visualize.py 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# coding: utf-8
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

K
Kaipeng Deng 已提交
16 17
from __future__ import division

18 19 20
import cv2
import numpy as np
from PIL import Image, ImageDraw
S
still-wait 已提交
21
from scipy import ndimage
22 23


S
still-wait 已提交
24 25
def visualize_box_mask(im, results, labels, mask_resolution=14, threshold=0.5):
    """
26 27
    Args:
        im (str/np.ndarray): path of image/np.ndarray read by cv2
S
still-wait 已提交
28
        results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
29
                        matix element:[class, score, x_min, y_min, x_max, y_max]
S
still-wait 已提交
30 31
                        MaskRCNN's results include 'masks': np.ndarray:
                        shape:[N, class_num, mask_resolution, mask_resolution]
32 33
        labels (list): labels:['class1', ..., 'classn']
        mask_resolution (int): shape of a mask is:[mask_resolution, mask_resolution]
S
still-wait 已提交
34
        threshold (float): Threshold of score.
35
    Returns:
S
still-wait 已提交
36
        im (PIL.Image.Image): visualized image
37
    """
K
Kaipeng Deng 已提交
38
    if isinstance(im, str):
39 40 41 42 43 44 45 46 47 48 49 50
        im = Image.open(im).convert('RGB')
    else:
        im = Image.fromarray(im)
    if 'masks' in results and 'boxes' in results:
        im = draw_mask(
            im,
            results['boxes'],
            results['masks'],
            labels,
            resolution=mask_resolution)
    if 'boxes' in results:
        im = draw_box(im, results['boxes'], labels)
S
still-wait 已提交
51 52 53 54 55 56 57 58
    if 'segm' in results:
        im = draw_segm(
            im,
            results['segm'],
            results['label'],
            results['score'],
            labels,
            threshold=threshold)
59 60 61 62
    return im


def get_color_map_list(num_classes):
S
still-wait 已提交
63
    """
64 65 66
    Args:
        num_classes (int): number of class
    Returns:
S
still-wait 已提交
67
        color_map (list): RGB color list
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    """
    color_map = num_classes * [0, 0, 0]
    for i in range(0, num_classes):
        j = 0
        lab = i
        while lab:
            color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
            j += 1
            lab >>= 3
    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
    return color_map


def expand_boxes(boxes, scale=0.0):
S
still-wait 已提交
84
    """
85
    Args:
S
still-wait 已提交
86
        boxes (np.ndarray): shape:[N,4], N:number of box,
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
                            matix element:[x_min, y_min, x_max, y_max]
        scale (float): scale of boxes
    Returns:
        boxes_exp (np.ndarray): expanded boxes
    """
    w_half = (boxes[:, 2] - boxes[:, 0]) * .5
    h_half = (boxes[:, 3] - boxes[:, 1]) * .5
    x_c = (boxes[:, 2] + boxes[:, 0]) * .5
    y_c = (boxes[:, 3] + boxes[:, 1]) * .5
    w_half *= scale
    h_half *= scale
    boxes_exp = np.zeros(boxes.shape)
    boxes_exp[:, 0] = x_c - w_half
    boxes_exp[:, 2] = x_c + w_half
    boxes_exp[:, 1] = y_c - h_half
    boxes_exp[:, 3] = y_c + h_half
    return boxes_exp


