未验证 提交 00b656f2 编写于 作者: F Feng Ni 提交者: GitHub

update ppyoloe test AP in all docs (#6315)

上级 10d647f0
...@@ -25,7 +25,7 @@ ...@@ -25,7 +25,7 @@
- 🔥 **2022.3.24:PaddleDetection发布[release/2.4版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)** - 🔥 **2022.3.24:PaddleDetection发布[release/2.4版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)**
- 发布高精度云边一体SOTA目标检测模型[PP-YOLOE](configs/ppyoloe),提供s/m/l/x版本,l版本COCO test2017数据集精度51.4%,V100预测速度78.1 FPS,支持混合精度训练,训练较PP-YOLOv2加速33%,全系列多尺度模型,满足不同硬件算力需求,可适配服务器、边缘端GPU及其他服务器端AI加速卡。 - 发布高精度云边一体SOTA目标检测模型[PP-YOLOE](configs/ppyoloe),提供s/m/l/x版本,l版本COCO test2017数据集精度51.6%,V100预测速度78.1 FPS,支持混合精度训练,训练较PP-YOLOv2加速33%,全系列多尺度模型,满足不同硬件算力需求,可适配服务器、边缘端GPU及其他服务器端AI加速卡。
- 发布边缘端和CPU端超轻量SOTA目标检测模型[PP-PicoDet增强版](configs/picodet),精度提升2%左右,CPU预测速度提升63%,新增参数量0.7M的PicoDet-XS模型,提供模型稀疏化和量化功能,便于模型加速,各类硬件无需单独开发后处理模块,降低部署门槛。 - 发布边缘端和CPU端超轻量SOTA目标检测模型[PP-PicoDet增强版](configs/picodet),精度提升2%左右,CPU预测速度提升63%,新增参数量0.7M的PicoDet-XS模型,提供模型稀疏化和量化功能,便于模型加速,各类硬件无需单独开发后处理模块,降低部署门槛。
- 发布实时行人分析工具[PP-Human](deploy/pphuman),支持行人跟踪、人流量统计、人体属性识别与摔倒检测四大能力,基于真实场景数据特殊优化,精准识别各类摔倒姿势,适应不同环境背景、光线及摄像角度。 - 发布实时行人分析工具[PP-Human](deploy/pphuman),支持行人跟踪、人流量统计、人体属性识别与摔倒检测四大能力,基于真实场景数据特殊优化,精准识别各类摔倒姿势,适应不同环境背景、光线及摄像角度。
- 新增[YOLOX](configs/yolox)目标检测模型,支持nano/tiny/s/m/l/x版本,x版本COCO val2017数据集精度51.8%。 - 新增[YOLOX](configs/yolox)目标检测模型,支持nano/tiny/s/m/l/x版本,x版本COCO val2017数据集精度51.8%。
...@@ -254,7 +254,7 @@ ...@@ -254,7 +254,7 @@
- `Cascade-Faster-RCNN``Cascade-Faster-RCNN-ResNet50vd-DCN`,PaddleDetection将其优化到COCO数据mAP为47.8%时推理速度为20FPS - `Cascade-Faster-RCNN``Cascade-Faster-RCNN-ResNet50vd-DCN`,PaddleDetection将其优化到COCO数据mAP为47.8%时推理速度为20FPS
- `PP-YOLO`在COCO数据集精度45.9%,Tesla V100预测速度72.9FPS,精度速度均优于[YOLOv4](https://arxiv.org/abs/2004.10934) - `PP-YOLO`在COCO数据集精度45.9%,Tesla V100预测速度72.9FPS,精度速度均优于[YOLOv4](https://arxiv.org/abs/2004.10934)
- `PP-YOLO v2`是对`PP-YOLO`模型的进一步优化,在COCO数据集精度49.5%,Tesla V100预测速度68.9FPS - `PP-YOLO v2`是对`PP-YOLO`模型的进一步优化,在COCO数据集精度49.5%,Tesla V100预测速度68.9FPS
- `PP-YOLOE`是对`PP-YOLO v2`模型的进一步优化,在COCO数据集精度51.4%,Tesla V100预测速度78.1FPS - `PP-YOLOE`是对`PP-YOLO v2`模型的进一步优化,在COCO数据集精度51.6%,Tesla V100预测速度78.1FPS
- [`YOLOX`](configs/yolox)[`YOLOv5`](https://github.com/nemonameless/PaddleDetection_YOLOv5/tree/main/configs/yolov5)均为基于PaddleDetection复现算法 - [`YOLOX`](configs/yolox)[`YOLOv5`](https://github.com/nemonameless/PaddleDetection_YOLOv5/tree/main/configs/yolov5)均为基于PaddleDetection复现算法
- 图中模型均可在[模型库](#模型库)中获取 - 图中模型均可在[模型库](#模型库)中获取
......
