expand_op.cc 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/expand_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class ExpandOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yangyaming 已提交
27
  void InferShape(framework::InferShapeContext* ctx) const override {
28 29 30
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null.");

Y
yangyaming 已提交
31
    std::vector<int> expand_times =
32
        ctx->Attrs().Get<std::vector<int>>("expand_times");
Y
yangyaming 已提交
33 34 35
    auto x_dims = ctx->GetInputDim("X");

    PADDLE_ENFORCE_EQ(static_cast<size_t>(x_dims.size()), expand_times.size(),
36
                      "The number of Attr(expand_times)'s value must be equal "
Y
yangyaming 已提交
37
                      "to the rank of Input(X).");
38
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
Y
yangyaming 已提交
39
                      "The rank of Input(X) must not be greater than 6.");
40 41 42 43

    std::vector<int64_t> out_shape(x_dims.size());
    for (size_t i = 0; i < expand_times.size(); ++i) {
      PADDLE_ENFORCE_GE(expand_times[i], 1,
44
                        "Each value of Attr(expand_times) should not be "
45 46 47
                        "less than 1.");
      out_shape[i] = x_dims[i] * expand_times[i];
    }
Y
yangyaming 已提交
48 49

    ctx->SetOutputDim("Out", framework::make_ddim(out_shape));
50 51 52
    if (out_shape[0] == x_dims[0]) {
      ctx->ShareLoD("X", "Out");
    }
53 54 55 56 57
  }
};

class ExpandOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
58
  ExpandOpMaker(OpProto* proto, OpAttrChecker* op_checker)
59
      : OpProtoAndCheckerMaker(proto, op_checker) {
60
    AddInput("X",
61 62
             "(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
             "X is the input to be expanded.");
63
    AddOutput("Out",
64 65 66 67 68
              "(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
              "The rank of Output(Out) have the same with Input(X). "
              "After expanding, size of each dimension of Output(Out) is equal "
              "to size of the corresponding dimension of Input(X) multiplying "
              "the corresponding value given by Attr(expand_times).");
69
    AddAttr<std::vector<int>>("expand_times",
70
                              "Expand times number for each dimension.");
71
    AddComment(R"DOC(
Y
yangyaming 已提交
72
Expand operator tiles the input by given times number. You should set times
73
number for each dimension by providing attribute 'expand_times'. The rank of X
74 75
should be in [1, 6]. Please note that size of 'expand_times' must be the same
with X's rank. Following is a using case:
Y
yangyaming 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

Input(X) is a 3-D tensor with shape [2, 3, 1]:

        [
           [[1], [2], [3]],
           [[4], [5], [6]]
        ]

Attr(expand_times):  [1, 2, 2]

Output(Out) is a 3-D tensor with shape [2, 6, 2]:

        [
            [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
            [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
        ]

93 94 95 96 97 98 99 100 101
)DOC");
  }
};

class ExpandGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yangyaming 已提交
102 103 104 105
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null.");
106

Y
yangyaming 已提交
107 108
    auto x_dims = ctx->GetInputDim("X");
    std::vector<int> expand_times =
109
        ctx->Attrs().Get<std::vector<int>>("expand_times");
Y
yangyaming 已提交
110
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
111 112 113

    for (size_t i = 0; i < expand_times.size(); ++i) {
      PADDLE_ENFORCE_EQ(x_dims[i] * expand_times[i], out_dims[i],
114 115
                        "Each dimension size of Input(Out@GRAD) should be "
                        "equal to multiplication of crroresponding dimension "
116
                        "size of Input(X) and Attr(expand_times) value.");
117 118
    }

Y
yangyaming 已提交
119 120 121 122 123
    auto x_grad_name = framework::GradVarName("X");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
124 125 126 127 128 129 130 131 132 133
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(expand, ops::ExpandOp, ops::ExpandOpMaker, expand_grad,
            ops::ExpandGradOp);
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
134 135 136 137
    expand, ops::ExpandKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    expand_grad,
    ops::ExpandGradKernel<paddle::platform::CPUDeviceContext, float>);
新手
引导
客服 返回
顶部