提交 00c72309 编写于 作者: L luotao1

Merge branch 'develop' into all_data

......@@ -213,9 +213,11 @@ include(configure) # add paddle env configuration
if(WITH_GPU)
include(cuda)
include(tensorrt)
endif()
if(WITH_MKL OR WITH_MKLML)
include(external/anakin)
elseif()
set(WITH_ANAKIN OFF CACHE STRING "Anakin is used in GPU only now." FORCE)
set(WITH_ANAKIN OFF CACHE STRING "Anakin is used in MKL only now." FORCE)
endif()
include(generic) # simplify cmake module
......
......@@ -16,16 +16,6 @@ set(ANAKIN_LIBRARY ${ANAKIN_INSTALL_DIR})
set(ANAKIN_SHARED_LIB ${ANAKIN_LIBRARY}/libanakin.so)
set(ANAKIN_SABER_LIB ${ANAKIN_LIBRARY}/libanakin_saber_common.so)
# TODO(luotao): ANAKIN_MODLE_URL etc will move to demo ci later.
set(INFERENCE_URL "http://paddle-inference-dist.bj.bcebos.com")
set(ANAKIN_MODLE_URL "${INFERENCE_URL}/mobilenet_v2.anakin.bin")
set(ANAKIN_RNN_MODLE_URL "${INFERENCE_URL}/anakin_test%2Fditu_rnn.anakin2.model.bin")
set(ANAKIN_RNN_DATA_URL "${INFERENCE_URL}/anakin_test%2Fditu_rnn_data.txt")
execute_process(COMMAND bash -c "mkdir -p ${ANAKIN_SOURCE_DIR}")
execute_process(COMMAND bash -c "cd ${ANAKIN_SOURCE_DIR}; wget -q --no-check-certificate ${ANAKIN_MODLE_URL} -N")
execute_process(COMMAND bash -c "cd ${ANAKIN_SOURCE_DIR}; wget -q --no-check-certificate ${ANAKIN_RNN_MODLE_URL} -N")
execute_process(COMMAND bash -c "cd ${ANAKIN_SOURCE_DIR}; wget -q --no-check-certificate ${ANAKIN_RNN_DATA_URL} -N")
include_directories(${ANAKIN_INCLUDE})
include_directories(${ANAKIN_INCLUDE}/saber/)
include_directories(${ANAKIN_INCLUDE}/saber/core/)
......@@ -48,6 +38,11 @@ set(ANAKIN_COMPILE_EXTRA_FLAGS
-Wno-reorder
-Wno-error=cpp)
if(WITH_GPU)
set(CMAKE_ARGS_PREFIX -DUSE_GPU_PLACE=YES -DCUDNN_ROOT=${CUDNN_ROOT} -DCUDNN_INCLUDE_DIR=${CUDNN_INCLUDE_DIR})
else()
set(CMAKE_ARGS_PREFIX -DUSE_GPU_PLACE=NO)
endif()
ExternalProject_Add(
extern_anakin
${EXTERNAL_PROJECT_LOG_ARGS}
......@@ -56,13 +51,11 @@ ExternalProject_Add(
GIT_TAG "9424277cf9ae180a14aff09560d3cd60a49c76d2"
PREFIX ${ANAKIN_SOURCE_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DUSE_GPU_PLACE=YES
CMAKE_ARGS ${CMAKE_ARGS_PREFIX}
-DUSE_X86_PLACE=YES
-DBUILD_WITH_UNIT_TEST=NO
-DPROTOBUF_ROOT=${THIRD_PARTY_PATH}/install/protobuf
-DMKLML_ROOT=${THIRD_PARTY_PATH}/install/mklml
-DCUDNN_ROOT=${CUDNN_ROOT}
-DCUDNN_INCLUDE_DIR=${CUDNN_INCLUDE_DIR}
-DENABLE_OP_TIMER=${ANAKIN_ENABLE_OP_TIMER}
${EXTERNAL_OPTIONAL_ARGS}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${ANAKIN_INSTALL_DIR}
......