...@@ -20,7 +20,7 @@ English | [简体中文](README_cn.md) ...@@ -20,7 +20,7 @@ English | [简体中文](README_cn.md)
- 🔥 **2022.3.24:PaddleDetection [release 2.4 version](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)** - 🔥 **2022.3.24:PaddleDetection [release 2.4 version](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)**
- Release GPU SOTA object detection series models (s/m/l/x) [PP-YOLOE](configs/ppyoloe), supporting s/m/l/x version, achieving mAP as 51.4% on COCO test dataset and 78.1 FPS on Nvidia V100 by PP-YOLOE-l, supporting AMP training and its training speed is 33% faster than PP-YOLOv2. - Release GPU SOTA object detection series models (s/m/l/x) [PP-YOLOE](configs/ppyoloe), supporting s/m/l/x version, achieving mAP as 51.6% on COCO test dataset and 78.1 FPS on Nvidia V100 by PP-YOLOE-l, supporting AMP training and its training speed is 33% faster than PP-YOLOv2.
- Release enhanced models of [PP-PicoDet](configs/picodet), including PP-PicoDet-XS model with 0.7M parameters, its mAP promoted ~2% on COCO, inference speed accelerated 63% on CPU, and post-processing integrated into the network to optimize deployment pipeline. - Release enhanced models of [PP-PicoDet](configs/picodet), including PP-PicoDet-XS model with 0.7M parameters, its mAP promoted ~2% on COCO, inference speed accelerated 63% on CPU, and post-processing integrated into the network to optimize deployment pipeline.
- Release real-time human analysis tool [PP-Human](deploy/pphuman), which is based on data from real-life situations, supporting pedestrian detection, attribute recognition, human tracking, multi-camera tracking, human statistics and action recognition. - Release real-time human analysis tool [PP-Human](deploy/pphuman), which is based on data from real-life situations, supporting pedestrian detection, attribute recognition, human tracking, multi-camera tracking, human statistics and action recognition.
- Release [YOLOX](configs/yolox), supporting nano/tiny/s/m/l/x version, achieving mAP as 51.8% on COCO val dataset by YOLOX-x. - Release [YOLOX](configs/yolox), supporting nano/tiny/s/m/l/x version, achieving mAP as 51.8% on COCO val dataset by YOLOX-x.
...@@ -250,7 +250,7 @@ The relationship between COCO mAP and FPS on Tesla V100 of representative models ...@@ -250,7 +250,7 @@ The relationship between COCO mAP and FPS on Tesla V100 of representative models
- `PP-YOLO v2` is optimized version of `PP-YOLO` which has mAP of 49.5% and 68.9FPS on Tesla V100 - `PP-YOLO v2` is optimized version of `PP-YOLO` which has mAP of 49.5% and 68.9FPS on Tesla V100
- `PP-YOLOE` is optimized version of `PP-YOLO v2` which has mAP of 51.4% and 78.1FPS on Tesla V100 - `PP-YOLOE` is optimized version of `PP-YOLO v2` which has mAP of 51.6% and 78.1FPS on Tesla V100
- All these models can be get in [Model Zoo](#ModelZoo) - All these models can be get in [Model Zoo](#ModelZoo)
......