def draw_mask(im, np_boxes, np_masks, labels, resolution=14, threshold=0.5):
S
still-wait 已提交
107
    """
108 109
    Args:
        im (PIL.Image.Image): PIL image
S
still-wait 已提交
110
        np_boxes (np.ndarray): shape:[N,6], N: number of box,
111 112 113 114 115 116
                               matix element:[class, score, x_min, y_min, x_max, y_max]
        np_masks (np.ndarray): shape:[N, class_num, resolution, resolution]
        labels (list): labels:['class1', ..., 'classn']
        resolution (int): shape of a mask is:[resolution, resolution]
        threshold (float): threshold of mask
    Returns:
S
still-wait 已提交
117
        im (PIL.Image.Image): visualized image
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    """
    color_list = get_color_map_list(len(labels))
    scale = (resolution + 2.0) / resolution
    im_w, im_h = im.size
    w_ratio = 0.4
    alpha = 0.7
    im = np.array(im).astype('float32')
    rects = np_boxes[:, 2:]
    expand_rects = expand_boxes(rects, scale)
    expand_rects = expand_rects.astype(np.int32)
    clsid_scores = np_boxes[:, 0:2]
    padded_mask = np.zeros((resolution + 2, resolution + 2), dtype=np.float32)
    clsid2color = {}
    for idx in range(len(np_boxes)):
        clsid, score = clsid_scores[idx].tolist()
        clsid = int(clsid)
        xmin, ymin, xmax, ymax = expand_rects[idx].tolist()
        w = xmax - xmin + 1
        h = ymax - ymin + 1
        w = np.maximum(w, 1)
        h = np.maximum(h, 1)
        padded_mask[1:-1, 1:-1] = np_masks[idx, int(clsid), :, :]
        resized_mask = cv2.resize(padded_mask, (w, h))
        resized_mask = np.array(resized_mask > threshold, dtype=np.uint8)
        x0 = min(max(xmin, 0), im_w)
        x1 = min(max(xmax + 1, 0), im_w)
        y0 = min(max(ymin, 0), im_h)
        y1 = min(max(ymax + 1, 0), im_h)
        im_mask = np.zeros((im_h, im_w), dtype=np.uint8)
        im_mask[y0:y1, x0:x1] = resized_mask[(y0 - ymin):(y1 - ymin), (
            x0 - xmin):(x1 - xmin)]
        if clsid not in clsid2color:
            clsid2color[clsid] = color_list[clsid]
        color_mask = clsid2color[clsid]
        for c in range(3):
            color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
        idx = np.nonzero(im_mask)
        color_mask = np.array(color_mask)
        im[idx[0], idx[1], :] *= 1.0 - alpha
        im[idx[0], idx[1], :] += alpha * color_mask
    return Image.fromarray(im.astype('uint8'))


def draw_box(im, np_boxes, labels):
S
still-wait 已提交
162
    """
163 164
    Args:
        im (PIL.Image.Image): PIL image
S
still-wait 已提交
165
        np_boxes (np.ndarray): shape:[N,6], N: number of box,
166 167 168
                               matix element:[class, score, x_min, y_min, x_max, y_max]
        labels (list): labels:['class1', ..., 'classn']
    Returns:
S
still-wait 已提交
169
        im (PIL.Image.Image): visualized image
170
    """
K
Kaipeng Deng 已提交
171
    draw_thickness = min(im.size) // 320
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    draw = ImageDraw.Draw(im)
    clsid2color = {}
    color_list = get_color_map_list(len(labels))

    for dt in np_boxes:
        clsid, bbox, score = int(dt[0]), dt[2:], dt[1]
        xmin, ymin, xmax, ymax = bbox
        w = xmax - xmin
        h = ymax - ymin
        if clsid not in clsid2color:
            clsid2color[clsid] = color_list[clsid]
        color = tuple(clsid2color[clsid])

        # draw bbox
        draw.line(
            [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
             (xmin, ymin)],
            width=draw_thickness,
            fill=color)

        # draw label
J
Jack Zhou 已提交
193
        text = "{} {:.4f}".format(labels[clsid], score)
194 195 196 197 198
        tw, th = draw.textsize(text)
        draw.rectangle(
            [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
        draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
    return im
S
still-wait 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238


def draw_segm(im,
              np_segms,
              np_label,
              np_score,
              labels,
              threshold=0.5,
              alpha=0.7):
    """
    Draw segmentation on image
    """
    mask_color_id = 0
    w_ratio = .4
    color_list = get_color_map_list(len(labels))
    im = np.array(im).astype('float32')
    clsid2color = {}
    np_segms = np_segms.astype(np.uint8)
    for i in range(np_segms.shape[0]):
        mask, score, clsid = np_segms[i], np_score[i], np_label[i] + 1
        if score < threshold:
            continue

        if clsid not in clsid2color:
            clsid2color[clsid] = color_list[clsid]
        color_mask = clsid2color[clsid]
        for c in range(3):
            color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
        idx = np.nonzero(mask)
        color_mask = np.array(color_mask)
        im[idx[0], idx[1], :] *= 1.0 - alpha
        im[idx[0], idx[1], :] += alpha * color_mask
        center_y, center_x = ndimage.measurements.center_of_mass(mask)
        label_text = "{}".format(labels[clsid])
        print(label_text)
        print(center_y, center_x)
        vis_pos = (max(int(center_x) - 10, 0), int(center_y))
        cv2.putText(im, label_text, vis_pos, cv2.FONT_HERSHEY_COMPLEX, 0.3,
                    (255, 255, 255))
    return Image.fromarray(im.astype('uint8'))