......@@ -145,7 +145,7 @@ copy(memory_lib
set(inference_deps paddle_fluid_shared paddle_fluid)
set(module "inference/api")
if (WITH_ANAKIN AND WITH_GPU)
if (WITH_ANAKIN AND WITH_MKL)
copy(anakin_inference_lib DEPS paddle_inference_api inference_anakin_api
SRCS
${PADDLE_BINARY_DIR}/paddle/fluid/inference/api/libinference_anakin_api* # compiled anakin api
......
......@@ -822,6 +822,14 @@ pad
.. autofunction:: paddle.fluid.layers.pad
:noindex:
.. _api_fluid_layers_pad_constant_like:
pad_constant_like
---
.. autofunction:: paddle.fluid.layers.pad_constant_like
:noindex:
.. _api_fluid_layers_label_smooth:
label_smooth
......@@ -1145,6 +1153,14 @@ sigmoid
.. autofunction:: paddle.fluid.layers.sigmoid
:noindex:
.. _api_fluid_layers_hsigmoid:
hsigmoid
-------
.. autofunction:: paddle.fluid.layers.hsigmoid
:noindex:
.. _api_fluid_layers_logsigmoid:
logsigmoid
......
......@@ -6,6 +6,7 @@ cc_library(analysis SRCS pass_manager.cc node.cc data_flow_graph.cc graph_traits
analyzer.cc
helper.cc
# passes
analysis_pass.cc
fluid_to_data_flow_graph_pass.cc
data_flow_graph_to_fluid_pass.cc
dfg_graphviz_draw_pass.cc
......@@ -99,12 +100,17 @@ inference_analysis_test(test_analyzer_lac SRCS analyzer_lac_tester.cc
set(TEXT_CLASSIFICATION_MODEL_URL "http://paddle-inference-dist.bj.bcebos.com/text-classification-Senta.tar.gz")
set(TEXT_CLASSIFICATION_DATA_URL "http://paddle-inference-dist.bj.bcebos.com/text_classification_data.txt.tar.gz")
set(TEXT_CLASSIFICATION_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo/text_classification" CACHE PATH "Text Classification model and data root." FORCE)
if (NOT EXISTS ${TEXT_CLASSIFICATION_INSTALL_DIR} AND WITH_TESTING AND WITH_INFERENCE)
inference_download_and_uncompress(${TEXT_CLASSIFICATION_INSTALL_DIR} ${TEXT_CLASSIFICATION_MODEL_URL} "text-classification-Senta.tar.gz")
inference_download_and_uncompress(${TEXT_CLASSIFICATION_INSTALL_DIR} ${TEXT_CLASSIFICATION_DATA_URL} "text_classification_data.txt.tar.gz")
endif()
inference_analysis_test(test_text_classification SRCS analyzer_text_classification_tester.cc
EXTRA_DEPS paddle_inference_api paddle_fluid_api analysis_predictor
ARGS --infer_model=${TEXT_CLASSIFICATION_INSTALL_DIR}/text-classification-Senta)
ARGS --infer_model=${TEXT_CLASSIFICATION_INSTALL_DIR}/text-classification-Senta
--infer_data=${TEXT_CLASSIFICATION_INSTALL_DIR}/data.txt
--topn=1 # Just run top 1 batch.
)
......@@ -12,4 +12,4 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/analysis/pass.h"
#include "paddle/fluid/inference/analysis/analysis_pass.h"
......@@ -28,10 +28,10 @@ namespace paddle {
namespace inference {
namespace analysis {
class Pass {
class AnalysisPass {
public:
Pass() = default;
virtual ~Pass() = default;
AnalysisPass() = default;
virtual ~AnalysisPass() = default;
// Mutable Pass.
virtual bool Initialize(Argument *argument) { return false; }
// Readonly Pass.
