loss: %s
\n
'
%
(
d_loss_val
,
g_loss_val
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录