trainer.py 5.5 KB
Newer Older
Y
Yu Yang 已提交
1
import collections
Y
Yu Yang 已提交
2

Y
Yu Yang 已提交
3 4 5
import py_paddle.swig_paddle as api
from py_paddle import DataProviderConverter

Y
Yu Yang 已提交
6 7 8
from paddle.proto.ModelConfig_pb2 import ModelConfig
from . import optimizer as v2_optimizer
from . import parameters as v2_parameters
Y
Yu Yang 已提交
9
from . import event as v2_event
Y
Yu Yang 已提交
10

Y
Yu Yang 已提交
11
__all__ = ['ITrainer', 'SGD']
Y
Yu Yang 已提交
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27


def default_event_handler(event):
    pass


class ITrainer(object):
    def train(self,
              train_data_reader,
              topology,
              parameters,
              test_data_reader=None,
              event_handler=None):
        raise NotImplementedError()


Y
Yu Yang 已提交
28
class SGD(ITrainer):
Y
Yu Yang 已提交
29
    def __init__(self, update_equation):
Y
Yu Yang 已提交
30 31 32 33 34
        """
        Simple SGD Trainer.

        :param update_equation: Maybe we should give a DSL for update equation?
        """
Y
Yu Yang 已提交
35 36 37
        if not isinstance(update_equation, v2_optimizer.Optimizer):
            raise ValueError("update equation parameter must be "
                             "paddle.v2.optimizer.Optimizer")
Y
Yu Yang 已提交
38 39 40 41 42 43 44 45 46 47 48
        self.__optimizer__ = update_equation

    def train(self,
              train_data_reader,
              topology,
              parameters,
              num_passes=1,
              test_data_reader=None,
              event_handler=None,
              batch_size=32,
              data_types=None):
Y
Yu Yang 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
        """
        Training method. Will train num_passes of input data.

        :param train_data_reader:
        :param topology: Network Topology, a protobuf ModelConfig message.
        :param parameters: The parameter pools.
        :param num_passes: The total train passes.
        :param test_data_reader:
        :param event_handler: Event handler. A method will be invoked when event
                              occurred.
        :type event_handler: (BaseEvent) => None
        :param batch_size: Not important, will be removed after data refactor.
        :param data_types: Not important, will be removed after data refactor.
        :return:
        """
Y
Yu Yang 已提交
64 65 66 67 68 69 70 71
        if event_handler is None:
            event_handler = default_event_handler

        __check_train_args__(**locals())

        gm = api.GradientMachine.createFromConfigProto(
            topology, api.CREATE_MODE_NORMAL, self.__optimizer__.enable_types())
        assert isinstance(gm, api.GradientMachine)
Y
Yu Yang 已提交
72
        parameters.append_gradient_machine(gm)
Y
Yu Yang 已提交
73 74 75 76

        updater = self.__optimizer__.create_local_updater()
        updater.init(gm)

Y
Yu Yang 已提交
77 78 79
        gm.start()
        out_args = api.Arguments.createArguments(0)

Y
Yu Yang 已提交
80 81 82 83 84 85 86 87 88 89 90
        data_types_lists = []
        for each in topology.input_layer_names:
            if each not in data_types:
                raise ValueError()
            data_types_lists.append(data_types[each])

        converter = DataProviderConverter(input_types=data_types_lists)

        for pass_id in xrange(num_passes):
            updater.startPass()
            for batch_id, data_batch in enumerate(
Y
Yu Yang 已提交
91 92
                    __data_reader_to_batch__(train_data_reader, batch_size,
                                             topology)):
Y
Yu Yang 已提交
93 94 95 96 97 98 99 100 101 102
                pass_type = updater.startBatch(len(data_batch))
                gm.forwardBackward(converter(data_batch), out_args, pass_type)
                for each_param in gm.getParameters():
                    updater.update(each_param)
                # Get cost. We use numpy to calculate total cost for this batch.
                cost_vec = out_args.getSlotValue(0)
                cost_vec = cost_vec.copyToNumpyMat()
                cost = cost_vec.sum() / len(data_batch)
                updater.finishBatch(cost)
                event_handler(
Y
Yu Yang 已提交
103
                    v2_event.EndIteration(
Y
Yu Yang 已提交
104
                        pass_id=pass_id, batch_id=batch_id, cost=cost))
Y
Yu Yang 已提交
105 106 107 108 109

            updater.finishPass()
        gm.finish()


Y
Yu Yang 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
def __data_reader_to_batch__(reader, batch_size, topology):
    """
    This function is not important, and will be removed when data refactored.
    """

    def input_reorder(func):
        for item in func():
            retv = []
            for __layer_name__ in topology.input_layer_names:
                retv.append(item[__layer_name__])
            yield retv

    return __generator_to_batch__(input_reorder(reader), batch_size=batch_size)


Y
Yu Yang 已提交
125
def __generator_to_batch__(generator, batch_size):
Y
Yu Yang 已提交
126 127 128
    """
    This function is not important, and will be removed when data refactored.
    """
Y
Yu Yang 已提交
129 130 131 132 133 134 135 136 137 138 139 140
    ret_val = list()
    for each_item in generator:
        ret_val.append(each_item)
        if len(ret_val) == batch_size:
            yield ret_val
            ret_val = list()
    if len(ret_val) != 0:
        yield ret_val


def __check_train_args__(train_data_reader, topology, parameters,
                         test_data_reader, event_handler, **kwargs):
Y
Yu Yang 已提交
141 142 143
    """
    Check train function's argument types
    """
Y
Yu Yang 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157
    if not callable(train_data_reader) or not isinstance(train_data_reader(),
                                                         collections.Iterator):
        raise ValueError('train_data_reader should be a function, '
                         'which can return a iterator')

    if test_data_reader is not None:
        if not callable(test_data_reader) or not isinstance(
                test_data_reader(), collections.Iterator):
            raise ValueError('test_data_reader should be a function, which can '
                             'return a iterator')

    if not isinstance(topology, ModelConfig):
        raise ValueError('topology should be a model config')

Y
Yu Yang 已提交
158
    if not isinstance(parameters, v2_parameters.Parameters):
Y
Yu Yang 已提交
159 160 161 162
        raise ValueError('parameters should be a parameter pool')

    if not callable(event_handler):
        raise ValueError('event handler should be a function')