......@@ -42,23 +42,16 @@ class Pass {
virtual bool Finalize() { return false; }
// Get a Pass appropriate to print the Node this pass operates on.
virtual Pass *CreatePrinterPass(std::ostream &os,
const std::string &banner) const {
virtual AnalysisPass *CreatePrinterPass(std::ostream &os,
const std::string &banner) const {
return nullptr;
}
// Create a debugger Pass that draw the DFG by graphviz toolkit.
virtual Pass *CreateGraphvizDebugerPass() const { return nullptr; }
virtual AnalysisPass *CreateGraphvizDebugerPass() const { return nullptr; }
virtual void Run() { LOG(FATAL) << "not valid"; }
// Run on a single Node.
virtual void Run(Node *x) { LOG(FATAL) << "not valid"; }
// Run on a single Function.
virtual void Run(Function *x) { LOG(FATAL) << "not valid"; }
// Run on a single FunctionBlock.
virtual void Run(FunctionBlock *x) { LOG(FATAL) << "not valid"; }
// Run on a single DataFlowGraph.
virtual void Run(DataFlowGraph *x) { LOG(FATAL) << "not valid"; }
virtual void Run(DataFlowGraph *x) = 0;
// Human-readable short representation.
virtual std::string repr() const = 0;
......@@ -66,29 +59,8 @@ class Pass {
virtual std::string description() const { return "No DOC"; }
};
// NodePass process on any Node types.
class NodePass : public Pass {
public:
virtual void Run(Node *node) = 0;
};
// NodePass process on any Function node types.
class FunctionPass : public Pass {
public:
virtual void Run(Function *node) = 0;
};
// NodePass process on any FunctionBlock node types.
class FunctionBlockPass : public Pass {
public:
virtual void Run(FunctionBlock *node) = 0;
};
// GraphPass processes on any GraphType.
class DataFlowGraphPass : public Pass {
public:
virtual void Run(DataFlowGraph *graph) = 0;
};
class DataFlowGraphPass : public AnalysisPass {};
} // namespace analysis
} // namespace inference
......
......@@ -15,6 +15,7 @@
#include "paddle/fluid/inference/analysis/analyzer.h"
#include <string>
#include <vector>
#include "paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.h"
#include "paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.h"
#include "paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.h"
......@@ -58,7 +59,7 @@ class DfgPassManagerImpl final : public DfgPassManager {
std::string description() const override { return "DFG pass manager."; }
private:
void AddPass(const std::string& name, Pass* pass) {
void AddPass(const std::string& name, AnalysisPass* pass) {
VLOG(3) << "Adding pass " << name;
Register(name, pass);
AddGraphvizDebugerPass(pass);
......@@ -87,7 +88,7 @@ class DfgPassManagerImpl final : public DfgPassManager {
}
// Add the graphviz debuger pass if the parent pass has one.
void AddGraphvizDebugerPass(Pass* pass) {
void AddGraphvizDebugerPass(AnalysisPass* pass) {
auto* debuger_pass = pass->CreateGraphvizDebugerPass();
if (debuger_pass) {
Register(debuger_pass->repr(), debuger_pass);
......
......@@ -36,8 +36,11 @@ limitations under the License. */
*/
#include <gflags/gflags.h>
#include <string>
#include <vector>
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/inference/analysis/flags.h"
#include "paddle/fluid/inference/analysis/pass.h"
#include "paddle/fluid/inference/analysis/pass_manager.h"
namespace paddle {
......
......@@ -16,6 +16,7 @@
#include <gflags/gflags.h>
#include <glog/logging.h> // use glog instead of PADDLE_ENFORCE to avoid importing other paddle header files.
#include <gtest/gtest.h>
#include <fstream>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/helper.h"
......@@ -27,43 +28,70 @@ DEFINE_string(infer_model, "", "Directory of the inference model.");
DEFINE_string(infer_data, "", "Path of the dataset.");
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(repeat, 1, "How many times to repeat run.");
DEFINE_int32(topn, -1, "Run top n batches of data to save time");
namespace paddle {
namespace inference {
void Main(int batch_size) {
// Three sequence inputs.
