ngraph_operator.cc 18.8 KB
Newer Older
B
baojun-nervana 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_NGRAPH
#include <glog/logging.h>

#include <algorithm>
#include <map>

#include "paddle/fluid/framework/feed_fetch_type.h"
B
baojun-nervana 已提交
22 23 24
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/ngraph_bridge.h"
B
baojun-nervana 已提交
25
#include "paddle/fluid/framework/ngraph_operator.h"
B
baojun-nervana 已提交
26
#include "paddle/fluid/framework/tensor.h"
B
baojun-nervana 已提交
27 28 29
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/framework/var_type.h"

B
baojun-nervana 已提交
30 31
#include "ngraph/ngraph.hpp"

B
baojun-nervana 已提交
32 33 34
namespace paddle {
namespace framework {

B
baojun-nervana 已提交
35 36 37 38 39 40 41 42 43 44
static ngraph::Shape Ddim2Shape(const DDim& dims) {
  ngraph::Shape sp;
  for (int i = 0; i < dims.size(); ++i) {
    int k = dims[i];
    k = k == 0 ? 1 : k;
    sp.push_back(k);
  }
  return sp;
}

B
baojun-nervana 已提交
45 46 47 48 49 50 51 52
static std::map<proto::VarType::Type, ngraph::element::Type> pd2ng_type_map = {
    {proto::VarType::FP32, ngraph::element::f32},
    {proto::VarType::FP64, ngraph::element::f64},
    {proto::VarType::INT32, ngraph::element::i32},
    {proto::VarType::INT64, ngraph::element::i64},
    {proto::VarType::BOOL, ngraph::element::boolean},
};

B
baojun-nervana 已提交
53 54 55 56 57 58 59
typedef enum {                /* nGraph support state on ops          */
               FULL_TRAIN,    /* Support full ops for train           */
               PARTIAL_TRAIN, /* Support partial ops for train        */
               FULL_TEST,     /* Support full list of ops for test    */
               PARTIAL_TEST   /* Support partial list of ops for test */
} op_state;

B
baojun-nervana 已提交
60
// perform graph build through bridge and execute computation
B
baojun-nervana 已提交
61 62 63 64 65 66 67 68 69
class NgraphOperator {
 public:
  explicit NgraphOperator(const Scope& scope, const platform::Place& place,
                          const std::vector<std::shared_ptr<OperatorBase>>& ops,
                          const std::unordered_map<
                              std::string, ngraph::element::Type>& var_type_map,
                          const std::unordered_set<std::string>& persist,
                          const std::unordered_set<std::string>& fetches,
                          const std::unordered_set<std::string>& post_op_inputs,
B
baojun-nervana 已提交
70 71 72 73 74 75 76 77
                          op_state ng_op_state)
      : scope_(scope),
        place_(place),
        fused_ops_(ops),
        var_type_map_(var_type_map),
        persistables_(persist),
        fetches_(fetches),
        post_op_inputs_(post_op_inputs),
B
baojun-nervana 已提交
78 79 80 81 82 83 84 85 86 87 88
        ng_op_state_(ng_op_state) {
    var_in_node_map_ = std::make_shared<
        std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>();

    var_node_map_ = std::make_shared<
        std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>();

    BuildNgIO();

    GetNgFunction();
  }
B
baojun-nervana 已提交
89 90 91 92 93

  void Run(const Scope& scope, const platform::Place& place) const;

 private:
  static std::unordered_map<std::string, std::shared_ptr<ngraph::Function>>
B
baojun-nervana 已提交
94
      func_cache_;
B
baojun-nervana 已提交
95 96 97 98 99 100 101 102
  const Scope& scope_;
  const platform::Place& place_;
  std::vector<std::shared_ptr<OperatorBase>> fused_ops_;
  std::unordered_map<std::string, ngraph::element::Type> var_type_map_;
  std::unordered_set<std::string> persistables_;
  std::unordered_set<std::string> fetches_;
  std::unordered_set<std::string> post_op_inputs_;
  op_state ng_op_state_;
B
baojun-nervana 已提交
103

