data_transform.h 5.6 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <functional>
#include <utility>
#include <vector>

#include "paddle/framework/op_kernel_type.h"
#include "paddle/framework/tensor.h"
#include "paddle/framework/variable.h"
D
dzhwinter 已提交
24
#include "paddle/operators/math/math_function.h"
Q
Qiao Longfei 已提交
25 26
#include "paddle/platform/device_context.h"
#include "paddle/platform/macros.h"
D
dzhwinter 已提交
27
#include "paddle/platform/transform.h"
Q
Qiao Longfei 已提交
28 29 30 31 32 33

namespace paddle {
namespace framework {

using KernelTypePair = std::pair<OpKernelType, OpKernelType>;

D
dzhwinter 已提交
34 35 36 37
using DataTransformFn =
    std::function<void(const platform::DeviceContext*, const KernelTypePair&,
                       const Variable&, Variable*)>;

Q
Qiao Longfei 已提交
38
struct KernelTypePairHash {
39 40 41 42 43
  static void HashCombine(const OpKernelType& t, std::size_t* seed) {
    OpKernelType::Hash kernel_type_hasher;
    (*seed) ^= kernel_type_hasher(t) + 0x9e3779b9 + (*seed << 6) + (*seed >> 2);
  }

Q
Qiao Longfei 已提交
44 45
  size_t operator()(const KernelTypePair& kernel_pair) const {
    std::size_t seed = 0;
46 47
    HashCombine(kernel_pair.first, &seed);
    HashCombine(kernel_pair.second, &seed);
Q
Qiao Longfei 已提交
48 49 50 51
    return seed;
  }
};

D
dzhwinter 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
template <typename InType, typename OutType>
struct CastDataTypeFunctor {
  HOSTDEVICE inline OutType operator()(InType in) const {
    return static_cast<OutType>(in);
  }
};

template <typename InType>
struct CastDataType {
  CastDataType(const framework::Tensor& in, framework::Tensor* out,
               const platform::DeviceContext* ctx)
      : in_(in), out_(out), ctx_(ctx) {}
  const framework::Tensor in_;
  framework::Tensor* out_;
  const platform::DeviceContext* ctx_;

  template <typename OutType>
  void operator()() {
    auto place = ctx_->GetPlace();

    auto* in_begin = in_.data<InType>();
    auto numel = in_.numel();
    auto* in_end = in_begin + numel;
    auto* out_begin = out_->mutable_data<OutType>(place);
    if (platform::is_cpu_place(place)) {
      platform::Transform<platform::CPUDeviceContext> trans;
      auto* context = static_cast<const platform::CPUDeviceContext*>(ctx_);
      trans(*context, in_begin, in_end, out_begin,
            CastDataTypeFunctor<InType, OutType>());
    } else {
      // TODO(dzhwinter): enhance CopyFrom CPU<->GPU with different data type?
      PADDLE_THROW("Unsupport CPU <-> GPU!");
    }
  }
};

struct CastDataLayout {
  CastDataLayout(const framework::Tensor& in, framework::Tensor* out,
                 const platform::DeviceContext* ctx,
                 const std::vector<int>& axis)
      : in_(in), out_(out), ctx_(ctx), axis_(axis) {}
  const framework::Tensor in_;
  framework::Tensor* out_;
  const platform::DeviceContext* ctx_;
  const std::vector<int> axis_;

  template <typename T>
  void operator()() {
    auto place = ctx_->GetPlace();
    if (platform::is_cpu_place(place)) {
      operators::math::Transpose<platform::CPUDeviceContext, T, 4> trans4;
      auto* context = static_cast<const platform::CPUDeviceContext*>(ctx_);
      trans4(*context, in_, out_, axis_);
    } else {
      PADDLE_THROW("Unsupport CPU <-> GPU!");
    }
  }
};

Q
Qiao Longfei 已提交
111
using DataTransformMap =
Q
QI JUN 已提交
112
    std::unordered_map<KernelTypePair, DataTransformFn, KernelTypePairHash>;
Q
Qiao Longfei 已提交
113 114 115 116 117 118 119 120 121 122

class DataTransformFnMap {
 public:
  static DataTransformFnMap& Instance();

  bool Has(const KernelTypePair& key_pair) const {
    return map_.find(key_pair) != map_.end();
  }

  void Insert(const OpKernelType& left, const OpKernelType& right,
Q
QI JUN 已提交
123
              const DataTransformFn& data_tranform_fn) {
Q
Qiao Longfei 已提交
124 125 126 127
    Insert(std::make_pair(left, right), data_tranform_fn);
  }

  void Insert(const KernelTypePair& kernel_type_pair,
Q
QI JUN 已提交
128
              const DataTransformFn& data_tranform_fn) {
Q
Qiao Longfei 已提交
129 130 131 132 133
    PADDLE_ENFORCE(!Has(kernel_type_pair),
                   "KernelTypePair %s has been registered", "");
    map_.insert({kernel_type_pair, data_tranform_fn});
  }

Q
QI JUN 已提交
134
  const DataTransformFn& Get(const KernelTypePair& key_pair) const {
Q
Qiao Longfei 已提交
135 136
    auto data_transformer = GetNullable(key_pair);
    PADDLE_ENFORCE_NOT_NULL(data_transformer,
Q
QI JUN 已提交
137
                            "DataTransformFn should not be NULL");
Q
Qiao Longfei 已提交
138 139 140
    return *data_transformer;
  }

Q
QI JUN 已提交
141
  const DataTransformFn* GetNullable(const KernelTypePair& key_pair) const {
Q
Qiao Longfei 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    auto it = map_.find(key_pair);
    if (it == map_.end()) {
      return nullptr;
    } else {
      return &(it->second);
    }
  }

  const DataTransformMap& Map() const { return map_; }

 private:
  DataTransformFnMap() = default;
  DataTransformMap map_;
  DISABLE_COPY_AND_ASSIGN(DataTransformFnMap);
};

// generate unique name with __LINE__
// refs https://stackoverflow.com/questions/1597007
#define TOKENPASTE(x, y) x##y
#define TOKENPASTE2(x, y) TOKENPASTE(x, y)
#define REGISTER_DATA_TRANSFORM_FN(from, to, fn)                              \
  static int TOKENPASTE2(fn_, __LINE__)() {                                   \
    ::paddle::framework::DataTransformFnMap::Instance().Insert(from, to, fn); \
    return 0;                                                                 \
  }                                                                           \
  static int TOKENPASTE2(var_, __LINE__) __attribute__((unused)) =            \
      TOKENPASTE2(fn_, __LINE__)()

}  // namespace framework
}  // namespace paddle