std::vector<PaddleTensor> input_slots(1);
// one batch starts
// data --
int64_t data0[] = {0, 1, 2};
for (auto &input : input_slots) {
input.data.Reset(data0, sizeof(data0));
input.shape = std::vector<int>({3, 1});
// dtype --
input.dtype = PaddleDType::INT64;
// LoD --
input.lod = std::vector<std::vector<size_t>>({{0, 3}});
struct DataReader {
explicit DataReader(const std::string &path)
: file(new std::ifstream(path)) {}
bool NextBatch(PaddleTensor *tensor, int batch_size) {
PADDLE_ENFORCE_EQ(batch_size, 1);
std::string line;
tensor->lod.clear();
tensor->lod.emplace_back(std::vector<size_t>({0}));
std::vector<int64_t> data;
for (int i = 0; i < batch_size; i++) {
if (!std::getline(*file, line)) return false;
inference::split_to_int64(line, ' ', &data);
}
tensor->lod.front().push_back(data.size());
tensor->data.Resize(data.size() * sizeof(int64_t));
memcpy(tensor->data.data(), data.data(), data.size() * sizeof(int64_t));
tensor->shape.clear();
tensor->shape.push_back(data.size());
tensor->shape.push_back(1);
return true;
}
std::unique_ptr<std::ifstream> file;
};
void Main(int batch_size) {
// shape --
// Create Predictor --
AnalysisConfig config;
config.model_dir = FLAGS_infer_model;
config.use_gpu = false;
config.enable_ir_optim = true;
config.ir_passes.push_back("fc_lstm_fuse_pass");
auto predictor =
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
config);
std::vector<PaddleTensor> input_slots(1);
// one batch starts
// data --
auto &input = input_slots[0];
input.dtype = PaddleDType::INT64;
inference::Timer timer;
double sum = 0;
std::vector<PaddleTensor> output_slots;
for (int i = 0; i < FLAGS_repeat; i++) {
timer.tic();
CHECK(predictor->Run(input_slots, &output_slots));
sum += timer.toc();
int num_batches = 0;
for (int t = 0; t < FLAGS_repeat; t++) {
DataReader reader(FLAGS_infer_data);
while (reader.NextBatch(&input, FLAGS_batch_size)) {
if (FLAGS_topn > 0 && num_batches > FLAGS_topn) break;
timer.tic();
CHECK(predictor->Run(input_slots, &output_slots));
sum += timer.toc();
++num_batches;
}
}
PrintTime(batch_size, FLAGS_repeat, 1, 0, sum / FLAGS_repeat);
......
......@@ -263,7 +263,7 @@ class DFG_DebuggerPass : public DFG_GraphvizDrawPass {
};
} // namespace
Pass *DataFlowGraphToFluidPass::CreateGraphvizDebugerPass() const {
AnalysisPass *DataFlowGraphToFluidPass::CreateGraphvizDebugerPass() const {
return new DFG_DebuggerPass(DFG_GraphvizDrawPass::Config(
FLAGS_IA_graphviz_log_root,
"data_flow_graph_to_fluid_graphviz_debugger"));
......
......@@ -21,8 +21,8 @@
#include <string>
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/inference/analysis/data_flow_graph.h"
#include "paddle/fluid/inference/analysis/pass.h"
namespace paddle {
namespace inference {
......@@ -42,7 +42,7 @@ class DataFlowGraphToFluidPass final : public DataFlowGraphPass {
return "Transform a DFG to a Fluid ProgramDesc";
}
Pass *CreateGraphvizDebugerPass() const override;
AnalysisPass *CreateGraphvizDebugerPass() const override;
protected:
// Add a Fluid Op into the ProgramDesc.
......
......@@ -21,8 +21,8 @@ limitations under the License. */
#include <fstream>
#include <string>
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/inference/analysis/dot.h"
#include "paddle/fluid/inference/analysis/pass.h"
namespace paddle {
namespace inference {
......
......@@ -66,7 +66,7 @@ class DFG_DebuggerPass : public DFG_GraphvizDrawPass {
};
}
Pass *FluidToDataFlowGraphPass::CreateGraphvizDebugerPass() const {
AnalysisPass *FluidToDataFlowGraphPass::CreateGraphvizDebugerPass() const {
return new DFG_DebuggerPass(DFG_GraphvizDrawPass::Config(
FLAGS_IA_graphviz_log_root, "fluid-to-dfg-debuger"));
}
......