...@@ -15,7 +15,7 @@ PP-YOLOE is an excellent single-stage anchor-free model based on PP-YOLOv2, surp ...@@ -15,7 +15,7 @@ PP-YOLOE is an excellent single-stage anchor-free model based on PP-YOLOv2, surp
<img src="../../docs/images/ppyoloe_map_fps.png" width=500 /> <img src="../../docs/images/ppyoloe_map_fps.png" width=500 />
</div> </div>
PP-YOLOE-l achieves 51.4 mAP on COCO test-dev2017 dataset with 78.1 FPS on Tesla V100. While using TensorRT FP16, PP-YOLOE-l can be further accelerated to 149.2 FPS. PP-YOLOE-s/m/x also have excellent accuracy and speed performance, which can be found in [Model Zoo](#Model-Zoo) PP-YOLOE-l achieves 51.6 mAP on COCO test-dev2017 dataset with 78.1 FPS on Tesla V100. While using TensorRT FP16, PP-YOLOE-l can be further accelerated to 149.2 FPS. PP-YOLOE-s/m/x also have excellent accuracy and speed performance, which can be found in [Model Zoo](#Model-Zoo)
PP-YOLOE is composed of following methods: PP-YOLOE is composed of following methods:
- Scalable backbone and neck - Scalable backbone and neck
...@@ -26,10 +26,10 @@ PP-YOLOE is composed of following methods: ...@@ -26,10 +26,10 @@ PP-YOLOE is composed of following methods:
## Model Zoo ## Model Zoo
| Model | GPU number | images/GPU | backbone | input shape | Box AP<sup>val<br>0.5:0.95 | Box AP<sup>test<br>0.5:0.95 | Params(M) | FLOPs(G) | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | download | config | | Model | GPU number | images/GPU | backbone | input shape | Box AP<sup>val<br>0.5:0.95 | Box AP<sup>test<br>0.5:0.95 | Params(M) | FLOPs(G) | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | download | config |
|:------------------------:|:-------:|:----------:|:----------:| :-------:| :------------------: | :-------------------: |:---------:|:--------:| :------------: | :---------------------: | :------: | :------: | |:------------------------:|:-------:|:----------:|:----------:| :-------:| :------------------: | :-------------------: |:---------:|:--------:| :------------: | :---------------------: | :------: | :------: |
| PP-YOLOE-s | 8 | 32 | cspresnet-s | 640 | 43.0 | 43.2 | 7.93 | 17.36 | 208.3 | 333.3 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyoloe/ppyoloe_crn_s_300e_coco.yml) | | PP-YOLOE-s | 8 | 32 | cspresnet-s | 640 | 43.0 | 43.2 | 7.93 | 17.36 | 208.3 | 333.3 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_300e_coco.pdparams) | [config](./ppyoloe_crn_s_300e_coco.yml) |
| PP-YOLOE-m | 8 | 28 | cspresnet-m | 640 | 49.0 | 49.1 | 23.43 | 49.91 | 123.4 | 208.3 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_m_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyoloe/ppyoloe_crn_m_300e_coco.yml) | | PP-YOLOE-m | 8 | 28 | cspresnet-m | 640 | 49.0 | 49.1 | 23.43 | 49.91 | 123.4 | 208.3 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_m_300e_coco.pdparams) | [config](./ppyoloe_crn_m_300e_coco.yml) |
| PP-YOLOE-l | 8 | 20 | cspresnet-l | 640 | 51.4 | 51.6 | 52.20 | 110.07 | 78.1 | 149.2 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml) | | PP-YOLOE-l | 8 | 20 | cspresnet-l | 640 | 51.4 | 51.6 | 52.20 | 110.07 | 78.1 | 149.2 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams) | [config](./ppyoloe_crn_l_300e_coco.yml) |
| PP-YOLOE-x | 8 | 16 | cspresnet-x | 640 | 52.3 | 52.4 | 98.42 | 206.59 | 45.0 | 95.2 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_x_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyoloe/ppyoloe_crn_x_300e_coco.yml) | | PP-YOLOE-x | 8 | 16 | cspresnet-x | 640 | 52.3 | 52.4 | 98.42 | 206.59 | 45.0 | 95.2 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_x_300e_coco.pdparams) | [config](./ppyoloe_crn_x_300e_coco.yml) |
### Comprehensive Metrics ### Comprehensive Metrics
| Model | AP<sup>0.5:0.95 | AP<sup>0.5 | AP<sup>0.75 | AP<sup>small | AP<sup>medium | AP<sup>large | AR<sup>small | AR<sup>medium | AR<sup>large | download | config | | Model | AP<sup>0.5:0.95 | AP<sup>0.5 | AP<sup>0.75 | AP<sup>small | AP<sup>medium | AP<sup>large | AR<sup>small | AR<sup>medium | AR<sup>large | download | config |
...@@ -43,15 +43,7 @@ PP-YOLOE is composed of following methods: ...@@ -43,15 +43,7 @@ PP-YOLOE is composed of following methods:
**Notes:** **Notes:**
- PP-YOLOE is trained on COCO train2017 dataset and evaluated on val2017 & test-dev2017 dataset,all the model weights are trained for **300 epoches**. - PP-YOLOE is trained on COCO train2017 dataset and evaluated on val2017 & test-dev2017 dataset,all the model weights are trained for **300 epoches**.
