solov2.py 7.4 KB
Newer Older
S
still-wait 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict

from paddle import fluid

from ppdet.experimental import mixed_precision_global_state
from ppdet.core.workspace import register

__all__ = ['SOLOv2']


@register
class SOLOv2(object):
    """
    SOLOv2 network, see https://arxiv.org/abs/2003.10152

    Args:
        backbone (object): an backbone instance
        fpn (object): feature pyramid network instance
        bbox_head (object): an `SOLOv2Head` instance
        mask_head (object): an `SOLOv2MaskHead` instance
        batch_size (int): batch size.
    """

    __category__ = 'architecture'
    __inject__ = ['backbone', 'fpn', 'bbox_head', 'mask_head']

    def __init__(self,
                 backbone,
                 fpn=None,
                 bbox_head='SOLOv2Head',
                 mask_head='SOLOv2MaskHead',
                 batch_size=1):
        super(SOLOv2, self).__init__()
        self.backbone = backbone
        self.fpn = fpn
        self.bbox_head = bbox_head
        self.mask_head = mask_head
        self.batch_size = batch_size

    def build(self, feed_vars, mode='train'):
        im = feed_vars['image']

        mixed_precision_enabled = mixed_precision_global_state() is not None

        # cast inputs to FP16
        if mixed_precision_enabled:
            im = fluid.layers.cast(im, 'float16')

        body_feats = self.backbone(im)

        if self.fpn is not None:
            body_feats, spatial_scale = self.fpn.get_output(body_feats)

        if isinstance(body_feats, OrderedDict):
            body_feat_names = list(body_feats.keys())
            body_feats = [body_feats[name] for name in body_feat_names]

        # cast features back to FP32
        if mixed_precision_enabled:
            body_feats = [fluid.layers.cast(v, 'float32') for v in body_feats]

        if not mode == 'train':
            self.batch_size = 1

        mask_feat_pred = self.mask_head.get_output(body_feats, self.batch_size)

        if mode == 'train':
            ins_labels = []
            cate_labels = []
            grid_orders = []
            fg_num = feed_vars['fg_num']
            grid_offset = feed_vars['grid_offset']

            for i in range(5):
                ins_label = 'ins_label{}'.format(i)
                if ins_label in feed_vars:
                    ins_labels.append(feed_vars[ins_label])
                cate_label = 'cate_label{}'.format(i)
                if cate_label in feed_vars:
                    cate_labels.append(feed_vars[cate_label])
                grid_order = 'grid_order{}'.format(i)
                if grid_order in feed_vars:
                    grid_orders.append(feed_vars[grid_order])

            cate_preds, kernel_preds = self.bbox_head.get_outputs(
                body_feats, batch_size=self.batch_size)

            losses = self.bbox_head.get_loss(
                cate_preds, kernel_preds, mask_feat_pred, ins_labels,
                cate_labels, grid_orders, fg_num, grid_offset, self.batch_size)
            total_loss = fluid.layers.sum(list(losses.values()))
            losses.update({'loss': total_loss})
            return losses
        else:
            im_info = feed_vars['im_info']
            outs = self.bbox_head.get_outputs(
                body_feats, is_eval=True, batch_size=self.batch_size)
            seg_inputs = outs + (mask_feat_pred, im_info)
            return self.bbox_head.get_prediction(*seg_inputs)

    def _inputs_def(self, image_shape, fields):
        im_shape = [None] + image_shape
        # yapf: disable
        inputs_def = {
            'image':    {'shape': im_shape,   'dtype': 'float32', 'lod_level': 0},
            'im_info':  {'shape': [None, 3],  'dtype': 'float32', 'lod_level': 0},
            'im_id':    {'shape': [None, 1],  'dtype': 'int64',   'lod_level': 0},
            'im_shape': {'shape': [None, 3],  'dtype': 'float32', 'lod_level': 0},
        }

        if 'gt_segm' in fields:
            targets_def = {
                'ins_label0':  {'shape': [None, None, None], 'dtype': 'int32', 'lod_level': 1},
                'ins_label1':  {'shape': [None, None, None], 'dtype': 'int32', 'lod_level': 1},
                'ins_label2':  {'shape': [None, None, None], 'dtype': 'int32', 'lod_level': 1},
                'ins_label3':  {'shape': [None, None, None], 'dtype': 'int32', 'lod_level': 1},
                'ins_label4':  {'shape': [None, None, None], 'dtype': 'int32', 'lod_level': 1},
                'cate_label0': {'shape': [None],       'dtype': 'int32', 'lod_level': 1},
                'cate_label1': {'shape': [None],       'dtype': 'int32', 'lod_level': 1},
                'cate_label2': {'shape': [None],       'dtype': 'int32', 'lod_level': 1},
                'cate_label3': {'shape': [None],       'dtype': 'int32', 'lod_level': 1},
                'cate_label4': {'shape': [None],       'dtype': 'int32', 'lod_level': 1},
                'grid_order0': {'shape': [None], 'dtype': 'int32', 'lod_level': 1},
                'grid_order1': {'shape': [None], 'dtype': 'int32', 'lod_level': 1},
                'grid_order2': {'shape': [None], 'dtype': 'int32', 'lod_level': 1},
                'grid_order3': {'shape': [None], 'dtype': 'int32', 'lod_level': 1},
                'grid_order4': {'shape': [None], 'dtype': 'int32', 'lod_level': 1},
                'fg_num':      {'shape': [None],             'dtype': 'int32', 'lod_level': 0},
                'grid_offset': {'shape': [None, 5], 'dtype': 'int32', 'lod_level': 0},
            }
            # yapf: enable
            inputs_def.update(targets_def)
        return inputs_def

    def build_inputs(
            self,
            image_shape=[3, None, None],
            fields=['image', 'im_id', 'gt_segm'],  # for train
            use_dataloader=True,
            iterable=False):
        inputs_def = self._inputs_def(image_shape, fields)
        if 'gt_segm' in fields:
            fields.remove('gt_segm')
            fields.extend(['fg_num', 'grid_offset'])
            for i in range(5):
                fields.extend([
                    'ins_label%d' % i, 'cate_label%d' % i, 'grid_order%d' % i
                ])

        feed_vars = OrderedDict([(key, fluid.data(
            name=key,
            shape=inputs_def[key]['shape'],
            dtype=inputs_def[key]['dtype'],
            lod_level=inputs_def[key]['lod_level'])) for key in fields])
        loader = fluid.io.DataLoader.from_generator(
            feed_list=list(feed_vars.values()),
            capacity=16,
            use_double_buffer=True,
            iterable=iterable) if use_dataloader else None
        return feed_vars, loader

    def train(self, feed_vars):
        return self.build(feed_vars, mode='train')

    def eval(self, feed_vars):
        return self.build(feed_vars, mode='test')

    def test(self, feed_vars):
        return self.build(feed_vars, mode='test')