B
baojun-nervana 已提交
104
  // ngraph backend eg. CPU
B
baojun-nervana 已提交
105
  static std::shared_ptr<ngraph::runtime::Backend> backend_;
B
baojun-nervana 已提交
106
  // ngraph function to call and execute
B
baojun-nervana 已提交
107 108 109 110 111
  std::shared_ptr<ngraph::Function> ngraph_function_;
  // var_name of inputs
  std::vector<std::string> var_in_;
  // var_name of outputs from  fetch in order
  std::vector<std::string> var_out_;
B
baojun-nervana 已提交
112
  // map input vars to nodes
B
baojun-nervana 已提交
113 114 115 116 117 118 119
  std::shared_ptr<
      std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
      var_in_node_map_;
  // map each var name with a ngraph node
  std::shared_ptr<
      std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
      var_node_map_;
B
baojun-nervana 已提交
120
  // cache key to check if function is cached
B
baojun-nervana 已提交
121
  std::shared_ptr<std::string> GetCacheKey();
B
baojun-nervana 已提交
122
  // get ngraph input and define ngraph input parameters
B
baojun-nervana 已提交
123
  void GetNgInputShape(std::shared_ptr<OperatorBase> op);
B
baojun-nervana 已提交
124
  // Call ngraph bridge to map ops
B
baojun-nervana 已提交
125
  void BuildNgNodes();
B
baojun-nervana 已提交
126
  // get the ngraph input and output var list
B
baojun-nervana 已提交
127
  void BuildNgIO();
B
baojun-nervana 已提交
128
  // build ngraph function call
B
baojun-nervana 已提交
129
  void BuildNgFunction();
B
baojun-nervana 已提交
130
  // Check cache for ngraph function or otherwise build the function
B
baojun-nervana 已提交
131
  void GetNgFunction();
B
baojun-nervana 已提交
132 133 134 135 136 137 138 139 140 141 142 143
};

std::vector<std::vector<std::vector<std::unique_ptr<OperatorBase>>::iterator>>
FusedOperator::FusedOpIntervals(
    std::vector<std::unique_ptr<paddle::framework::OperatorBase>>* ops) {
  std::vector<std::vector<std::vector<std::unique_ptr<OperatorBase>>::iterator>>
      intervals;
  if (ops->empty()) {
    return intervals;
  }
  size_t size = ops->size();
  size_t left = 0;
B
baojun-nervana 已提交
144
  while (left < size && ops->at(left)->Type() != kFeedOpType) {
B
baojun-nervana 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    ++left;
  }
  if (left == size) {
    return intervals;
  }
  while (left < size && ops->at(left)->Type() == kFeedOpType) {
    ++left;
  }

  size_t right = left;
  while (right < size && ops->at(right)->Type() != kFetchOpType) {
    ++right;
  }
  if (right == size) {
    return intervals;
  }
  if (left >= right) return intervals;

  // (left, right - 1) represents indices between feed and fetch
  size_t pivot = left;
  while (pivot < right) {
    auto op_type = ops->at(pivot)->Type();
    if (paddle::framework::NgraphBridge::NG_NODE_MAP.find(op_type) ==
        paddle::framework::NgraphBridge::NG_NODE_MAP.end()) {
      ++pivot;
    } else {
      size_t start = pivot, end = start;
      while (pivot < right &&
             (paddle::framework::NgraphBridge::NG_NODE_MAP.find(
B
baojun-nervana 已提交
174
                  ops->at(pivot)->Type()) !=
B
baojun-nervana 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
              paddle::framework::NgraphBridge::NG_NODE_MAP.end())) {
        ++pivot;
        ++end;
      }
      std::vector<std::vector<std::unique_ptr<OperatorBase>>::iterator>
          interval = {ops->begin() + start, ops->begin() + end};
      intervals.push_back(interval);
    }
  }  // end while

  return intervals;
}

FusedOperator::FusedOperator(
    const ProgramDesc& prog, size_t block_id,
    std::vector<std::unique_ptr<OperatorBase>>::iterator start,
    std::vector<std::unique_ptr<OperatorBase>>::iterator end,
B
baojun-nervana 已提交
192 193
    const std::string& type, const VariableNameMap& inputs,
    const VariableNameMap& outputs, const AttributeMap& attrs)
B
baojun-nervana 已提交
194 195 196
    : OperatorBase(type, inputs, outputs, attrs),
      pdesc_(prog),
      block_(block_id) {
B
baojun-nervana 已提交
197 198
  for (std::vector<std::unique_ptr<OperatorBase>>::iterator it = start;
       it != end; ++it) {
B
baojun-nervana 已提交
199
    fused_ops_.push_back(std::move(*it));
B
baojun-nervana 已提交
200 201 202 203 204 205
  }

  for (std::vector<std::unique_ptr<OperatorBase>>::iterator it = end;
       (*it)->Type() != kFetchOpType; ++it) {
    for (auto& var_name_item : (*it)->Inputs()) {
      for (auto& var_name : var_name_item.second) {
B
baojun-nervana 已提交
206
        post_op_inputs_.insert(var_name);
B
baojun-nervana 已提交
207 208 209 210 211
      }
    }
  }

  if ((*(start - 1))->Type() == kFeedOpType && (*end)->Type() == kFetchOpType) {
B
baojun-nervana 已提交
212
    is_full_ = true;
B
baojun-nervana 已提交
213 214
  }

B
baojun-nervana 已提交
215
  Process();
B
baojun-nervana 已提交
216 217
}

B
baojun-nervana 已提交
218 219
void FusedOperator::Process() {
  auto& bdesc = pdesc_.Block(block_);
B
baojun-nervana 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
  for (auto& var : bdesc.AllVars()) {
    if (!(var->GetType() == proto::VarType::SELECTED_ROWS ||
          var->GetType() == proto::VarType::LOD_TENSOR ||
          var->GetType() == proto::VarType::LOD_TENSOR_ARRAY)) {
      continue;
    }

    auto var_name = var->Name();
    if (var->Name() == framework::kEmptyVarName) {
      continue;
    }

    if (var_name != "fetch" && var_name != "feed") {
      auto pd_type = var->GetDataType();
      if (pd2ng_type_map.find(pd_type) == pd2ng_type_map.end()) {
        PADDLE_THROW("Data type of var %s not found in pd2ng_type_map",
                     var_name);
      }
B
baojun-nervana 已提交
238
      var_type_map_[var_name] = pd2ng_type_map[pd_type];
B
baojun-nervana 已提交
239 240 241
    }

    if (var->Persistable()) {
B
baojun-nervana 已提交
242
      persistables_.insert(var->Name());
B
baojun-nervana 已提交
243 244 245 246 247 248
    }
  }

  for (auto* op : bdesc.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
B
baojun-nervana 已提交
249
      fetches_.insert(fetch_target_name);
B
baojun-nervana 已提交
250 251 252 253 254 255
    }
  }
}

void FusedOperator::RunImpl(const Scope& scope,
                            const platform::Place& place) const {
B
baojun-nervana 已提交
256 257
  op_state ng_op_state = PARTIAL_TEST;
  auto& bdesc = pdesc_.Block(block_);
B
baojun-nervana 已提交
258 259
  for (auto* op : bdesc.AllOps()) {
    if (op->Type().find("_grad") != std::string::npos) {
B
baojun-nervana 已提交
260
      ng_op_state = PARTIAL_TRAIN;
B
baojun-nervana 已提交
261 262 263 264
      break;
    }
  }

B
baojun-nervana 已提交
265
  if (is_full_) {
B
baojun-nervana 已提交
266
    ng_op_state = ng_op_state == PARTIAL_TEST ? FULL_TEST : FULL_TRAIN;
B
baojun-nervana 已提交
267 268
  }

B
baojun-nervana 已提交
269 270 271
  NgraphOperator ngraph_op(scope, place, fused_ops_, var_type_map_,
                           persistables_, fetches_, post_op_inputs_,
                           ng_op_state);
B
baojun-nervana 已提交
272 273 274
  ngraph_op.Run(scope, place);
}

B
baojun-nervana 已提交
275 276 277 278 279 280 281
std::unordered_map<std::string, std::shared_ptr<ngraph::Function>>
    NgraphOperator::func_cache_ = {};

std::shared_ptr<ngraph::runtime::Backend> NgraphOperator::backend_ =
    ngraph::runtime::Backend::create("CPU");

void NgraphOperator::GetNgInputShape(std::shared_ptr<OperatorBase> op) {
B
baojun-nervana 已提交
282
  op->RuntimeInferShape(scope_, place_);
B
baojun-nervana 已提交
283
  for (auto& var_name_item : op->Inputs()) {
B
baojun-nervana 已提交
284 285
    for (auto& var_name : var_name_item.second) {
      auto* var = scope_.FindVar(var_name);
B
baojun-nervana 已提交
286
      if (var && var->IsType<LoDTensor>()) {
B
baojun-nervana 已提交
287 288 289 290 291 292 293 294 295 296 297
        auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
        auto sp = Ddim2Shape(tensor_pd->dims());
        if (std::find(var_in_.begin(), var_in_.end(), var_name) !=
            var_in_.end()) {
          if (var_node_map_->find(var_name) == var_node_map_->end()) {
            auto ng_type = var_type_map_.at(var_name);
            auto prm =
                std::make_shared<ngraph::op::Parameter>(ng_type, sp, true);
            (*var_node_map_)[var_name] = prm;
            (*var_in_node_map_)[var_name] = prm;
          }
B
baojun-nervana 已提交
298 299 300 301 302 303
        }
      }
    }
  }
}

B
baojun-nervana 已提交
304
void NgraphOperator::BuildNgNodes() {
B
baojun-nervana 已提交
305 306 307
  for (auto& var_name : var_out_) {
    if (var_node_map_->find(var_name) == var_node_map_->end()) {
      auto* var = scope_.FindVar(var_name);
B
baojun-nervana 已提交
308
      if (var && var->IsType<LoDTensor>()) {
B
baojun-nervana 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321
        auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
        auto& ddim = tensor_pd->dims();
        auto ng_shape = Ddim2Shape(ddim);
        auto ng_type = var_type_map_.at(var_name);
        auto prm =
            std::make_shared<ngraph::op::Parameter>(ng_type, ng_shape, true);
        (*var_node_map_)[var_name] = prm;
      }
    }
  }

  paddle::framework::NgraphBridge ngb(var_node_map_);
  for (auto& op : fused_ops_) {
B
baojun-nervana 已提交
322
    ngb.BuildNgNode(op);
B
baojun-nervana 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
  }
}

void NgraphOperator::BuildNgIO() {
  std::unordered_set<std::string> inputs;
  std::unordered_set<std::string> outputs;

  for (auto& op : fused_ops_) {
    for (auto& var_name_item : op->Inputs()) {
      for (auto& var_name : var_name_item.second) {
        inputs.insert(var_name);
        const bool is_output = outputs.find(var_name) != outputs.end();
        if (!is_output &&
            std::find(var_in_.begin(), var_in_.end(), var_name) ==
                var_in_.end()) {
          // fill var_in here to keep lhs and rhs order
          var_in_.push_back(var_name);
        }
      }
    }

    if (op->Type() != "fill_constant") {
      GetNgInputShape(op);
    }

    for (auto& var_name_item : op->Outputs()) {
      PADDLE_ENFORCE_LE(var_name_item.second.size(), 1,
                        "op %s has more than 1 output - Not handling yet",
                        op->Type());
      for (auto& var_name : var_name_item.second) {
        outputs.insert(var_name);
      }
    }
  }

