ut_helper.h 5.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * This file implements a UT framework to make the validation of transforming
 * Fluid Op to TRT Layer.
 */

#pragma once

22 23 24
#include <string>
#include <vector>

Y
Yan Chunwei 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Get a random float value between [low, high]
 */
float random(float low, float high) {
  static std::random_device rd;
  static std::mt19937 mt(rd());
  std::uniform_real_distribution<double> dist(1.0, 10.0);
  return dist(mt);
}

void RandomizeTensor(framework::LoDTensor* tensor, const platform::Place& place,
                     const platform::DeviceContext& ctx) {
  auto dims = tensor->dims();
  size_t num_elements = analysis::AccuDims(dims, dims.size());
  PADDLE_ENFORCE_GT(num_elements, 0);
  auto* data = tensor->mutable_data<float>(place);
  for (size_t i = 0; i < num_elements; i++) {
    *(data + i) = random(0., 1.);
  }
}

/*
 * Help to validate the correctness between Fluid Op and the corresponding TRT
 * layer.
 */
class TRTConvertValidation {
 public:
  TRTConvertValidation() = delete;

64 65 66 67
  TRTConvertValidation(int batch_size,
                       const std::unordered_set<std::string>& parameters,
                       framework::Scope& scope, int workspace_size = 1 << 10)
      : parameters_(parameters), scope_(scope) {
Y
Yan Chunwei 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81
    // create engine.
    engine_.reset(new TensorRTEngine(10, 1 << 10, &stream_));
    engine_->InitNetwork();

    PADDLE_ENFORCE_EQ(cudaStreamCreate(&stream_), 0);
  }

  // Declare a Variable as input with random initialization.
  void DeclInputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
    // Declare TRT inputs.
    engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, dims);
  }

82 83 84 85 86
  // Declare a parameter varaible in the scope.
  void DeclParamVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
  }

Y
Yan Chunwei 已提交
87 88 89 90
  void DeclOutputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
  }

91
  // Declare a variable in a fluid Scope.
Y
Yan Chunwei 已提交
92 93 94 95 96
  void DeclVar(const std::string& name, const nvinfer1::Dims& dims) {
    platform::CPUPlace place;
    platform::CPUDeviceContext ctx(place);

    // Init Fluid tensor.
97
    std::vector<int> dim_vec(dims.d, dims.d + dims.nbDims);
Y
Yan Chunwei 已提交
98 99 100 101 102 103 104 105 106 107
    auto* x = scope_.Var(name);
    auto* x_tensor = x->GetMutable<framework::LoDTensor>();
    x_tensor->Resize(framework::make_ddim(dim_vec));
    RandomizeTensor(x_tensor, place, ctx);
  }

  void SetOp(const framework::proto::OpDesc& desc) {
    op_ = framework::OpRegistry::CreateOp(desc);

    OpConverter op_converter;
108
    op_converter.ConvertOp(desc, parameters_, scope_, engine_.get());
Y
Yan Chunwei 已提交
109 110 111 112

    engine_->FreezeNetwork();

    // Declare outputs.
F
fengjiayi 已提交
113
    op_desc_.reset(new framework::OpDesc(desc, nullptr));
Y
Yan Chunwei 已提交
114 115 116

    // Set Inputs.
    for (const auto& input : op_desc_->InputArgumentNames()) {
117
      if (parameters_.count(input)) continue;
Y
Yan Chunwei 已提交
118 119 120
      auto* var = scope_.FindVar(input);
      PADDLE_ENFORCE(var);
      auto tensor = var->GetMutable<framework::LoDTensor>();
121

Y
Yan Chunwei 已提交
122
      engine_->SetInputFromCPU(
123
          input, static_cast<void*>(tensor->data<void>()),
Y
Yan Chunwei 已提交
124 125 126 127 128 129 130 131 132 133
          sizeof(float) *
              analysis::AccuDims(tensor->dims(), tensor->dims().size()));
    }
  }

  void Execute(int batch_size) {
    // Execute Fluid Op
    platform::CPUPlace place;
    platform::CPUDeviceContext ctx(place);
    op_->Run(scope_, place);
134 135 136
    // Execute TRT.
    engine_->Execute(batch_size);
    cudaStreamSynchronize(*engine_->stream());
Y
Yan Chunwei 已提交
137 138

    ASSERT_FALSE(op_desc_->OutputArgumentNames().empty());
139
    const size_t output_space_size = 200;
Y
Yan Chunwei 已提交
140 141
    for (const auto& output : op_desc_->OutputArgumentNames()) {
      std::vector<float> fluid_out;
142 143 144 145
      std::vector<float> trt_out(output_space_size);
      engine_->GetOutputInCPU(output, &trt_out[0],
                              output_space_size * sizeof(float));
      cudaStreamSynchronize(*engine_->stream());
Y
Yan Chunwei 已提交
146 147 148 149 150 151 152

      auto* var = scope_.FindVar(output);
      auto tensor = var->GetMutable<framework::LoDTensor>();
      framework::TensorToVector(*tensor, ctx, &fluid_out);
      // Compare two output
      ASSERT_FALSE(fluid_out.empty());
      for (size_t i = 0; i < fluid_out.size(); i++) {
153
        EXPECT_LT(std::abs(fluid_out[i] - trt_out[i]), 1e-6);
Y
Yan Chunwei 已提交
154 155 156 157 158 159 160 161 162 163 164
      }
    }
  }

  framework::Scope& scope() { return scope_; }

 private:
  std::unique_ptr<TensorRTEngine> engine_;
  cudaStream_t stream_;
  std::unique_ptr<framework::OperatorBase> op_;
  std::unique_ptr<framework::OpDesc> op_desc_;
165 166
  const std::unordered_set<std::string>& parameters_;
  framework::Scope& scope_;
Y
Yan Chunwei 已提交
167 168 169 170 171
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle