batch_norm_op.cc 19.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/batch_norm_op.h"
S
Siddharth Goyal 已提交
16
#include <string>
Y
Yi Wang 已提交
17
#include "paddle/fluid/framework/data_layout.h"
Q
Qiao Longfei 已提交
18 19 20 21 22

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
Q
Qiao Longfei 已提交
23
using LoDTensor = framework::LoDTensor;
Q
QI JUN 已提交
24
using DataLayout = framework::DataLayout;
Q
Qiao Longfei 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

template <typename T>
using EigenArrayMap =
    Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using ConstEigenArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<T, Eigen::Dynamic, 1>>;
template <typename T>
using ConstEigenVectorArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1>>;

class BatchNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "");
    PADDLE_ENFORCE(ctx->HasInput("Scale"), "");
    PADDLE_ENFORCE(ctx->HasInput("Bias"), "");
    PADDLE_ENFORCE(ctx->HasInput("Mean"), "");
    PADDLE_ENFORCE(ctx->HasInput("Variance"), "");
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "");
    PADDLE_ENFORCE(ctx->HasOutput("MeanOut"), "");
    PADDLE_ENFORCE(ctx->HasOutput("VarianceOut"), "");
    PADDLE_ENFORCE(ctx->HasOutput("SavedMean"), "");
    PADDLE_ENFORCE(ctx->HasOutput("SavedVariance"), "");

    // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python
    PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0], ctx->Outputs("MeanOut")[0],
                      "Mean and MeanOut should share the same memory");
    PADDLE_ENFORCE_EQ(ctx->Inputs("Variance")[0],
                      ctx->Outputs("VarianceOut")[0],
                      "Variance and VarianceOut should share the same memory");

    const auto x_dims = ctx->GetInputDim("X");
Q
QI JUN 已提交
62 63
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));
64 65 66 67

    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "Input X must have 2 to 5 dimensions.");

Y
Yang Yu 已提交
68
    const int64_t C =
Q
QI JUN 已提交
69 70
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
71 72 73 74 75 76 77 78 79 80 81

    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], C);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1UL);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias")[0], C);

    ctx->SetOutputDim("Y", x_dims);
    ctx->SetOutputDim("MeanOut", {C});
    ctx->SetOutputDim("VarianceOut", {C});
    ctx->SetOutputDim("SavedMean", {C});
    ctx->SetOutputDim("SavedVariance", {C});
Y
Yang Yu 已提交
82
    ctx->ShareLoD("X", "Y");
Q
Qiao Longfei 已提交
83
  }
K
Kexin Zhao 已提交
84 85 86

 protected:
  framework::OpKernelType GetExpectedKernelType(
K
update  
Kexin Zhao 已提交
87
      const framework::ExecutionContext &ctx) const override {
K
Kexin Zhao 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    auto input_data_type =
        framework::ToDataType(ctx.Input<Tensor>("X")->type());
    // For float or float16 input tensor, the type of the scale, bias, mean,
    // and var tensors should both be float.
    auto bn_param_type = framework::proto::VarType::FP32;
    PADDLE_ENFORCE_EQ(bn_param_type,
                      framework::ToDataType(ctx.Input<Tensor>("Scale")->type()),
                      "Scale input should be of float type");
    PADDLE_ENFORCE_EQ(bn_param_type,
                      framework::ToDataType(ctx.Input<Tensor>("Bias")->type()),
                      "Bias input should be of float type");
    PADDLE_ENFORCE_EQ(bn_param_type,
                      framework::ToDataType(ctx.Input<Tensor>("Mean")->type()),
                      "Mean input should be of float type");
    PADDLE_ENFORCE_EQ(bn_param_type, framework::ToDataType(
                                         ctx.Input<Tensor>("Variance")->type()),
                      "Variance input should be of float type");
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
Q
Qiao Longfei 已提交
107 108 109 110
};

class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
111
  BatchNormOpMaker(OpProto *proto, OpAttrChecker *op_checker)
Q
Qiao Longfei 已提交
112 113 114
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddAttr<bool>("is_test", "").SetDefault(false);
    AddAttr<float>("momentum", "").SetDefault(0.9);
C
chengduoZH 已提交
115 116 117 118 119 120
    AddAttr<float>("epsilon", "")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
          PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f,
                         "'epsilon' should be between 0.0 and 0.001.");
        });
Q
QI JUN 已提交
121
    AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
Q
Qiao Longfei 已提交
122 123 124
    AddInput("X", "The input tensor");
    AddInput("Scale",
             "Scale is a 1-dimensional tensor of size C "
125
             "that is applied to the output");
Q
Qiao Longfei 已提交
126 127
    AddInput("Bias",
             "Bias is a 1-dimensional tensor of size C "
128
             "that is applied to the output");
Q
Qiao Longfei 已提交
129
    AddInput("Mean",
130
             "The global mean (for training) or "
Q
Qiao Longfei 已提交
131 132 133
             "estimated mean (for testing)");
    AddInput("Variance",
             "The global variance (for training) "
134
             "or estimated Variance (for testing)");
Q
Qiao Longfei 已提交
135 136 137 138 139 140 141 142 143
    AddOutput("Y", "result after normalization");
    AddOutput("MeanOut",
              "Share memory with Mean. "
              "Store the global mean when training");
    AddOutput("VarianceOut",
              "Share memory with Variance. "
              "Store the global Variance when training");
    AddOutput("SavedMean",
              "Mean of the current mini batch, "
Q
Qiao Longfei 已提交
144 145
              "will apply to output when training")
        .AsIntermediate();
Q
Qiao Longfei 已提交
146 147
    AddOutput("SavedVariance",
              "Variance of the current mini batch, "
Q
Qiao Longfei 已提交
148 149
              "will apply to output when training")
        .AsIntermediate();
Q
Qiao Longfei 已提交
150
    AddComment(R"DOC(
151
Batch Normalization.
Q
Qiao Longfei 已提交
152

153 154 155 156 157 158
Batch Norm has been implemented as discussed in the paper:
https://arxiv.org/pdf/1502.03167.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
Q
Qiao Longfei 已提交
159 160 161 162 163 164

)DOC");
  }
};

template <typename T>
Q
QI JUN 已提交
165 166
class BatchNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
167 168 169 170 171
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    const float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");
Q
QI JUN 已提交
172 173 174
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
175 176 177

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
178 179
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
180 181
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
182 183
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
    const int sample_size = x->numel() / N / C;

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

    // alloc memory
    y->mutable_data<T>(ctx.GetPlace());
    mean_out->mutable_data<T>(ctx.GetPlace());
    variance_out->mutable_data<T>(ctx.GetPlace());
    saved_mean->mutable_data<T>(ctx.GetPlace());
    saved_variance->mutable_data<T>(ctx.GetPlace());

    if (!is_test) {
      // saved_xx is use just in this batch of data
      EigenVectorArrayMap<T> saved_mean_e(
          saved_mean->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> saved_variance_e(
          saved_variance->mutable_data<T>(ctx.GetPlace()), C);
      saved_mean_e.setZero();
      saved_variance_e.setZero();

Q
QI JUN 已提交
208 209
      switch (data_layout) {
        case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
210 211 212 213 214 215 216 217 218 219 220 221
          ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
          for (int nc = 0; nc < N * C; ++nc) {
            saved_mean_e(nc % C) += x_arr.col(nc).sum();
          }
          saved_mean_e /= N * sample_size;
          for (int nc = 0; nc < N * C; ++nc) {
            saved_variance_e(nc % C) +=
                (x_arr.col(nc) - saved_mean_e(nc % C)).matrix().squaredNorm();
          }
          saved_variance_e /= N * sample_size;
          break;
        }
Q
QI JUN 已提交
222
        case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235
          ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
          for (int i = 0; i < N * sample_size; ++i) {
            saved_mean_e += x_arr.col(i);
          }
          saved_mean_e /= N * sample_size;
          for (int i = 0; i < N * sample_size; ++i) {
            saved_variance_e +=
                (x_arr.col(i) - saved_mean_e) * (x_arr.col(i) - saved_mean_e);
          }
          saved_variance_e /= N * sample_size;
          break;
        }
        default:
Q
QI JUN 已提交
236
          PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
      }

      EigenVectorArrayMap<T> running_mean_arr(
          mean_out->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> running_var_arr(
          variance_out->mutable_data<T>(ctx.GetPlace()), C);
      running_mean_arr =
          running_mean_arr * momentum + saved_mean_e * (1. - momentum);
      running_var_arr =
          running_var_arr * momentum + saved_variance_e * (1. - momentum);
    }

    // use SavedMean and SavedVariance to do normalize
    Eigen::Array<T, Eigen::Dynamic, 1> inv_std(C);
    if (is_test) {
      ConstEigenVectorArrayMap<T> var_arr(
          ctx.Input<Tensor>("Variance")->data<T>(), C);
      inv_std = (var_arr + epsilon).sqrt().inverse();
    } else {
      EigenVectorArrayMap<T> saved_inv_std(
          ctx.Output<Tensor>("SavedVariance")->data<T>(), C);
      // inverse SavedVariance first, gradient will use it too.
      saved_inv_std = (saved_inv_std + epsilon).inverse().sqrt();
      inv_std = saved_inv_std;
    }
    ConstEigenVectorArrayMap<T> mean_arr(
        is_test ? ctx.Input<Tensor>("Mean")->data<T>()
                : ctx.Output<Tensor>("SavedMean")->data<T>(),
        C);

    //   ((x - est_mean) * (inv_var) * scale + bias
    //   formula transform ====>
    //   (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> bias_arr(bias->data<T>(), C);
    Eigen::Array<T, Eigen::Dynamic, 1> new_scale = inv_std * scale_arr;
    Eigen::Array<T, Eigen::Dynamic, 1> new_bias =
        bias_arr - mean_arr * inv_std * scale_arr;

Q
QI JUN 已提交
278 279
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
280 281 282 283 284 285 286 287
        EigenArrayMap<T> y_arr(y->mutable_data<T>(ctx.GetPlace()), sample_size,
                               N * C);
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        for (int nc = 0; nc < N * C; ++nc) {
          y_arr.col(nc) = x_arr.col(nc) * new_scale(nc % C) + new_bias(nc % C);
        }
        break;
      }
Q
QI JUN 已提交
288
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
289 290 291 292 293 294 295 296 297
        EigenArrayMap<T>(y->mutable_data<T>(ctx.GetPlace()), C,
                         N * sample_size) =
            (ConstEigenArrayMap<T>(x->data<T>(), C, N * sample_size).colwise() *
             new_scale)
                .colwise() +
            new_bias;
        break;
      }
      default:
Q
QI JUN 已提交
298
        PADDLE_THROW("Unknown storage order: %d", data_layout);
Q
Qiao Longfei 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    }
  }
};

class BatchNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
    PADDLE_ENFORCE(ctx->HasInput("X"));
    PADDLE_ENFORCE(ctx->HasInput("Scale"), "");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")), "");
    PADDLE_ENFORCE(ctx->HasInput("SavedMean"), "");
    PADDLE_ENFORCE(ctx->HasInput("SavedVariance"), "");

    // check output
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), "");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Scale")), "");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")), "");

    const auto x_dims = ctx->GetInputDim("X");
Q
QI JUN 已提交
321 322
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));
Q
Qiao Longfei 已提交
323
    const int C =
Q
QI JUN 已提交
324 325
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
326 327 328 329 330

    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
    ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
  }
Q
Qiao Longfei 已提交
331

Y
Yu Yang 已提交
332
 protected:
333
  framework::OpKernelType GetExpectedKernelType(
Q
Qiao Longfei 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
    if (var == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
    if (t == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
Y
Yu Yang 已提交
348
    return framework::OpKernelType(framework::ToDataType(t->type()),
Q
QI JUN 已提交
349
                                   ctx.GetPlace());
Q
Qiao Longfei 已提交
350
  }
Q
Qiao Longfei 已提交
351 352 353
};

template <typename T>
Q
QI JUN 已提交
354
class BatchNormGradKernel<platform::CPUDeviceContext, T>
Q
Qiao Longfei 已提交
355 356 357 358 359 360 361 362 363
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    // SavedVariance have been reverted in forward operator
    const auto *saved_inv_variance = ctx.Input<Tensor>("SavedVariance");
Q
QI JUN 已提交
364 365 366
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
367 368 369 370

    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto &x_dims = x->dims();
371 372
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
373 374
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
375 376
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    const int sample_size = x->numel() / N / C;

    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> mean_arr(saved_mean->data<T>(), C);
    ConstEigenVectorArrayMap<T> inv_var_arr(saved_inv_variance->data<T>(), C);

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    d_x->mutable_data<T>(ctx.GetPlace());
    d_scale->mutable_data<T>(ctx.GetPlace());
    d_bias->mutable_data<T>(ctx.GetPlace());

    // d_bias = np.sum(d_y, axis=0)
    // d_scale = np.sum((X - mean) / inv_std * dy, axis=0)
    // d_x = (1. / N) * scale * inv_var * (N * d_y - np.sum(d_y, axis=0)
    //   - (X - mean) * inv_var * inv_var * np.sum(d_y * (X - mean), axis=0))

    EigenVectorArrayMap<T> d_bias_arr(d_bias->mutable_data<T>(ctx.GetPlace()),
                                      C);
    EigenVectorArrayMap<T> d_scale_arr(d_scale->mutable_data<T>(ctx.GetPlace()),
                                       C);

    d_bias_arr.setZero();
    d_scale_arr.setZero();

    const auto scale_inv_var_nhw = scale_arr * inv_var_arr / (N * sample_size);

Q
QI JUN 已提交
407 408
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), sample_size, N * C);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()),
                                 sample_size, N * C);
        d_x_arr.setZero();

        for (int nc = 0; nc < N * C; ++nc) {
          int c = nc % C;
          d_bias_arr(c) += d_y_arr.col(nc).sum();
          d_scale_arr(c) +=
              ((x_arr.col(nc) - mean_arr(c)) * inv_var_arr(c) * d_y_arr.col(nc))
                  .sum();
        }
        for (int nc = 0; nc < N * C; ++nc) {
          int c = nc % C;
          d_x_arr.col(nc) +=
              scale_inv_var_nhw(c) *
              (d_y_arr.col(nc) * N * sample_size - d_bias_arr(c) -
               (x_arr.col(nc) - mean_arr[c]) * d_scale_arr(c) * inv_var_arr(c));
        }
        break;
      }
Q
QI JUN 已提交
431
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
        ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), C, N * sample_size);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()), C,
                                 N * sample_size);
        d_x_arr.setZero();

        const auto d_y_row_sum = d_y_arr.rowwise().sum();
        const auto x_minus_mean = x_arr.colwise() - mean_arr;
        const auto d_y_mul_x_minus_mean_row_sum =
            (d_y_arr * x_minus_mean).rowwise().sum();
        const auto inv_var_sqr = inv_var_arr * inv_var_arr;
        for (int nhw = 0; nhw < N * sample_size; ++nhw) {
          d_bias_arr += d_y_arr.col(nhw);
          d_scale_arr +=
              (x_arr.col(nhw) - mean_arr) * inv_var_arr * d_y_arr.col(nhw);
          d_x_arr.col(nhw) +=
              scale_inv_var_nhw *
              (d_y_arr.col(nhw) * N * sample_size - d_y_row_sum -
               x_minus_mean.col(nhw) * inv_var_sqr *
                   d_y_mul_x_minus_mean_row_sum);
        }
        break;
      }
      default:
Q
QI JUN 已提交
456
        PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
457 458 459 460
    }
  }
};

Y
Yu Yang 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
class BatchNormGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *op = new framework::OpDesc();
    op->SetType("batch_norm_grad");
    op->SetInput("X", Input("X"));
    op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));

    op->SetInput("Scale", Input("Scale"));
    op->SetInput("SavedMean", Output("SavedMean"));
    op->SetInput("SavedVariance", Output("SavedVariance"));

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("Scale"), InputGrad("Scale"));
    op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));

    return std::unique_ptr<framework::OpDesc>(op);
  }
};

Q
Qiao Longfei 已提交
486 487 488 489
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yu Yang 已提交
490 491 492 493
REGISTER_OPERATOR(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker,
                  ops::BatchNormGradMaker);
REGISTER_OPERATOR(batch_norm_grad, ops::BatchNormGradOp);

Q
QI JUN 已提交
494 495 496
REGISTER_OP_CPU_KERNEL(
    batch_norm,
    ops::BatchNormKernel<paddle::platform::CPUDeviceContext, float>);
Q
Qiao Longfei 已提交
497 498
REGISTER_OP_CPU_KERNEL(
    batch_norm_grad,
Q
QI JUN 已提交
499
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, float>);