  // var_out.clear();
  for (auto& op : fused_ops_) {
    for (auto& var_name_item : op->Outputs()) {
      PADDLE_ENFORCE_LE(var_name_item.second.size(), 1,
                        "op %s has more than 1 output - Not handling yet",
                        op->Type());
      for (auto& var_name : var_name_item.second) {
        switch (ng_op_state_) {
          case PARTIAL_TEST:
            if (post_op_inputs_.find(var_name) != post_op_inputs_.end() ||
                fetches_.find(var_name) != fetches_.end()) {
              var_out_.push_back(var_name);
            }
            break;
          case FULL_TEST:
            if (fetches_.find(var_name) != fetches_.end()) {
              var_out_.push_back(var_name);
            }
            break;
          case PARTIAL_TRAIN:
            if (fetches_.find(var_name) != fetches_.end() ||
                post_op_inputs_.find(var_name) != post_op_inputs_.end() ||
                persistables_.find(var_name) != persistables_.end()) {
              var_out_.push_back(var_name);
            }
            break;
          case FULL_TRAIN:
            if (fetches_.find(var_name) != fetches_.end() ||
                persistables_.find(var_name) != persistables_.end()) {
              var_out_.push_back(var_name);
            }
            break;
          default:
            var_out_.push_back(var_name);
        }
      }
    }
  }
}

void NgraphOperator::BuildNgFunction() {
B
baojun-nervana 已提交
399
  BuildNgNodes();
B
baojun-nervana 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
  ngraph_function_ = nullptr;
  ngraph::NodeVector func_outputs;
  ngraph::op::ParameterVector func_inputs;

  for (auto& vo : var_out_) {
    func_outputs.push_back(var_node_map_->at(vo));
  }

  for (auto& vi : var_in_) {
    std::shared_ptr<ngraph::op::Parameter> prm =
        std::dynamic_pointer_cast<ngraph::op::Parameter>(
            var_in_node_map_->at(vi));
    func_inputs.push_back(prm);
  }

  ngraph_function_ =
      std::make_shared<ngraph::Function>(func_outputs, func_inputs);
}

std::shared_ptr<std::string> NgraphOperator::GetCacheKey() {
  auto cache_key = std::make_shared<std::string>("");
  *cache_key += std::to_string(fused_ops_.size());
  for (auto& op : fused_ops_) {
    *cache_key += op->Type();
  }
  for (auto& var_name : var_in_) {
    auto shape = var_node_map_->at(var_name)->get_shape();
    *cache_key += var_name;
    *cache_key += var_type_map_.at(var_name).c_type_string();
    for (size_t i = 0; i < shape.size(); ++i) {
      *cache_key += std::to_string(shape.at(i));
    }
  }

  for (auto& var_name : var_out_) {
    auto* var = scope_.FindVar(var_name);
B
baojun-nervana 已提交
436
    if (var && var->IsType<LoDTensor>()) {
B
baojun-nervana 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
      auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      auto& ddim = tensor_pd->dims();
      for (int i = 0; i < ddim.size(); ++i) {
        *cache_key += std::to_string(ddim[i]);
      }
    }
  }
  return cache_key;
}

void NgraphOperator::GetNgFunction() {
  bool cache_on = true;
  if (cache_on) {
    std::string cache_key_val = *GetCacheKey();
    if (func_cache_.find(cache_key_val) != func_cache_.end()) {
      ngraph_function_ = func_cache_.at(cache_key_val);
    } else {
      BuildNgFunction();
      func_cache_[cache_key_val] = ngraph_function_;
    }
  } else {
    BuildNgFunction();
  }
}

void NgraphOperator::Run(const Scope& scope,
                         const platform::Place& place) const {
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>> t_in;
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>> t_out;

