yolo.py 3.2 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

5
from ppdet.core.workspace import register, create
Q
qingqing01 已提交
6 7 8 9 10 11 12 13
from .meta_arch import BaseArch

__all__ = ['YOLOv3']


@register
class YOLOv3(BaseArch):
    __category__ = 'architecture'
14
    __shared__ = ['data_format']
15
    __inject__ = ['post_process']
Q
qingqing01 已提交
16 17 18 19 20

    def __init__(self,
                 backbone='DarkNet',
                 neck='YOLOv3FPN',
                 yolo_head='YOLOv3Head',
21
                 post_process='BBoxPostProcess',
22 23
                 data_format='NCHW',
                 for_mot=False):
W
wangxinxin08 已提交
24 25 26 27 28 29 30 31 32
        """
        YOLOv3 network, see https://arxiv.org/abs/1804.02767

        Args:
            backbone (nn.Layer): backbone instance
            neck (nn.Layer): neck instance
            yolo_head (nn.Layer): anchor_head instance
            bbox_post_process (object): `BBoxPostProcess` instance
            data_format (str): data format, NCHW or NHWC
33
            for_mot (bool): whether return other features used in tracking model 
W
wangxinxin08 已提交
34
        """
35
        super(YOLOv3, self).__init__(data_format=data_format)
Q
qingqing01 已提交
36 37 38 39
        self.backbone = backbone
        self.neck = neck
        self.yolo_head = yolo_head
        self.post_process = post_process
40
        self.for_mot = for_mot
Q
qingqing01 已提交
41

42 43 44 45 46 47 48 49 50 51 52 53
    @classmethod
    def from_config(cls, cfg, *args, **kwargs):
        # backbone
        backbone = create(cfg['backbone'])

        # fpn
        kwargs = {'input_shape': backbone.out_shape}
        neck = create(cfg['neck'], **kwargs)

        # head
        kwargs = {'input_shape': neck.out_shape}
        yolo_head = create(cfg['yolo_head'], **kwargs)
Q
qingqing01 已提交
54

55 56 57 58 59 60 61 62
        return {
            'backbone': backbone,
            'neck': neck,
            "yolo_head": yolo_head,
        }

    def _forward(self):
        body_feats = self.backbone(self.inputs)
63 64 65 66 67 68
        neck_feats = self.neck(body_feats, self.for_mot)

        if isinstance(neck_feats, dict):
            assert self.for_mot == True
            emb_feats = neck_feats['emb_feats']
            neck_feats = neck_feats['yolo_feats']
Q
qingqing01 已提交
69

70
        if self.training:
71 72 73 74 75 76 77
            yolo_losses = self.yolo_head(neck_feats, self.inputs)

            if self.for_mot:
                return {'det_losses': yolo_losses, 'emb_feats': emb_feats}
            else:
                return yolo_losses

78
        else:
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
            yolo_head_outs = self.yolo_head(neck_feats)

            if self.for_mot:
                boxes_idx, bbox, bbox_num, nms_keep_idx = self.post_process(
                    yolo_head_outs, self.yolo_head.mask_anchors)
                output = {
                    'bbox': bbox,
                    'bbox_num': bbox_num,
                    'boxes_idx': boxes_idx,
                    'nms_keep_idx': nms_keep_idx,
                    'emb_feats': emb_feats,
                }
            else:
                bbox, bbox_num = self.post_process(
                    yolo_head_outs, self.yolo_head.mask_anchors,
                    self.inputs['im_shape'], self.inputs['scale_factor'])
                output = {'bbox': bbox, 'bbox_num': bbox_num}

            return output
Q
qingqing01 已提交
98

99 100
    def get_loss(self):
        return self._forward()
Q
qingqing01 已提交
101 102

    def get_pred(self):
103
        return self._forward()