......@@ -22,8 +22,8 @@
#include <string>
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/inference/analysis/data_flow_graph.h"
#include "paddle/fluid/inference/analysis/pass.h"
namespace paddle {
namespace inference {
......@@ -46,7 +46,7 @@ class FluidToDataFlowGraphPass final : public DataFlowGraphPass {
return "transform a fluid ProgramDesc to a data flow graph.";
}
Pass *CreateGraphvizDebugerPass() const override;
AnalysisPass *CreateGraphvizDebugerPass() const override;
private:
framework::proto::ProgramDesc const *desc_;
......
......@@ -14,15 +14,17 @@
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/inference/analysis/flags.h"
#include "paddle/fluid/inference/analysis/ir_pass_manager.h"
#include "paddle/fluid/inference/analysis/pass.h"
namespace paddle {
namespace inference {
namespace analysis {
using namespace framework;
static const char kFluidToIrPassesAttr[] = "__fluid_to_ir_passes__";
......@@ -48,7 +50,8 @@ class FluidToIrPass final : public DataFlowGraphPass {
ANALYSIS_ARGUMENT_CHECK_FIELD(argument->fluid_model_program_path);
// Load program.
auto program = LoadProgramDesc(*argument->fluid_model_program_path);
argument->origin_program_desc.reset(new proto::ProgramDesc(program));
argument->origin_program_desc.reset(
new framework::proto::ProgramDesc(program));
// Create main data flow graph.
if (!argument->main_dfg) {
argument->main_dfg.reset(new DataFlowGraph);
......@@ -78,12 +81,13 @@ class FluidToIrPass final : public DataFlowGraphPass {
IRPassManager ir_passes(argument_->Get<ProgramDesc>("ir_program_desc"),
nullptr);
// Pass the scope from analysis to IR if needed.
if (argument_->Has(ir::kParamScopeAttr)) {
if (argument_->Has(framework::ir::kParamScopeAttr)) {
// Here the address is passed, attention that IR doesn't own the scope, so
// the real scope in analysis should live during the IR phase.
ir_passes.graph().Set(
ir::kParamScopeAttr,
new Scope *(&argument_->Get<Scope>(ir::kParamScopeAttr)));
framework::ir::kParamScopeAttr,
new framework::Scope *(&argument_->Get<framework::Scope>(
framework::ir::kParamScopeAttr)));
}
if (FLAGS_IA_enable_ir) {
......@@ -95,12 +99,12 @@ class FluidToIrPass final : public DataFlowGraphPass {
PADDLE_ENFORCE(argument_->main_dfg.get());
argument_->main_dfg->Build(ir_passes.graph());
// inherit the arguments from ir.
if (ir_passes.graph().Has(ir::kFuseStatisAttr)) {
if (ir_passes.graph().Has(framework::ir::kFuseStatisAttr)) {
argument_->Set(
ir::kFuseStatisAttr,
framework::ir::kFuseStatisAttr,
new std::unordered_map<std::string, int>(
ir_passes.graph().Get<std::unordered_map<std::string, int>>(
ir::kFuseStatisAttr)));
framework::ir::kFuseStatisAttr)));
}
}
......@@ -112,7 +116,7 @@ class FluidToIrPass final : public DataFlowGraphPass {
private:
// Load parameters from a single file or from a directory.
bool LoadParams(Scope *scope, const std::string &dir,
bool LoadParams(framework::Scope *scope, const std::string &dir,
const std::string &prog_file, const std::string &param_file);
private:
......
......@@ -19,7 +19,7 @@
#pragma once
#include <string>
#include "paddle/fluid/inference/analysis/pass.h"
#include "paddle/fluid/inference/analysis/analysis_pass.h"
namespace paddle {
namespace inference {
......
......@@ -40,17 +40,6 @@ void DfgPassManager::RunAll() {
}
}
void NodePassManager::RunAll() {
PADDLE_ENFORCE(argument_);
PADDLE_ENFORCE(argument_->main_dfg.get());
auto trait = GraphTraits<DataFlowGraph>(*argument_->main_dfg).nodes_in_DFS();
for (auto& node : trait) {
for (auto& pass : data_) {
pass->Run(&node);
}
}
}
} // namespace analysis
} // namespace inference
} // namespace paddle
......@@ -33,7 +33,7 @@ limitations under the License. */
#include <string>
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/inference/analysis/pass.h"
#include "paddle/fluid/inference/analysis/analysis_pass.h"
namespace paddle {
namespace inference {
......@@ -43,7 +43,7 @@ namespace analysis {
* PassManager is the base class for all pass managers, a pass manager has
* several Pass-es registered, and execute them in the linear order.