- The model weights in the table of Comprehensive Metrics are **the same as** that in the original Model Zoo, and evaluated on **val2017**. To reproduce the metrics, just modify the setting of `nms` in [ppyoloe_crn.yml](_base_/ppyoloe_crn.yml): - The model weights in the table of Comprehensive Metrics are **the same as** that in the original Model Zoo, and evaluated on **val2017**.
```
nms:
name: MultiClassNMS
nms_top_k: 10000
keep_top_k: 300
score_threshold: 0.01
nms_threshold: 0.7
```
- PP-YOLOE used 8 GPUs for mixed precision training, if **GPU number** or **mini-batch size** is changed, **learning rate** should be adjusted according to the formula **lr<sub>new</sub> = lr<sub>default</sub> * (batch_size<sub>new</sub> * GPU_number<sub>new</sub>) / (batch_size<sub>default</sub> * GPU_number<sub>default</sub>)**. - PP-YOLOE used 8 GPUs for mixed precision training, if **GPU number** or **mini-batch size** is changed, **learning rate** should be adjusted according to the formula **lr<sub>new</sub> = lr<sub>default</sub> * (batch_size<sub>new</sub> * GPU_number<sub>new</sub>) / (batch_size<sub>default</sub> * GPU_number<sub>default</sub>)**.
- PP-YOLOE inference speed is tesed on single Tesla V100 with batch size as 1, **CUDA 10.2**, **CUDNN 7.6.5**, **TensorRT 6.0.1.8** in TensorRT mode. - PP-YOLOE inference speed is tesed on single Tesla V100 with batch size as 1, **CUDA 10.2**, **CUDNN 7.6.5**, **TensorRT 6.0.1.8** in TensorRT mode.
- Refer to [Speed testing](#Speed-testing) to reproduce the speed testing results of PP-YOLOE. - Refer to [Speed testing](#Speed-testing) to reproduce the speed testing results of PP-YOLOE.
......