  for (size_t i = 0; i < var_in_.size(); ++i) {
    auto vi = var_in_.at(i);
    auto sp = var_node_map_->at(vi)->get_shape();
    std::shared_ptr<ngraph::runtime::Tensor> ti;
    auto* var = scope.FindVar(vi);
B
baojun-nervana 已提交
472
    if (var && var->IsType<LoDTensor>()) {
B
baojun-nervana 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
      auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE(sp == Ddim2Shape(tensor_pd->dims()),
                     "Ensure ngraph tensor layout align with paddle tensor");
      if (tensor_pd->type().hash_code() ==
          typeid(float).hash_code()) {  // NOLINT
        const float* arr = tensor_pd->data<float>();
        ti = backend_->create_tensor(ngraph::element::f32, sp,
                                     const_cast<float*>(arr));
      } else if (tensor_pd->type().hash_code() ==
                 typeid(int).hash_code()) {  // NOLINT
        const int* arr = tensor_pd->data<int>();
        ti = backend_->create_tensor(ngraph::element::i32, sp,
                                     const_cast<int*>(arr));
      } else if (tensor_pd->type().hash_code() == typeid(int64_t).hash_code()) {
        const int64_t* arr = tensor_pd->data<int64_t>();
        ti = backend_->create_tensor(ngraph::element::i64, sp,
                                     const_cast<int64_t*>(arr));
      } else if (tensor_pd->type().hash_code() ==
                 typeid(double).hash_code()) {  // NOLINT
        const double* arr = tensor_pd->data<double>();
        ti = backend_->create_tensor(ngraph::element::f64, sp,
                                     const_cast<double*>(arr));
      } else if (tensor_pd->type().hash_code() ==
                 typeid(bool).hash_code()) {  // NOLINT
        const bool* arr = tensor_pd->data<bool>();
        ti = backend_->create_tensor(ngraph::element::boolean, sp,
                                     const_cast<bool*>(arr));
      } else {
        PADDLE_THROW("Data type not handling for var %s", vi);
      }
    } else {
      PADDLE_THROW("Cannot find var or tensor with var name %s", vi);
    }
    bool is_test = (ng_op_state_ == PARTIAL_TEST || ng_op_state_ == FULL_TEST)
                       ? true
                       : false;
    bool is_persistable =
        (persistables_.find(vi) != persistables_.end()) ? true : false;
    if (is_test && is_persistable) {
      ti->set_stale(false);
    }
    t_in.push_back(ti);
  }

  for (size_t i = 0; i < var_out_.size(); ++i) {
    auto var_name = var_out_[i];
    auto* var = scope.FindVar(var_name);
    std::shared_ptr<ngraph::runtime::Tensor> to;
B
baojun-nervana 已提交
521
    if (var && var->IsType<LoDTensor>()) {
B
baojun-nervana 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
      auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var);
      auto dd = tensor_pd->dims();
      ngraph::Shape sp = Ddim2Shape(dd);
      auto ng_type = var_type_map_.at(var_name);
      if (ng_type == ngraph::element::f32) {
        auto pd_arr = tensor_pd->mutable_data<float>(place);
        to = backend_->create_tensor(ngraph::element::f32, sp, pd_arr);
      } else if (ng_type == ngraph::element::i64) {
        auto pd_arr = tensor_pd->mutable_data<int64_t>(place);
        to = backend_->create_tensor(ngraph::element::i64, sp, pd_arr);
      } else if (ng_type == ngraph::element::f64) {
        auto pd_arr = tensor_pd->mutable_data<double>(place);
        to = backend_->create_tensor(ngraph::element::f64, sp, pd_arr);
      } else if (ng_type == ngraph::element::boolean) {
        auto pd_arr = tensor_pd->mutable_data<bool>(place);
        to = backend_->create_tensor(ngraph::element::boolean, sp, pd_arr);
      } else {
        PADDLE_THROW("Data type not handled in for var %s", var_name);
      }
      t_out.push_back(to);
    } else {
      PADDLE_THROW("Cannot find var or tensor with var name %s", var_name);
    }
  }

  backend_->call(ngraph_function_, t_out, t_in);
}  // NgraphOperator::RunImpl
B
baojun-nervana 已提交
549 550 551
}  // namespace framework
}  // namespace paddle
#endif