*/
class PassManager : public OrderedRegistry<Pass> {
class PassManager : public OrderedRegistry<AnalysisPass> {
public:
PassManager() = default;
// Call all the passes' Initialize methods. The desc and data_flow_graph are
......@@ -89,18 +89,6 @@ class DfgPassManager : public PassManager {
virtual ~DfgPassManager() = default;
};
/*
* A pass manager that process a Node each time.
*/
class NodePassManager : public PassManager {
public:
NodePassManager() = default;
void RunAll() override;
virtual ~NodePassManager() = default;
};
} // namespace analysis
} // namespace inference
} // namespace paddle
......@@ -34,28 +34,6 @@ class TestDfgPassManager final : public DfgPassManager {
std::string description() const override { return "test doc"; }
};
class TestNodePassManager final : public NodePassManager {
public:
virtual ~TestNodePassManager() = default;
std::string repr() const override { return "test-node-pass-manager"; }
std::string description() const override { return "test doc"; }
};
class TestNodePass final : public NodePass {
public:
virtual ~TestNodePass() = default;
bool Initialize(Argument* argument) override { return true; }
void Run(Node* node) override {
LOG(INFO) << "- Processing node " << node->repr();
}
std::string repr() const override { return "test-node"; }
std::string description() const override { return "some doc"; }
};
TEST(PassManager, DFG_pass_manager) {
TestDfgPassManager manager;
DFG_GraphvizDrawPass::Config config("./", "dfg.dot");
......@@ -71,19 +49,6 @@ TEST(PassManager, DFG_pass_manager) {
manager.RunAll();
}
TEST(PassManager, Node_pass_manager) {
Argument argument(FLAGS_inference_model_dir);
// Pre-process: initialize the DFG with the ProgramDesc first.
FluidToDataFlowGraphPass pass0;
pass0.Initialize(&argument);
pass0.Run(argument.main_dfg.get());
TestNodePassManager manager;
manager.Register("test-node-pass", new TestNodePass);
ASSERT_TRUE(manager.Initialize(&argument));
manager.RunAll();
}
} // namespace analysis
} // namespace inference
} // namespace paddle
......@@ -68,7 +68,7 @@ class DfgDebuggerPass : public DFG_GraphvizDrawPass {
}
};
Pass *TensorRTSubgraphNodeMarkPass::CreateGraphvizDebugerPass() const {
AnalysisPass *TensorRTSubgraphNodeMarkPass::CreateGraphvizDebugerPass() const {
DFG_GraphvizDrawPass::Config config(FLAGS_IA_graphviz_log_root,
"tensorrt_marked_node");
return new DfgDebuggerPass(config);
......
......@@ -20,7 +20,7 @@
#pragma once
#include <string>
#include "paddle/fluid/inference/analysis/pass.h"
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/inference/analysis/subgraph_splitter.h"
namespace paddle {
......@@ -48,7 +48,7 @@ class TensorRTSubgraphNodeMarkPass : public DataFlowGraphPass {
return "tensorrt sub-graph mark pass";
}
Pass* CreateGraphvizDebugerPass() const override;
AnalysisPass* CreateGraphvizDebugerPass() const override;
bool Finalize() override;
private:
......
......@@ -15,8 +15,8 @@ limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/inference/analysis/node.h"
#include "paddle/fluid/inference/analysis/pass.h"
#include "paddle/fluid/inference/analysis/subgraph_splitter.h"
namespace paddle {
......