...@@ -15,7 +15,7 @@ PP-YOLOE是基于PP-YOLOv2的卓越的单阶段Anchor-free模型,超越了多 ...@@ -15,7 +15,7 @@ PP-YOLOE是基于PP-YOLOv2的卓越的单阶段Anchor-free模型,超越了多
<img src="../../docs/images/ppyoloe_map_fps.png" width=500 /> <img src="../../docs/images/ppyoloe_map_fps.png" width=500 />
</div> </div>
PP-YOLOE-l在COCO test-dev2017达到了51.4的mAP, 同时其速度在Tesla V100上达到了78.1 FPS。PP-YOLOE-s/m/x同样具有卓越的精度速度性价比, 其精度速度可以在[模型库](#模型库)中找到。 PP-YOLOE-l在COCO test-dev2017达到了51.6的mAP, 同时其速度在Tesla V100上达到了78.1 FPS。PP-YOLOE-s/m/x同样具有卓越的精度速度性价比, 其精度速度可以在[模型库](#模型库)中找到。
PP-YOLOE由以下方法组成 PP-YOLOE由以下方法组成
- 可扩展的backbone和neck - 可扩展的backbone和neck
...@@ -26,10 +26,10 @@ PP-YOLOE由以下方法组成 ...@@ -26,10 +26,10 @@ PP-YOLOE由以下方法组成
## 模型库 ## 模型库
| 模型 | GPU个数 | 每GPU图片个数 | 骨干网络 | 输入尺寸 | Box AP<sup>val<br>0.5:0.95 | Box AP<sup>test<br>0.5:0.95 | Params(M) | FLOPs(G) | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | 模型下载 | 配置文件 | | 模型 | GPU个数 | 每GPU图片个数 | 骨干网络 | 输入尺寸 | Box AP<sup>val<br>0.5:0.95 | Box AP<sup>test<br>0.5:0.95 | Params(M) | FLOPs(G) | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | 模型下载 | 配置文件 |
|:------------------------:|:-------:|:--------:|:----------:| :-------:| :------------------: | :-------------------: |:---------:|:--------:|:---------------:| :---------------------: | :------: | :------: | |:------------------------:|:-------:|:--------:|:----------:| :-------:| :------------------: | :-------------------: |:---------:|:--------:|:---------------:| :---------------------: | :------: | :------: |
| PP-YOLOE-s | 8 | 32 | cspresnet-s | 640 | 43.0 | 43.2 | 7.93 | 17.36 | 208.3 | 333.3 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyoloe/ppyoloe_crn_s_300e_coco.yml) | | PP-YOLOE-s | 8 | 32 | cspresnet-s | 640 | 43.0 | 43.2 | 7.93 | 17.36 | 208.3 | 333.3 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_300e_coco.pdparams) | [config](./ppyoloe_crn_s_300e_coco.yml) |
| PP-YOLOE-m | 8 | 28 | cspresnet-m | 640 | 49.0 | 49.1 | 23.43 | 49.91 | 123.4 | 208.3 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_m_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyoloe/ppyoloe_crn_m_300e_coco.yml) | | PP-YOLOE-m | 8 | 28 | cspresnet-m | 640 | 49.0 | 49.1 | 23.43 | 49.91 | 123.4 | 208.3 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_m_300e_coco.pdparams) | [config](./ppyoloe_crn_m_300e_coco.yml) |
| PP-YOLOE-l | 8 | 20 | cspresnet-l | 640 | 51.4 | 51.6 | 52.20 | 110.07 | 78.1 | 149.2 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml) | | PP-YOLOE-l | 8 | 20 | cspresnet-l | 640 | 51.4 | 51.6 | 52.20 | 110.07 | 78.1 | 149.2 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams) | [config](./ppyoloe_crn_l_300e_coco.yml) |
| PP-YOLOE-x | 8 | 16 | cspresnet-x | 640 | 52.3 | 52.4 | 98.42 | 206.59 | 45.0 | 95.2 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_x_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyoloe/ppyoloe_crn_x_300e_coco.yml) | | PP-YOLOE-x | 8 | 16 | cspresnet-x | 640 | 52.3 | 52.4 | 98.42 | 206.59 | 45.0 | 95.2 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_x_300e_coco.pdparams) | [config](./ppyoloe_crn_x_300e_coco.yml) |
### 综合指标 ### 综合指标
...@@ -44,15 +44,7 @@ PP-YOLOE由以下方法组成 ...@@ -44,15 +44,7 @@ PP-YOLOE由以下方法组成
**注意:** **注意:**
- PP-YOLOE模型使用COCO数据集中train2017作为训练集,使用val2017和test-dev2017作为测试集,模型权重均为训练**300 epoches**得到的。 - PP-YOLOE模型使用COCO数据集中train2017作为训练集,使用val2017和test-dev2017作为测试集,模型权重均为训练**300 epoches**得到的。
- 综合指标的表格与模型库的表格里的模型权重是**同一个权重**,综合指标是使用**val2017**作为验证精度的,如果要复现以上表格中的测试结果,只要修改[ppyoloe_crn.yml](_base_/ppyoloe_crn.yml)中的`nms`部分的设置为: - 综合指标的表格与模型库的表格里的模型权重是**同一个权重**,综合指标是使用**val2017**作为验证精度的。
```
nms:
name: MultiClassNMS
nms_top_k: 10000
keep_top_k: 300
score_threshold: 0.01
nms_threshold: 0.7
```
- PP-YOLOE模型训练过程中使用8 GPUs进行混合精度训练,如果**GPU卡数**或者**batch size**发生了改变,你需要按照公式 **lr<sub>new</sub> = lr<sub>default</sub> * (batch_size<sub>new</sub> * GPU_number<sub>new</sub>) / (batch_size<sub>default</sub> * GPU_number<sub>default</sub>)** 调整学习率。 - PP-YOLOE模型训练过程中使用8 GPUs进行混合精度训练,如果**GPU卡数**或者**batch size**发生了改变,你需要按照公式 **lr<sub>new</sub> = lr<sub>default</sub> * (batch_size<sub>new</sub> * GPU_number<sub>new</sub>) / (batch_size<sub>default</sub> * GPU_number<sub>default</sub>)** 调整学习率。
- PP-YOLOE模型推理速度测试采用单卡V100,batch size=1进行测试,使用**CUDA 10.2**, **CUDNN 7.6.5**,TensorRT推理速度测试使用**TensorRT 6.0.1.8** - PP-YOLOE模型推理速度测试采用单卡V100,batch size=1进行测试,使用**CUDA 10.2**, **CUDNN 7.6.5**,TensorRT推理速度测试使用**TensorRT 6.0.1.8**
- 参考[速度测试](#速度测试)以复现PP-YOLOE推理速度测试结果。 - 参考[速度测试](#速度测试)以复现PP-YOLOE推理速度测试结果。
......
...@@ -39,7 +39,7 @@ PPYOLOEHead: ...@@ -39,7 +39,7 @@ PPYOLOEHead:
beta: 6.0 beta: 6.0
nms: nms:
name: MultiClassNMS name: MultiClassNMS
nms_top_k: 1000 nms_top_k: 10000
keep_top_k: 100 keep_top_k: 300
score_threshold: 0.01 score_threshold: 0.01
nms_threshold: 0.6 nms_threshold: 0.7
...@@ -7,7 +7,7 @@ ...@@ -7,7 +7,7 @@
### 2.4(03.24/2022) ### 2.4(03.24/2022)
- PP-YOLOE: - PP-YOLOE:
- 发布PP-YOLOE特色模型,l版本COCO test2017数据集精度51.4%,V100预测速度78.1 FPS,精度速度服务器端SOTA - 发布PP-YOLOE特色模型,l版本COCO test2017数据集精度51.6%,V100预测速度78.1 FPS,精度速度服务器端SOTA
- 发布s/m/l/x系列模型,打通TensorRT、ONNX部署能力 - 发布s/m/l/x系列模型,打通TensorRT、ONNX部署能力
- 支持混合精度训练,训练较PP-YOLOv2加速33% - 支持混合精度训练,训练较PP-YOLOv2加速33%
......
...@@ -7,7 +7,7 @@ English | [简体中文](./CHANGELOG.md) ...@@ -7,7 +7,7 @@ English | [简体中文](./CHANGELOG.md)
### 2.4(03.24/2022) ### 2.4(03.24/2022)
- PP-YOLOE: - PP-YOLOE:
- Release PP-YOLOE object detection models, achieve mAP as 51.4% on COCO test dataset and 78.1 FPS on Nvidia V100 by PP-YOLOE-l, reach SOTA performance for object detection on GPU`` - Release PP-YOLOE object detection models, achieve mAP as 51.6% on COCO test dataset and 78.1 FPS on Nvidia V100 by PP-YOLOE-l, reach SOTA performance for object detection on GPU``
- Release series models: s/m/l/x, and support deployment base on TensorRT & ONNX - Release series models: s/m/l/x, and support deployment base on TensorRT & ONNX
- Spport AMP training and training speed is 33% faster than PP-YOLOv2 - Spport AMP training and training speed is 33% faster than PP-YOLOv2
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册