......@@ -61,7 +61,7 @@ cc_library(paddle_inference_tensorrt_subgraph_engine
inference_api_test(test_api_tensorrt_subgraph_engine SRC api_tensorrt_subgraph_engine_tester.cc ARGS test_word2vec)
endif()
if (WITH_ANAKIN AND WITH_GPU) # only needed in CI
if (WITH_ANAKIN AND WITH_MKL) # only needed in CI
# compile the libinference_anakin_api.a and anakin.so.
cc_library(inference_anakin_api SRCS api.cc api_anakin_engine.cc DEPS anakin_shared anakin_saber mklml)
cc_library(inference_anakin_api_shared SHARED SRCS api.cc api_anakin_engine.cc DEPS anakin_shared anakin_saber)
......@@ -71,12 +71,24 @@ if (WITH_ANAKIN AND WITH_GPU) # only needed in CI
anakin_target(inference_anakin_api)
anakin_target(inference_anakin_api_shared)
if (WITH_TESTING)
cc_test(api_anakin_engine_tester SRCS api_anakin_engine_tester.cc
ARGS --model=${ANAKIN_SOURCE_DIR}/mobilenet_v2.anakin.bin
DEPS inference_anakin_api_shared dynload_cuda SERIAL)
# TODO(luotao): ANAKIN_MODLE_URL etc will move to demo ci later.
set(INFERENCE_URL "http://paddle-inference-dist.bj.bcebos.com")
set(ANAKIN_RNN_MODLE_URL "${INFERENCE_URL}/anakin_test%2Fditu_rnn.anakin2.model.bin")
set(ANAKIN_RNN_DATA_URL "${INFERENCE_URL}/anakin_test%2Fditu_rnn_data.txt")
execute_process(COMMAND bash -c "mkdir -p ${ANAKIN_SOURCE_DIR}")
execute_process(COMMAND bash -c "cd ${ANAKIN_SOURCE_DIR}; wget -q --no-check-certificate ${ANAKIN_RNN_MODLE_URL} -N")
execute_process(COMMAND bash -c "cd ${ANAKIN_SOURCE_DIR}; wget -q --no-check-certificate ${ANAKIN_RNN_DATA_URL} -N")
if(WITH_GPU)
set(anakin_test_extra_deps dynload_cuda)
set(ANAKIN_MODLE_URL "${INFERENCE_URL}/mobilenet_v2.anakin.bin")
execute_process(COMMAND bash -c "cd ${ANAKIN_SOURCE_DIR}; wget -q --no-check-certificate ${ANAKIN_MODLE_URL} -N")
cc_test(api_anakin_engine_tester SRCS api_anakin_engine_tester.cc
ARGS --model=${ANAKIN_SOURCE_DIR}/mobilenet_v2.anakin.bin
DEPS inference_anakin_api_shared ${anakin_test_extra_deps} SERIAL)
endif()
cc_test(api_anakin_engine_rnn_tester SRCS api_anakin_engine_rnn_tester.cc
ARGS --model=${ANAKIN_SOURCE_DIR}/anakin_test%2Fditu_rnn.anakin2.model.bin
--datapath=${ANAKIN_SOURCE_DIR}/anakin_test%2Fditu_rnn_data.txt
DEPS inference_anakin_api_shared dynload_cuda SERIAL)
DEPS inference_anakin_api_shared ${anakin_test_extra_deps} SERIAL)
endif(WITH_TESTING)
endif()
......@@ -193,7 +193,9 @@ PaddleInferenceAnakinPredictor<Target>::Clone() {
return std::move(cls);
}
#ifdef PADDLE_WITH_CUDA
template class PaddleInferenceAnakinPredictor<anakin::NV>;
#endif
template class PaddleInferenceAnakinPredictor<anakin::X86>;
// A factory to help create difference predictor.
......@@ -202,10 +204,15 @@ std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
AnakinConfig, PaddleEngineKind::kAnakin>(const AnakinConfig &config) {
VLOG(3) << "Anakin Predictor create.";
if (config.target_type == AnakinConfig::NVGPU) {
#ifdef PADDLE_WITH_CUDA
VLOG(3) << "Anakin Predictor create on [ NVIDIA GPU ].";
std::unique_ptr<PaddlePredictor> x(
new PaddleInferenceAnakinPredictor<anakin::NV>(config));
return x;
#else
LOG(ERROR) << "AnakinConfig::NVGPU could not used in ONLY-CPU environment";
return nullptr;
#endif
} else if (config.target_type == AnakinConfig::X86) {
VLOG(3) << "Anakin Predictor create on [ Intel X86 ].";
std::unique_ptr<PaddlePredictor> x(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册